Использование микроорганизмов в производстве медицинских препаратов и в лабораторных исследованиях. Витамины, аминокислоты и органические кислоты
Подходы к разработке и производству лекарственных растений, профилактических и диагностических медицинских препаратов. Использование микроорганизмов в производстве лекарств и в лабораторных исследованиях. Получение витаминов микробиологическим путем.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 09.05.2020 |
Размер файла | 364,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http: //www. allbest. ru/
ДЕПАРТАМЕНТ СМОЛЕНСКОЙ ОБЛАСТИ ПО ЗДРАВООХРАНЕНИЮ ОБЛАСТНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СМОЛЕНСКИЙ БАЗОВЫЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ ИМЕНИ К.С. КОНСТАНТИНОВОЙ»
(ОГБПОУ «Смоленский базовый медицинский колледж имени К.С. Константиновой»)
Реферат
Специальность 33.02.01. «Фармация»
Тема: «Использование микроорганизмов в производстве медицинских препаратов и в лабораторных исследованиях. Витамины, аминокислоты и органические кислоты»
Подготовила: студентка группы 17 ФМ
Русакова Аполлинария Игоревна
Преподаватель: Дорожкина И.П.
Смоленск, 2019
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ГЛАВА 1. БИОТЕХНОЛОГИЯ - МЕДИЦИНЕ
1.1 Когда лекарство опаснее болезни
1.2 Пробиотики вместо антибиотиков?
1.3 Полезный микроб -- аэрококк
1.4 Лечебные вирусы
1.5 Пробиотики и фаги вместе
ГЛАВА 2. ПОЛУЧЕНИЕ ВИТАМИНОВ МИКРОБИОЛОГИЧЕСКИМ ПУТЕМ
ГЛАВА 3. АМИНОКИСЛОТЫ
ГЛАВА 4. ОРГАНИЧЕСКИЕ КИСЛОТЫ
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ВВЕДЕНИЕ
лекарственный медицинский витамин микробиологический
Биотехнология предлагает новые подходы к разработке и производству лекарственных растений, профилактических и диагностических медицинских препаратов, а также позволяет производить в достаточных количествах широкий спектр лекарственных средств, которые ранее были малодоступны.
В элементарном виде биотехнологии использовались с древних времен, когда пивовары с помощью дрожжевых культур начали делать пиво. Прорыв, который заложил фундамент для современной биотехнологии, наступил, когда в начале 1950-х годов была открыта структура ДНК. Чтобы понять, как это открытие в конечном итоге привело к созданию биопрепаратов, необходимо иметь основное представление о центральной роли ДНК в нормальной жизнедеятельности и при развитии заболеваний.
Производство аминокислот относится к одной из наиболее передовых областей биотехнологии. --Достижения биотехнологии позволяют ускоренными темпами развивать микробиологическую промышленность, в частности производство кормового белка, аминокислот, ферментов, витаминов, антибиотиков.
ГЛАВА 1. БИОТНХНОЛОГИЯ - МЕДИЦИНЕ
В современной медицинской практике используется большое количество средств, получаемых благодаря жизнедеятельности микроорганизмов. Сюда относятся витамины, ферменты, генно-инженерные гормоны и интерфероны, заменители крови и, конечно же, антибиотики. Собственно, даже медицинский спирт -- этот универсальный антисептик, народный анальгетик и антидепрессант -- является продуктом бродильного метаболизма дрожжевых грибков. Традиционные и новые высокоэффективные, различные по структуре и механизму действия природные и химически модифицированные лекарственные препараты, в создании которых участвовали микроорганизмы, применяются для лечения различных заболеваний.
1.1 Когда лекарство опаснее болезни
В практике применения лекарственных средств врачу приходится встречаться с так называемыми побочными явлениями, которые могут развиваться наряду с основным действием лекарства и ограничивать возможности его применения. Побочные реакции особенно часто возникают в случаях применения лекарств, обладающих многосторонним фармакологическим эффектом (вспомним тот же этиловый спирт), тогда как цель лечения достигается благодаря использованию лишь некоторых сторон фармакодинамики данного лекарства.
Особенного внимания заслуживают в этом смысле антибиотики, поскольку они являются препаратами выбора при лечении большинства инфекционных заболеваний, а назначению антибиотиков далеко не всегда предшествует проведение необходимых микробиологических исследований. Нередки случаи нерационального применения антибиотиков широкого спектра действия, нарушения пациентами схем приема препаратов, а то и вовсе бесконтрольного самолечения. И даже при правильном использовании антибактериальное действие антибиотиков распространяется не только на патогенную, но и на нормальную микробную флору организма. Под действием антибиотиков гибнут бифидобактерии, лактобациллы, симбиотические штаммы кишечной палочки и другие полезные микробы. Освободившиеся экологические ниши тут же заселяют условно-патогенные бактерии и грибки (как правило, обладающие резистентностью к антибиотикам), которые до этого присутствовали на коже и в нестерильных полостях организма в незначительном количестве -- их размножение сдерживалось нормальной микрофлорой. Антибиотикотерапия, например, может способствовать превращению мирных сапрофитных дрожжеподобных грибков Candida albicans(рис. 1), обитающих на слизистых оболочках полости рта, трахеи и кишечника, в бурно размножающиеся микроорганизмы, вызывающие ряд местных и общих поражений.
В основе других побочных эффектов могут лежать индивидуальные особенности взаимодействия организма с антибиотиком: непереносимость препарата может иметь аллергическую или псевдоаллергическую природу, быть следствием ферментопатий или попадать в загадочную категорию идиосинкразий (до выяснения механизма непереносимости).
1.2 Пробиотики вместо антибиотиков?
В настоящее время перед медицинской наукой и органами охраны здоровья всего мира стоит ответственная задача -- создание эффективных антибактериальных препаратов, вызывающих как можно менее выраженные побочные реакции.
Одним из возможных решений проблемы является разработка и широкое фармакотерапевтическое использование препаратов на основе живых культур представителей нормальной микрофлоры (пробиотиков) для коррекции микробиоценозов человека и для лечения патологических состояний. Применение бактериальных препаратов основано на понимании роли нормальной микрофлоры организма в процессах, обеспечивающих неспецифическую резистентность к инфекциям, в формировании иммунного ответа, а также на установлении антагонистической роли нормофлоры и ее участия в регуляции метаболических процессов.
Основоположником теории пробиотиков считают И.И. Мечникова. Он полагал, что сохранение здоровья человека и продление молодости во многом зависит от обитающих в кишечнике молочнокислых бактерий, способных подавлять процессы гниения и образования токсичных продуктов. Еще в 1903 году Мечников предложил практическое использование микробных культур--антагонистов для борьбы с болезнетворными бактериями.
