Антипролиферативное действие карнозина и его производных на опухолевые клетки нейрального происхождения
Изучение характера воздействия карнозина на пролиферацию культур опухолевых клеток феохромоцитомы крысы, карциномы горла, рта, молочной железы. Сравнение антипролиферативных свойств карнозина с действием его производных. Синтетический трипепида пинеалона.
Рубрика | Медицина |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 22.10.2018 |
Размер файла | 2,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Характер влияния заместителей в молекуле карнозина на его антипролиферативные свойства был сходен с характером влияния заместителей на антиоксидантную активность карнозина. Согласно эффективности защиты суперскрученной ДНК от перекисного окисления липидов индуцированного в смеси Фентона дипептиды располагались следующим образом: гистидин < ацетил-карнозин < гомокарнозин ? карнозин ? анзерин [15, 264]. Совпадение принципов изменения силы антиоксидантного и антипролиферативного эффектов еще раз указывает на сопряженность между антиоксидантным и антипролиферативным свойствами карнозина.
Синтетический аналог карнозина - L-гистидин-в-аланин, представляющий собой т.н. “карнозина наоборот” также индуцировал накопление клеток в G2 фазе клеточного цикла и ингибировал пролиферацию опухолевых клеток (Рис. 3.1.4.Б). Причем, диапазон эффективных концентраций для антипролиферативного эффекта L-гистидин-в-аланина был в 10 раз ниже (5 - 10 мМ), чем для карнозина (50 - 100 мМ). Однако, при концентрации выше 10 мМ L-гистидин-в-аланин приводил к интенсивной гибели опухолевых клеток. Токсичность “карнозина наоборот” может быть связана с положением L-гистидина на первом месте. Известно, что в концентрации выше 5 мМ гистидин обладает цитотоксическими действием. Добавление в-аланина к молекуле гистидина в молекуле карнозина, вероятно, способствует снижению токсичности гистидина. Было показано, что токсичность гистидина связана с присутствием ионов железа, удаление ионов железа из среды снижало токсический эффект гистидина. Имидазольное кольцо в молекуле гистидина способно хелатировать железо, отдавая протон от азота 1N. Металлы в металлоферментах часто координируются с помощью гистидина через незащищенный азот в имидазоле. Предполагается, что гистидин способен отнимать т.н. “хелатируемое железо”, железо слабосвязанное с внутриклеточными ферментами, и делать его более доступным для окисления под действием АФК [265, 266]. Перемещение L-гистидина на первое место в молекуле “карнозина наоборот” делает имидазольное кольцо более открытым, и, следовательно, более доступным для взаимодействий, что, вероятно, является причиной цитотоксичности высоких концентраций L-гистидин-в-аланина.
Инкубация с синтетическим трипептидом пинеалоном приводила к снижению внутриклеточного уровня АФК в клетках РС-12 по сравнению с необработанным контролем (Рис. 3.1.5.А). Наши результаты согласовывались с полученными ранее данными об антиоксидантных свойствах пинеалона, продемонстрированных на модели гиперборической гипоксии [244-246]. Кроме того, на клетках РС-12 мы показали, что пинеалон обладает защитным антиоксидантным действием. Пинеалон частично препятствовал росту внутрикелточного уровня АФК индуцированного действием Н2О2 и снижал уровень клеточной гибели (Рис. 3.1.5). Анализ клеточного цикла выявил, что подобно карнозину, инкубация с пинеалоном приводит к увеличению количества S и G2/М клеток по сравнению с контролем (Рис. 3.1.6). Однако, для достижения сходного эффекта пинеалон требовался в концентрациях на несколько порядков ниже, чем карнозин (нМ - для пинеалона, мМ - для карнозина). Ранее в нашей лаборатории было показано, что пинеалон препятствует росту ERK1/2 в гранулярных клетках мозжечка индуцированное действием уабаина [234]. Поскольку активация ERK1/2 необходима для прогрессии клеточного цикла, снижение активности ERK1/2 под действием пинеалона может быть одним из механизмов индукции G2 блока в его присутствии. Кроме того, аминокислотный состав пинеалона и карнозина различается, указывая на то, что действие исследуемых короткоцепочечных пептидов на клеточный цикл, видимо, обосновано не присутствием конкретной аминокислоты, а скорее всего антиоксидантными свойствами веществ.