По некоторым данным, термин «пробиотики» был введен Вернером Коллатом в 1953 году, затем его неоднократно и по-разному толковали как ученые, так и регулирующие организации. Коллат назвал пробиотиками вещества, необходимые для развития здорового организма, своего рода «промоторы жизни» -- в противоположность антибиотикам. С концовкой этого утверждения соглашались также Лилли и Стилвелл, которым часто приписывают изобретение термина, однако они уточняли, что пробиотики представляют собой вещества, вырабатываемые одними микроорганизмами и стимулирующие рост других. Подавляющее же большинство определений вращалось вокруг принятия жизнеспособных микробов с целью модуляции кишечной микрофлоры. Согласно консенсусной трактовке экспертного совета ВОЗ и ФАО, пробиотики представляют собой живые микроорганизмы, которые при принятии в достаточном количестве приносят пользу здоровью. Существенный вклад в развитие современной концепции пробиотиков внес известный биохимик, специалист по питанию животных Марсель Ванбелле. Т.П. Лайонс и Р.Дж. Фэллон в 1992 году назвали наше время «наступающей эпохой пробиотиков» (и не ошиблись, судя по невероятному росту их продаж ).
По сравнению с традиционными антибактериальными препаратами пробиотики имеют ряд преимуществ: безвредность (однако не при всех диагнозах и не для всех пациентов.), отсутствие побочных реакций, аллергизации и отрицательного воздействия на нормальную микрофлору. В то же время авторы ряда исследований связывают прием этих биопрепаратов с выраженным клиническим эффектом при лечении (долечивании) острых кишечных инфекций. Важной особенностью пробиотиков, по некоторым данным, является их способность модулировать иммунные реакции, оказывать в ряде случаев противоаллергическое действие, регулировать пищеварение.
В настоящее время в медицине широко используют ряд подобных бактериальных препаратов. Одни из них содержат бактерии, постоянно обитающие в организме человека («Лактобактерин», «Бифидумбактерин», «Колибактерин», «Бификол»), другие состоят из микроорганизмов, не являющихся «резидентами» человеческого тела, но способных на определенное время колонизировать слизистые оболочки или раневые поверхности, создавая на них защитную и вырабатывая вещества, губительные для патогенных бактерий. К таким препаратам относятся, в частности, «Биоспорин» на основе сапрофитной бактерии Bacillus subtilis и «А-бактерин», состоящий из живых клеток зеленящего аэрококка -- Aerococcus viridans
1.3 Полезный микроб -- аэрококк
Некоторых аэрококков относят к условно-патогенным микробам, поскольку они способны вызывать заболевания у животных (например, гаффкемию у омаров) и людей с иммунодефицитами. Аэрококки часто обнаруживаются в воздухе больничных палат и на предметах медицинского назначения, выделяются от больных со стрептококковыми и стафилококковыми инфекциями и к тому же имеют определенное морфологическое сходство с этими опасными бактериями.
Но коллективу кафедры микробиологии Днепропетровской медицинской академии удалось выявить среди аэрококков штамм не просто безвредный для человека, но и проявляющий выраженную антагонистическую активность в отношении широкого спектра возбудителей инфекционных болезней. Так был разработан и внедрен препарат, не имеющий аналогов в мировой практике, -- пробиотик «А-бактерин» для наружного и перорального применения, который не уступает по своему воздействию на микрофлору человека дорогостоящим препаратам антибиотического направления.
Антагонистические свойства аэрококков связаны с продукцией перекиси водорода (вещества, широко применяемого в медицине в качестве антисептика) -- стабильным признаком производственного штамма А. viridans, из которого готовится «А-бактерин». Другим бактерицидным веществом, продуктом метаболизма аэрококков, является супероксидный радикал , образуемый этими бактериями при окислении молочной кислоты. Причем способность аэрококков окислять молочную кислоту очень важна в случае применения препарата в стоматологии, так как одной из причин кариеса является молочная кислота, образуемая стрептококками.
В культуральной жидкости аэрококков был выявлен низкомолекулярный кислотоустойчивый и термостабильный пептид виридоцин, обладающий широким спектром антагонистической активности в отношении тех микроорганизмов, которые чаще всего вызывают госпитальные инфекции и участвуют в формировании физиологического и патологического микробиоценоза кишечника человека. Кроме того, А. viridans продуцирует во внешнюю среду пептид аэроцин*, способный убивать дрожжеподобные грибки. Использование «А-бактерина» с йодидом калия и этонием эффективно при урогенитальных кандидозах, так как обеспечивает направленное повреждение мембран кандид. Тот же эффект достигается в случае применения препарата как средства профилактики кандидозов, возникающих, например, вследствие угнетения иммунитета при ВИЧ-инфекции.
* -- Наряду с продукцией перекиси водорода (за счет НАД-независимой лактатдегидрогеназы), а в присутствии иодида калия и образованием гипойодида (за счет глутатионпероксидазы) с более выраженным, чем у пероксида водорода, бактерицидным действием, аэрококки располагают и неоксидными компонентами антагонистической активности. Они образуют низкомолекулярный термостабильный пептид аэроцин, относящийся к классу микроцинов, активный в отношении протеев, стафилококков, эшерихий и сальмонелл. Аэроцин был выделен из культуральной жидкости методами высаливания, электродиализа и бумажной хроматографии, после чего был установлен его аминокислотный состав и показана терапевтическая эффективность при экспериментальной сальмонеллезной инфекции у мышей. Аэрококкам также свойственна адгезия к эпителиальным и некоторым другим клеткам, то есть противодействие патогенным бактериям идет в том числе на уровне биопленок и колонизационной резистентности.
Кроме способности подавлять размножение патогенных бактерий, «А-бактерин» способствует регенерации поврежденной ткани, проявляет адъювантное действие, стимулирует фагоцитоз и может быть рекомендован больным, сенсибилизированным к антибиотикам и химиотерапевтическим средствам. Сегодня «А-бактерин» успешно применяется для лечения ожоговых и хирургических ран, для профилактики и лечения диареи, а также в стоматологической, урологической и гинекологической практике. Перорально «А-бактерин» используется для коррекции микрофлоры кишечника, профилактики и лечения кишечных инфекций, коррекции отдельных биохимических показателей (холестеринового профиля и уровня молочной кислоты) и активации иммунитета [1]. Другие пробиотики тоже широко применяются для лечения и профилактики кишечных инфекций, особенно у детей раннего возраста, находящихся на искусственном вскармливании. Пользуются популярностью и пищевые продукты, содержащие живые пробиотические культуры.
1.4 Лечебные вирусы
Как оказалось, в терапевтических целях может быть использовано не только явление микробного антагонизма, но и паразитизма. Патогенные бактерии паразитируют в организме человека, но и они, в свою очередь, являются хозяевами для еще более мелких паразитов -- бактериофагов. Применение фагов в медицине основано на их высокой специфичности. Каждый вид фагов способен размножаться только в клетках определенной группы бактерий. Бактериофаги принципиально не способны повреждать человеческие клетки, и кроме того, бактерии-симбионты человека и патогенные бактерии обычно восприимчивы к разным фагам.
При лечении инфекций важно создать высокую концентрацию антимикробного препарата именно в месте локализации возбудителя. Применяя антибиотики в виде таблеток или инъекций, добиться этого довольно трудно. Но в случае фаготерапии достаточно, если в инфекционный очаг доберутся хотя бы одиночные бактериофаги. Обнаружив патогенные бактерии и проникнув в них, фаги начинают очень быстро размножаться. С каждым циклом размножения, который длится около получаса, количество фагов возрастает в десятки, а то и сотни раз. После разрушения всех клеток возбудителя фаги более не способны размножаться и, благодаря своим мелким размерам, беспрепятственно выводятся из организма вместе с другими продуктами распада.
1.5 Пробиотики и фаги вместе
Бактериофаги хорошо зарекомендовали себя в профилактике и лечении кишечных инфекций и гнойно-воспалительных процессов. Возбудители этих заболеваний часто приобретают устойчивость к антибиотикам, но остаются чувствительными к фагам. В последнее время ученых заинтересовала перспектива совместного использования бактериофагов и пробиотиков. Предполагается, что при назначении такого комплексного препарата сначала фаг уничтожает патогенные бактерии, а потом освободившуюся экологическую нишу заселяют полезные микроорганизмы, формируя стабильный микробиоценоз с высокими защитными свойствами. Такой подход уже был опробован на сельскохозяйственных животных. Вероятно, он войдет и в медицинскую практику.
Возможно и более тесное взаимодействие в системе «бактериофаг + пробиотик». Известно, что бактерии -- представители нормальной микрофлоры человека -- способны адсорбировать на своей поверхности различные вирусы, не позволяя им проникнуть в клетки человека. Оказалось, что таким же образом могут адсорбироваться и бактериофаги: они не способны внедриться в клетку устойчивой к ним бактерии, но используют ее как «транспортное средство» для перемещения в организме человека. Такое явление получило название транслокации бактериофагов.
Внутренняя среда организма, его ткани и кровь считаются стерильными. На самом деле через микроскопические повреждения слизистых оболочек бактерии-симбионты периодически проникают в кровяное русло (рис. 7), хотя и быстро там уничтожаются клетками иммунной системы и бактерицидными веществами. При наличии инфекционного очага барьерные свойства окружающих тканей часто нарушены, их проницаемость возрастает. Это повышает вероятность проникновения туда циркулирующих пробиотических бактерий вместе с прикрепившимися к ним фагами. В частности, у людей с инфекциями мочевыводящих путей, принимающих «А-бактерин» перорально, аэрококки обнаруживались в моче, причем их количество было стабильно низким, что говорило именно о переносеаэрококков, а не об их размножении в этих органах. Аэрококки и наиболее распространенные возбудители урологических инфекций относятся к совершенно разным группам бактерий, а значит, чувствительны к разным бактериофагам. Это открывает интересные перспективы для создания комплексного препарата, например, на основе А. viridansи фагов, поражающих кишечные бактерии. Такие разработки ведутся на кафедре микробиологии Днепропетровской медицинской академии, однако они пока не вышли за стадию лабораторного исследования.
ГЛАВА 2. ПОЛУЧЕНИЕ ВИТАМИНОВ МИКРОБИОЛОГИЧЕСКИМ ПУТЕМ
Витамины и каротаноиды
Витамины
Витамины поставляются в организм с пищей или их назначают в форме лекарственных препаратов при определенных патологических процессах. Из жиро-и водорастворимых витаминов известны биотехнологические процессы производства витаминов а и D, рибофлавина, аскорбиновой кислоты, цианкобаламина (В12).
Каротаноиды - это изопреноидные соединения, синтезирующиеся многими пигментными микроорганизмами из рода Aleuria, Blakeslea, Corynebacterium, Flexibacter, Fusarium, Halobacterium, Phycomyces, Pseudomonas, Rhodotorula, Sarcina, Sporobolomyces и др. Всего описано около 500 каротиноидов.
Из одной молекулы - каротина при гидролизе образуются две молекулы витамина A. Это имеет место, например, в кишечнике человека.
Каротиноиды локализуются в виде сложных эфиров и гликозидов в клеточной мембране микроорганизмов, либо в свободном состоянии - в липидных гранулах в цитоплазме. Каротиноид "ретиналь" у галофильного вида - Halobacterium halobium - соединен с белком через остаток лизина(опсинопо-добный белок); он участвует в синтезе АТФ благодаря генерации транс мембранного потенциала. В целом, основная функция каротиноидов - защитная. Их биосинтезу в клетках способствует свет.
В качестве продуцентов каротиноидов можно использовать бактерии, дрожжи, мицелиальные грибы. Более часто применяют зигомицеты Blakeslea trispora и Choanephora conjuncta. Спаривающиеся ( + ) и (-) штаммы этих видов при совместном культивировании могут образовать 3-4 г каротина на 1 л среды.
Питательные среды для производства витаминов сложные и включают источники углерода, азота, витаминов, микроэлементов, специальных стимуляторов (гидрол, кукурузно-соевая мука, растительные масла, керосин, -ионон или изопреновые димеры).
Вначале штаммы выращивают раздельно, а затем - совместно при 26?С и усиленной аэрации с последующим переносом в основной ферментатор. Длительность ферментации - 6-7 дней. Каротиноиды извлекают ацетоном (или другим полярным растворителем), переводят в неполярный растворитель. В случаях извлечения белково-каротиноидных комплексов, применяют поверхностно-активные вещества в концентрации 1-2%. В целях очистки и более тонкого разделения можно прибегать к методам хроматографии или к смене растворителей. Витамин A из (3-каротина сравнительно легко можно получить при гидролизе.
В случае изготовления каротинсодержащей биомассы для скармливания животным и птицам возможно ее сочетанное применение с витамином А или без него. В медицинских целях витамин А изготавливают в капсулах для приема через рот.
Витамин D
Витамин D - это группа родственных соединений, в основе которых находится эргостерин, который обнаружен в клеточных мембранах эукариот. Поэтому, например, пекарские или пивные дрожжи применяют для получения зргостерина, как провитамина, обладающего антирахитическим действием. Содержание эргостерина в дрожжевых клетках колеблется в пределах 0,2-11%.
При недостатке в организме гормона 1,25-дигидроксихолекальциферола, предшественником которого является витамин D2 у детей развивается рахит (аналог рахита у взрослых - остеомаляция).
Трансформация эргостерина в витамин D2 (кальциферол) происходит под влиянием ультрафиолетового облучения. При этом разрывается связь в кольце (позиции 9,10) и образуется двойная связь в боковой цепочке (позиции 22, 23). Эта последняя гидрирована в витамине D3 (холекальциферол). Физиологическая активность обоих витаминов (D2 и D3) равноценна.
Кроме дрожжей продуцентами эрогостерина могут быть мицелиальные грибы - аспергиллы и пенициллы, в которых содержится 1,2-2,2% эргостерина. Замечено, что полиеновые антибиотики, действующие на клеточную мембрану дрожжей, заметно стимулируют их содержание в биомассе.
Получение эргостерина в производственных условиях можно подразделить на следующие этапы: размножения исходной культуры и накопление инокулюма, ферментация, сепарирование клеток, облучение клеток ультрафиолетовыми лучами, высушивание и упаковка целевого продукта.
Так, применительно к дрожжам, инокулюм получают на средах, обеспечивающих полноценное развитие клеток, после чего основную среду с ацетатом (активатором биосинтеза стеринов), обогащенную источником углерода и содержащую пониженное количество азота (высокое значение C/N), засевают сравнительно большим объемом инокулята. Культивирование дрожжей (ферментацию) проводят при температуре, близкой к максимальной для конкретного штамма, и выраженной аэрации (2% О2 в газовой фазе). Спустя 3-4 суток, в зависимости от ростовых характеристик и биосинтетической активности культуры, клетки сепарируют и подвергают вакуум-высушиванию. Затем сухие дрожжи облучают ультрафиолетовыми лучами - УФЛ (длина волны 280-300 нм) в течение оптимального по продолжительности времени, при требуемой температуре и с учетом примесных веществ. Эти контролируемые показатели, установленные опытным путем, указываются в регламентной документации. Облучение дрожжей можно проводить до сепарирования клеток в тонком слое 5% суспензии, учитывая малую проникающую способность УФЛ.
Облученные сухие дрожжи применяют в животноводстве; в промышленности их выпускают под названием "кормовые гидролизные дрожжи, обогащенные витамином D2". В таком препарате содержится не менее 46% сырого белка, незаменимые аминокислоты (лизин, метионин, триптофан) и 5000 ME витамина D2 /г.
В случае получения кристаллического витамина D2 клетки продуцента гидролизуют соляной кислотой при 110?С, затем температуру снижают до 75-78?С и добавляют этанол. Смесь фильтруют при 10-15?С, оставшуюся после фильтрации массу промывают водой, высушивают, измельчают, нагревают до 78?С и дважды обрабатывают тройным объемом этанола. Спиртовые экстракты объединяют и упаривают до 70%-го содержания сухих веществ. Полученный "липидный концентрат" обрабатывают раствором едкого натра. Эргостерин кристаллизуется из неомыленнной фракции концентрата при 0?С. Его очищают повторной перекристаллизацией. Кристаллы высушивают, растворяют в серном эфире, облучают УФЛ, эфир отгоняют, раствор витамина D2 концентрируют и кристаллизуют. "Кислотный фильтрат" обычно упаривают до 50%-го содержания сухих веществ и применяют как концентрат витаминов. Производят также масляный концентрат витамина D2.
Рибофлавин, или витамин В2
- содержится в клетках различных микроорганизмов, будучи коферментом в составе флавопро-теинов (прежде всего - соответствующих ферментов из класса оксидоредуктаз - ФМН, ФАД). Поэтому в качестве продуцентов рибофлавина (флавопротеинов) могут быть бактерии, дрожжи и нитчатые грибы. Однако наиболее заманчивыми являются те штаммы, которые образуют на жидких средах 0,5 г и более рибофлавина в 1 л среды. К подобным организмам относятся Ashbyii gossypii, Eremothecium ashbyii и Candida guilliermondii. Учитывая изменчивость активных продуцентов названных видов по способности синтезировать витамин В2, необходим систематический отбор культур в процессе их эксплуатации на производстве. Обычно активные продуценты первых двух видов формируют яркооранжевые колонии на агаризованных средах. Методами генной инженерии удалось получить штамм сенной палочки, образующий около 6 г рибофлавина в 1 л среды, включающей мелассу, белково-витаминный концентрат и его гидролизат.
Высокий выход рибофлавина у Е.ashbyii коррелирует с азотом пуринов и другими азотистыми источниками, содержание которых должно быть достаточным. В качестве источников углерода применяют глюкозу или сахарозу, практикуют использование дрожжевого и кукурузного экстрактов, соевой муки, масла (жира). Жидкие питательные среды для получения инокулюма и для основной ферментации могут несколько различаться между собой. Например, для получения посевного материала известна среда, содержащая сахарозу, пептон, кукурузный экстракт, калия дигидрофосфат, магния сульфат, подсолнечное масло, время выращивания продуцента на этой среде - 2 суток при 27-30?С (в зависимости от штамма). Ферментационная среда обычно включает кукурузную и соевую муку, сахарозу, кукурузный экстракт, калия дигидрофосфат, кальция карбонат, натрия хлорид и ненасыщенный жир.
Обычно ферментацию проводят в течение 5 суток при рН 5,5- 7,7. После использования сахарозы (примерно через 30 часов) начинает заметно накапливаться витамин В2, вначале - в мицелии, а затем - в культуральной жидкости. Всю биомассу можно подвергнуть высушиванию и полученный сухой продукт с остаточной влажностью 8%, содержащий 1,5-2,5% рибофлавина, 20% белка, тиамин, никотиновую кислоту, пиридоксин, цианкобаламин, микроэлементы и другие вещества, рекомендуют для кормления животных.
В случае высоких выходных показателей по рибофлавину, витамин можно выделять в индивидуальном состоянии и, наряду с синтетическим рибофлавином, использовать в медицине.
Для Candida guillierniondii важно регулировать содержание железа в питательной среде; оптимальные концентрации колеблются, в среднем, от 0,005 до 0,05 мкг/мл. При этом определенные штаммы дрожжей могут образовывать за 5-7 дней до 0,5 г/л и более витамина. Однако для целей промышленного производства рибофлавина предпочитают использовать более продуктивные виды и штаммы грибов - E.ashbyii и Ashbyii gossypii.
Аскорбиновая кислота, или витамин С
- это противоцинготный витамин, имеющийся у всех высших растений и животных; толькг человек и микробы не синтезируют ее, но людям она неотложно необходима, а микробы не нуждаются в ней. И, тем не менее, определенные виды уксуснокислых бактерий причастны к биосинтезу полупродукта этой кислоты - L-сорбозы. Таким образом, весь процесс получения аскорбиновой кислоты является смешанным, то есть химико-ферментативным.
Биологическая стадия процесса катализируется мембраносвязанной полиолдегидрогеназой, а последняя (химическая) включает последовательно следующие этапы: конденсация сорбозы с диаде-тоном и получение диацетон - L-сорбозы, окисление диацетон --L-сорбозы до диацетон-2-кето-Ь-гулоновой кислоты, подвергаемой затем гидролизу с получением 2-кето-1,-гулоновой кислоты; последнюю подвергают энолизации с последующей трас формацией в L-аскорбиновую кислоту.
Ферментацию G.oxydans проводят на средах, содержащих сорбит (20%), кукурузный или дрожжевой экстракт, при интенсивной аэрации (8-10 г О2/л/ч). Выход L-сорбозы может достичь 98% за одни-двое суток. При достижении культурой log-фазы можно дополнительно внести в среду сорбит, доводя его концентрацию до 25%. Также установлено, что G.oxydans может окислять и более высокие концентрации полиспирта (30-50%), создаваемые на последних стадиях процесса. Это происходит благодаря полиолде-гидрогеназы, содержащейся в клеточной биомассе. Ферментацию бактерий проводят в периодическом или непрерывном режиме. Принципиально доказана возможность получения L-сорбозы из сорбита с помощью иммобилизованных клеток в ПААГ.
Цианкобаламин, или витамин В12
- получают только микробиологическим синтезом. Его продуцентами являются прокариоты и, прежде всего, пропионовые бактерии, которые и в естественных условиях образуют этот витамин. Мутанты Propionibacterium shermanii M-82 и Pseudomonas denitrificans M-2436 продуцируют на жидкой среде до 58-59 мг/л цианкобаламина.
Учитывая важную функцию витамина в организме человека (он является противоанемическим фактором), его мировое производство достигло 10 т в год, из которых 6,5 т расходуют на медицинские нужды, а 3,5 т - в животноводстве.
Отечественное производство цианкобаламина базируется на использовании культуры P.freudenreichii var. shermanii, культивируемой в периодическом режиме без доступа кислорода. Ферментационная среда обычно содержит глюкозу, кукурузный экстракт, соли аммония и кобальта, рН около 7,0 поддерживают добавлением NH4OH; продолжительность ферментации 6 суток; через 3 суток в среду добавляют 5,6-диметилбензимидазол - предшественник витамина Б12 и продолжают ферментацию еще 3 суток. Цианкобаламин накапливается в клетках бактерий, поэтому операции по выделению витамина заключаются в следующем: сепарирование клеток, экстрагирование водой при рН 4,5-5,0 и температуре 85-90?С, в присутствии стабилизатора (0,25% раствор натрия нитрита), Экстракция протекает в течение часа, после чего водный раствор охлаждают, нейтрализуют раствором едкого натра, добавляют коагулянты белка - хлорид железа трехвалентного и алюминия сульфат с последующим фильтрованием. Фильтрат упаривают и дополнительно очищают, используя методы ионного обмена и хроматографии, после чего проводят кристаллизацию витамина при 3-4?С из в одноацетонового раствора.
Кристаллический цианкобаламин можно получать с помощью резорцина или фенола, образующих с ним аддукты, которые сравнительно легко разлагаются на составляющие компоненты.
При реализации данного биотехнологического процесса не забывать о высокой светочувствительности витамина В12, поэтому все операции необходимо проводить в затемненных условиях (или при красном свете). На ацетонобутиловой и спиртовой бардах с добавлением солей кобальта и метанола в нашей стране получают кормовой препарат КМБ 12 - концентрат, содержащий витамин В12 и другие ростовые вещества.
Съедобные водоросли
Народы Тихоокеанского побережья с давних пор употребляют в пищу морские и океанские водоросли. Жители Гавайских островов из 115 видов водорослей, обитающих в местных океанских пространствах, используют в питании 60 видов. В Китае также высоко ценят съедобные водоросли. Особенно ценятся сине-зеленые водоросли Nostoc pruniforme, по внешнему виду напоминающие сливу и по вкусовым качествам причисленные к китайским лакомствам. В кулинарных справочниках Японии встречается более 300 рецептур, в состав которых входят водоросли. На Дальнем Востоке весьма интенсивно используют водоросли в пищевых целях и плантации не успевают восстанавливаться естественным путем. В связи с этим все чаще водоросли культивируют искусственно, в подводных садах. Выращивание аквакультур - процветающая отрасль биотехнологии. Водоросли используют также в виде сырья для промышленности.
В последнее время внимание специалистов, занимающихся вопросами питания, привлекает сине-зеленая водоросль спирулина (Spirulina platensis и Spirulina maxima), растущая в Африке (оз. Чад} и в Мексике (оз. Тескоко). Для местных жителей спирулина является одним из основных продуктов питания, так как содержит много белка, витамины А, С, D и особенно много витаминов группы В. Биомасса спирулины приравнивается к лучшим стандартам пищевого белка, установленным ФАО. Спи-рулину можно успешно культивировать в открытых прудах или в замкнутых системах из полиэтиленовых труб и получать высокие урожаи (примерно 20 г биомассы в пересчете на СВ с 1 м3 в сут).
ГЛАВА 3. АМИНОКИСЛОТЫ
Наиболее перспективен и экономически выгоден микробиологический синтез аминокислот. Более 60 % всех производимых в настоящее время промышленностью высокоочищенных препаратов белковых аминокислот делают именно этим способом, главное преимущество которого в сравнении с методами химического синтеза состоит в возможности получения L-аминокислот на основе возобновляемого сырья.
В последние годы при производстве аминокислот все шире используют биотрансформацию предшественников аминокислот, особенно с помощью иммобилизованных ферментов или клеток микроорганизмов, предварительно получаемых химическим путем.
Промышленное производство аминокислот стало возможным после открытия способности у некоторых микроорганизмов выделять в культуральную среду значительные количества какой-либо одной аминокислоты. При этом было подмечено, что большинство из нескольких тысяч проанализированных диких штаммов микроорганизмов продуцировали аминокислоты во внешнюю среду, но в очень незначительных количествах. Не зафиксировано никакой связи между таксономическим положением микроорганизма и способностью к продуцированию той или иной аминокислоты. Так, среди возможных продуцентов глутаминовой кислоты отмечены организмы, из которых 30 % -- дрожжи, 30 % -- стрептомицеты, 20 % -- бактерии и 10 % -- микроскопические грибы. И лишь один из обследованных штаммов микроорганизмов -- Corynebacterium glutamicum был способен к сверхсинтезу глутамата. Этот штамм использовали при организации первого в мире крупномасштабного производства глутаминовой кислоты микробиологическим методом в Токио (1956). В России изыскания в области промышленного синтеза аминокислот были начаты в 50-х годах прошлого столетия по инициативе акад. А. А. Александрова.
Перспективные штаммы продуцентов постоянно улучшают посредством селекции мутантов с измененной генетической программой и регуляторными свойствами. Распространенные объекты селекции продуцентов -- микроорганизмы, относящиеся к родам Brevibacterium, Micrococcus, Corynebacterium, Arthrobacter.
Разработка технологической схемы получения отдельной аминокислоты полностью базируется на знании путей и механизмов регуляции биосинтеза конкретной аминокислоты. Необходимого дисбаланса метаболизма, обеспечивающего сверхсинтез целевого продукта, добиваются путем строго контролируемых изменений состава и условий среды.
Микробиологические методы производства аминокислот
Производство лизина. По содержанию лизина наименее сбалансированы белки злаковых культур, у которых его дефицит составляет от 20 до 50 %. На территории России недостаток лизина в кормах не может быть восполнен за счет сои, поэтому в нашей стране производство этой аминокислоты было организовано первым.
В клетках микроорганизмов лизин синтезируется из аспарагиновой кислоты и служит конечным продуктом разветвленного метаболического пути биосинтеза, общего для трех аминокислот -- лизина, метионина и треонина.
Таким образом, в процессе новообразования аминокислот из общего
предшественника одновременно с лизином возникают две другие аминокислоты -- метионин и треонин. В этом случае эффекта накопления в среде всего одной целевой аминокислоты добиваются путем блокирования процессов, ведущих к синтезу побочных аминокислот, возникающих в связи с разветвлением метаболического пути.
Образование лизина в клетке бактерии находится под строгим метаболическим контролем. У типичных продуцентов L-лизина -- Brevibacterium flavum и Corynebacterium glutamicum -- фермент аспартаткиназа, открывающий метаболический путь, является аллостерическим белком, чувствительным к ингибированию по принципу обратной связи при совместном и согласованном действии побочных продуктов L-треонина и L-лизина. При накоплении треонина и лизина в избыточной концентрации ингибируется аспартаткиназа и их синтез останавливается, при пониженной концентрации любой из двух аминокислот процесс активизируется.
Чтобы добиться образования лизина в больших количествах, получают мутанты двух типов. У мутантов первого типа не синтезируется или не функционирует гомосериндегидрогеназа, в результате чего блокируется синтез метионина и треонина. Такие мутанты являются ауксотрофами по гомосерину или треонину (метионину); внутриклеточная концентрация треонина у них существенно снижена, что снимает блокаду с аспартаткиназы. Поэтому при выращивании мутантных штаммов в среде, где присутствуют лимитирующие концентрации метионина и треонина, они способны образовывать избыточные количества лизина. Мутанты второго типа дефектны по структурному гену, детерминирующему конформацию аспартаткиназы. В итоге фермент теряет чувствительность к высоким концентрациям аллостерического ингибитора -- лизина.
Важный фактор, обеспечивающий в культуральной среде высокие концентрации аминокислоты, синтезированной внутри клетки, -- проницаемость клеточных мембран. Проницаемость клеточной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 --5 мкл/л), добавляют пенициллин (2--4 мкг/л), детергенты (твин-40 и твин-60) или производные высших жирных кислот (пальмитаты, стеараты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных стенок бактерий, что повышает выделение аминокислот в среду.
Для культивирования штаммов микроорганизмов при производстве аминокислот как источники углерода наиболее доступны углеводы -- глюкоза, сахароза и реже фруктоза и мальтоза. Для снижения стоимости питательной среды в качестве источников углерода используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала, сульфитные щелока. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты (до 1,5 %), пропионовой кислоты, метанола, этанола (до 1 %) и «-парафинов. В качестве источников азота применяют мочевину и соли аммония (сульфаты и фосфаты). Для успешного развития микроорганизмы нуждаются в стимуляторах роста, в качестве которых выступают экстракты кукурузы, дрожжей и солодовых ростков, гидролизаты отрубей и дрожжей, витамины группы В. Кроме того, в питательную среду добавляют необходимые для жизнедеятельности макро- и микроэлементы (Р, Са, Mg, Mn, Fe и др.). На процесс биосинтеза аминокислот существенное влияние оказывает снабжение воздухом, при этом степень аэрации индивидуальна для производства каждой конкретной аминокислоты. Стерильный воздух подается специальными турбинными мешалками. Опыты показали, что лизин появляется в культуральной среде начиная с середины экспоненциальной фазы роста культуры клеток микроорганизма и достигает максимума к ее концу. Поэтому на первой стадии технологического процесса формируют биомассу продуцента, которую выращивают в специальных посевных аппаратах в течение суток (рН 7,0 -- 7,2; температура 28 -- 30 °С), а затем подают в производственный ферментер, заполненный питательной средой. Лизин начинает поступать в культуральную жидкость через 25 -- 30 ч после начала ферментации. По завершении процесса ферментации (через 55 -- 72 ч) жидкую фазу отделяют от культуры клеток микроорганизма фильтрованием и используют для выделения из нее лизина. Высокоочищенные препараты лизина получают после фракционирования фильтрата культуральной жидкости методом ионообменной хроматографии на катионите. С этой целью лизин переводят в форму катиона:
Для данного процесса фильтрат обрабатывают соляной кислотой до рН 1,6--2,0 (рН < pKj). Обладая двумя положительно заряженными ионогенными группировками, лизин прочно сорбируется на смоле и элюируется с нее в виде индивидуального соединения 0,5 --5 %-м раствором гидроксида аммония после выхода всех других катионов. Элюат концентрируют в вакууме при температуре 60 °С, переводят в форму монохлоргидрата, после чего высушивают и дополнительно чистят с помощью перекристаллизации. В результате получают препараты кристаллического лизина 97 -- 98 %-й чистоты, которые используют для повышения питательной ценности пищевых продуктов и в медицинской промышленности.
Кроме высокоочищенных препаратов лизина получают иные виды его товарной формы: жидкий концентрат лизина (ЖКЛ), сухой кормовой концентрат лизина (ККЛ) и высококонцентрированные кормовые препараты, характеризующиеся относительно меньшей степенью очистки в сравнении с первым препаратом.
Производство триптофана.
Триптофан достаточно часто является лимитирующим фактором питания, так как его содержание в традиционных продуктах (рыба, молоко, кормовые дрожжи) в 3 раза ниже, чем в стандартном белке.
Подобно лизину триптофан образуется в ходе разветвленного метаболического пути, поэтому для его производства используют ауксотрофных мутантов, у которых блокированы реакции, ведущие к синтезу фенилаланина и тирозина. Однако при выращивании мутантных штаммов в среде с минимальной концентрацией этих аминокислот, не вызывающей регуляторных эффектов, избыточное накопление триптофана в среде не наблюдается, что объясняется особенностью процессов регуляции биосинтеза триптофана у микроорганизмов.
Наряду с другими ароматическими аминокислотами у микроорганизмов (подобно большинству организмов) триптофан образуется из метаболитов углеводного обмена -- эритрозо-4-фосфата и фосфоенолпирувата.
Процесс новообразования ароматических аминокислот идет через шикимовую и хоризмовую кислоты. Метаболическим предшественником триптофана служит антраниловая кислота, которая возникает из хоризмовой кислоты под действием антранилат-синтетазы. Триптофан оказывает ингибирующее действие на антранилатсинтетазу, поэтому для обхода метаболического контроля синтез фермента индуцируют ступенчатым введением предшественника -- антраниловой кислоты (0,1 -- 0,3 %)
В связи с этой особенностью промышленное производство триптофана организовано преимущественно по двухступенчатой схеме. На первом этапе химическим способом синтезируют антраниловую кислоту, которую с помощью энзиматической системы мутантных штаммов дрожжей Candida utilis переводят в триптофан.
Биомассу дрожжей выращивают при температуре 30 °С в среде, содержащей свекловичную мелассу, мочевину и минеральные компоненты. Через сутки в ферментер вводят 5 %-й спиртовой раствор антраниловой кислоты и 50 %-й раствор мочевины, а через 3 --4 ч после введения предшественника дополнительно добавляют источник углерода (25 %-й раствор мелассы). Антраниловую кислоту и мочевину подают через каждые 6 ч, а мелассу -- через каждые 12 ч. Процесс двухступенчатой ферментации завершается через 144 ч и обеспечивает содержание триптофана в культуральной среде до 6 г/л.
Кроме триптофана микробиологическим способом с использованием предшественников получают гистидин, изолейцин, метионин, серии и треонин.
Менее распространены одноступенчатые технологии получения триптофана на основе ауксотрофных мутантов бактерии Bacillus subtilis, осуществляемые по схеме, близкой к способу получения лизина. Длительность одноступенчатого процесса 48 ч, а концентрация триптофана в культуральной среде составляет 10 г/л.
После сушки культуральной жидкости получают кормовой концентрат триптофана (ККТ), который включает белки, свободный триптофан, витамины Вь В2 и PP. Высокоочищенные кристаллические препараты триптофана образуются после дополнительной очистки культуральной жидкости методом ионообменной хроматографии на колонке, заполненной катионитом (сорбция при рН 1,0; элюция 5%-м раствором гидроксида аммония в смеси с пропанолом-2). Элюаты кристаллизуют; кристаллы отмывают и высушивают. Кристаллический препарат содержит до 99 % триптофана.
Характерная особенность процессов получения аминокислот микробиологическим способом, равно как и других биотехнологических производств, -- полное использование побочных продуктов, что превращает большинство из них в безотходные и экологически чистые технологии. Например, осадок микроорганизмов-продуцентов и промывные воды, содержащие ценные ингредиенты, такие, как белки, остатки аминокислот, витаминов, минеральных солей и микроэлементов, высушивают и используют в качестве кормовых препаратов.
Получение аргинина, глутаминовой кислоты, глутамина, треонина и пролина микробиологическим способом.
Для получения аминокислот -- конечных продуктов неразветвленных метаболических путей, например аргинина, ауксотрофные мутанты не используют. В этом случае применяют мутанты с дефектами регуляпии биосинтеза аминокислоты, т.е. регуляторные мутанты. Помимо аргинина регуляторные мутанты используют для получения серина и цитруллина:
Успешное производство с участием микроорганизмов таких аминокислот, как глутаминовая аминокислота, глутамин и пролин, обеспечивает стимуляция образования аминокислот в ответ на изменение условий внешней среды. Метаболическим предшественником при биосинтезе глутаминовой кислоты служит а-кетоглутаровая кислота, возникающая в цикле Кребса из изолимонной кислоты под действием изоцитратдегидрогеназы. При выращивании бактерий родов Corynebacterium или Brevibacterium на углеводном сырье (гидролизат крахмала, тростниковая или свекловичная меласса), на этаноле или ацетате и при дефиците биотина в культуральной среде накапливается глутаминовая кислота с концентрацией 30 г/л. Важнейшее условие для образования этой аминокислоты -- подавление активности глутаматдегидрогеназы. При высоком содержании в среде биотина и солей аммония обеспечиваются условия для образования пролина, а при значительных концентрациях ионов аммония и ионов цинка в слабокислой среде -- для синтеза глутамина.
ГЛАВА 4. ОРГАНИЧЕСКИЕ КИСЛОТЫ
Органические кислоты можно получать как в анаэробных условиях (так называемые бродильные процессы), так и в аэробных условиях (окислительные процессы).
Бродильные процессы
Получение молочной кислоты
Молочная кислота широко применяется в пищевой, текстильной и фармацевтической промышленности, в изготовлении растворителей и пластификаторов в лаках, олифах и т. п. В промышленном производстве молочной кислоты обычно используют термофильные штаммы бактерий, синтезирующие целевой продукт при 50оС. Таким штаммом является Lactobacillus delbrueckii, отличающийся высокими стабильностью и активностью кислотообразования (выход молочной кислоты составляет 95-98 % от потребленной сахарозы). Принципиальная технологическая схема получения L(+)-молочной кислоты состоит в следующем: мелассную среду, содержащую 5-20 % сахара, вытяжку солодовых ростков, дрожжевой экстракт, витамины, фосфат аммония, засевают L. delbrueckii. Брожение протекает при 49-50оС при исходном рН 6,3-6,5. По мере образования молочной кислоты ее нейтрализуют мелом. Весь цикл ферментации завершается за 5-10 дней; при этом в культуральной жидкости содержатся 11-14 % лактата кальция и 0,1-0,5 % сахарозы. Клетки бактерий и мел отделяют фильтрованием, фильтрат упаривают до концентрации 3-0 %, охлаждают до 25оС и подают на кристаллизацию, которая длится 1,5-2 суток. Кристаллы лактата кальция обрабатывают серной кислотой при 60-70 С, гипс выпадает в осадок, а к надосадочной жидкости добавляют желтую кровяную соль при 65 С для удаления ионов железа, затем - сульфат натрия для освобождения от тяжелых металлов. Красящие вещества удаляют с помощью активированного угля. После этого раствор молочной кислоты подвергают вакуум-упариванию до 50 или 80 %. Оставшийся не до конца очищенный раствор молочной кислоты используют для технических целей. Более очищенную кислоту можно получить при перегонке ее сложных метиловых эфиров, при экстракции простым изопропиловым эфиром в противоточных насадочных колоннах.
Получение пропионовой кислоты
Производство пропионовой кислоты осуществляется пропионовыми бактериями, представляющими собой грамположительные, бесспоровые, неподвижные палочки семейства Propionibacteriacae, культивируемые в средах, где источником углерода является глюкоза. Из трех молекул глюкозы образуется 4 молекулы пропионовой кислоты, 2 молекулы уксусной кислоты, 2 молекулы углекислого газа и 2 молекулы воды:
Перспективными для производства пропионовой кислоты оказались виды P. freudenreichii и P. acidipropionici. Биосинтез кислоты проводят на достаточно простых средах, например такого состава (в %): углевод - 1-2; сульфат аммония - 0,3; гидолфосфат калия - 0,2; хлорид кобальта - 0,0001; биотин - 0,00001; пантоненат - 0,1; тиамин - 0,01. Конечные продукты ферментации (пропионат и ацетат) можно не разделять, поскольку обе кислоты обладают консервирующими свойствами. Биосинтетическая пропионовая кислота применяется в пищевой и фармацевтической промышленности в качестве консерванта.
Окислительные процессы
Получение уксусной кислоты Микробиологическое производство уксусной кислоты экономически выгодно лишь при получении пищевого уксуса, а не технической уксусной кислоты. Получают уксусную кислоту методом глубинного культивирования грамотрицательных штаммов бактерий Acetobacter aceti. Так, при периодическом выращивании A. aceti в глубинных условиях при 25-30оС на среде, содержащей 10-11 % этанола, 1 % уксусной кислоты и минеральные соли, выход уксусной кислоты составляет 18-23 кг/м /сут. Более производительным является непрерывный глубинный процесс, реализуемый в батарее ферментаторов (например, из пяти ферментаторов, емкостью 6 м каждый, соединенных последовательно). Исходная среда с 4 % этанола, 1,5 % уксусной кислоты и минеральными солями (моногидрофосфат аммония, дигидрофосфат калия, сульфат магния) непрерывно поступает в первый ферментатор, обогащается спиртом в последующих ферментаторах. Таким образом происходит обогащение среды уксусной кислотой при снижении концентрации этанола. Из последнего ферментатора непрерывно вытекает уксус. Выход уксусной кислоты достигает 30 кг/м /сут. и более.
Получение лимонной кислоты
Около 60 лет назад лимонную кислоту выделяли преимущественно из плодов цитрусовых растений. Теперь же основную массу ее производят с помощью определенных штаммов плесневого гриба Aspergillus niger. Поскольку основным сырьем для получения лимонной кислоты является меласса, в которой содержится много железа, то на стадии пред-ферментации его осаждают при помощи желтой кровяной соли -K4[Fe(CN)6]. Известны два способа ферментации A. niger - поверхностный и глубинный. Первый из них реализуют на предприятиях малой и средней мощности в виде жидкофазной ферментации на жидкой среде (например, в ряде стран Европы и Америки) и в виде твердофазной ферментации (например, в Японии). указано выше.
Подобные документы
Выписка, раздача и хранение медицинских препаратов в больнице. Изучение правил обращения с наркотическими средствами. Способы введения лекарственных средств. Забор материала для лабораторных исследований. Сбор мокроты и ее хранение. Взятие мазка из носа.
реферат [155,3 K], добавлен 23.12.2013Характеристика парентеральных лекарственных форм, их преимущества и недостатки. Получение воды для инъекций в промышленных условиях. Технологические стадии приготовления растворов. Использование консервантов в производстве парентеральных препаратов.
дипломная работа [95,9 K], добавлен 21.08.2011История развития технологии лекарственных форм и аптечного дела в России. Роль лекарств в лечении заболеваний. Правильный прием лекарственных препаратов. Способ применения и дозы. Профилактика болезней с использованием медикаментов, рекомендации врача.
презентация [1,9 M], добавлен 28.11.2015Методы выявления микроорганизмов. Микроскопические методы исследования морфологии бактерий и грибов. Приготовление препаратов для микроскопического исследования, изучения микроорганизмов в нативном виде. Приготовление фиксированных препаратов-мазков.
реферат [85,3 K], добавлен 02.04.2011Порядок выписывания лекарственных препаратов и назначений, ИМН и специализированных продуктов лечебного питания. Обязательные и дополнительные реквизиты рецепта. Специальные назначения и указания врача. Порядок хранения рецептурных бланков в организациях.
презентация [1,3 M], добавлен 13.05.2015Краткая характеристика исследуемых растений, входящих в состав профилактических чаев. Методика высушивания и хранения лекарственных растений. Определение количества флавоноидов и аскорбиновой кислоты в растительном сырье, в готовых профилактических чаях.
курсовая работа [623,5 K], добавлен 10.04.2015Жалобы больного при поступлении на лечение. Результаты обследования органов пациента, данные лабораторных исследований. Постановка диагноза: хронический гастрит (обострение). План лечения: диета, прием медицинских препаратов. Профилактика рецидива.
история болезни [44,5 K], добавлен 13.01.2015Аптечное изготовление лекарств по индивидуальным рецептам. Требования к оснащению производственных помещений аптеки. Лабораторно-фасовочные работы. Организация внутриаптечного контроля качества лекарственных средств, оформление экстемпоральных препаратов.
курсовая работа [34,1 K], добавлен 16.11.2014Изучение современных лекарственных препаратов для контрацепции. Способы их применения. Последствия взаимодействия при совместном применении контрацептивов с другими препаратами. Механизм действия негормональных и гормональных лекарственных препаратов.
курсовая работа [3,2 M], добавлен 24.01.2018Антимикробная химиотерапия. Группы и классы антимикробных лекарственных средств. Этиотропная, эмпирическая терапия. Профилактическое применение антибактериальных препаратов. Алгоритм назначения антибиотиков. Определение чувствительности к антибиотику.
презентация [3,7 M], добавлен 23.11.2015