Глиобластома - это наиболее частая и агрессивная форма опухоли головного мозга [269]. На сегодняшний день лечение глиобластомы носит скорее паллиативный характер и продлевает жизнь больного максимум на 2 года [270]. Одним из наиболее эффективных способов лечения глиобластомы является лучевая терапия, применение которой ограничено повреждающим действием на нормальные ткани. Соединения, способные усиливать гибель опухолевых клеток, предохраняя при этом нормальные ткани, представляют собой одно из наиболее актуальных направлений исследований.
С помощью колониеформирующего метода было продемонстрировано, что предварительная инкубация клеток глиобластомы с карнозином приводит к снижению выживаемости клеток после действия ионизирующего излучения по сравнению с контролем (Рис. 3.4.1). Ранее было показано, что обработка нормальных клеток карнозином снижает последствия повреждающего действия радиации. Введение мышам карнозина в течение нескольких дней перед облучением способствовало повышению выживаемости животных и сопровождалось увеличением эффективности образования селезеночных колоний гематопоэтическими стволовыми клетками из костного мозга облученных животных [218-220]. Кроме того, карнозин снижал степень повреждения плазмиды ДНК и количество разрывов в цепи ДНК, индуцированные действием ионизирующего излучения [271]. Исходя из полученных нами данных мы предполагаем, что карнозин способен избирательно снижать выживаемость опухолевых клеток под действием ионизирующего излучения, защищая при этом нормальные клетки. Полученные нами данные могут быть использованы на практике для разработки протоколов применения карнозина в терапии опухолей головного мозга.
ВЫВОДЫ
1. Исследован характер воздействия карнозина на пролиферацию культур опухолевых клеток: феохромоцитомы крысы (РС-12), карциномы горла и рта (FaDu и Cal27), карциномы молочной железы (MB231) и глиобластомы человека (U-118-MG). Обнаружено, что карнозин ингибирует пролиферацию всех исследованных клеточных линий. Наиболее выраженный эффект проявлялся на клетках глиобластомы человека U-118-MG;
2. Изучено влияние карнозина на уровень АФК и активность антиоксидантных ферментов глиобластомы. Выявлено, что ингибирование пролиферации клеток глиобластомы под действием карнозина сопровождается снижением уровня АФК и увеличением активности MnСОД;
3. Исследовано воздействие карнозина на клеточный цикл клеток РС-12 и U-118-MG. Установлено, что изменения в антиоксидантной системе сопровождаются накоплением клеток в G2 фазе клеточного цикла и усилением экспрессии циклина В1;
4. Проведено сравнение антипролиферативного эффекта карнозина с действием его производных и синтетического трипептида пинеалона. Выявлено, что метилированное производное карнозина, анзерин, ингибирует пролиферацию клеток опухолевых клеток эффективнее, чем карнозин;
5. Исследован эффект совместного применения карнозина и ионизирующего излучения на гибель опухолевых клеток. Обнаружено, что предварительная инкубация клеток с карнозином снижает выживаемость клеток глиобластомы под действием ионизирующего излучения.
СПИСОК ЛИТЕРАТУРЫ
1. Mannion, A.F., et al., Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. Eur J Appl Physiol Occup Physiol, 1992. 64(1): p. 47-50.
2. Margolis, F.L., Carnosine in the primary olfactory pathway. Science, 1974. 184(4139): p. 909-11.
3. Kalyankar, G.D. and A. Meister, Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides. J Biol Chem, 1959. 234: p. 3210-8.
4. Stenesh, J.J. and T. Winnick, Carnosine-anserine synthetase of muscle. 4. Partial purification of the enzyme and further studies of beta-alanyl peptide synthesis. Biochem J, 1960. 77(3): p. 575-81.
5. Skaper, S.D., S. Das, and F.D. Marshall, Some properties of a homocarnosine-carnosine synthetase isolated from rat brain. J Neurochem, 1973. 21(6): p. 1429-45.
6. Horinishi, H., M. Grillo, and F.L. Margolis, Purification and characterization of carnosine synthetase from mouse olfactory bulbs. J Neurochem, 1978. 31(4): p. 909-19.
7. Drozak, J., et al., Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). J Biol Chem, 2010. 285(13): p. 9346-56.
8. Hanson, H.T. and E.L. Smith, Carnosinase; an enzyme of swine kidney. J Biol Chem, 1949. 179(2): p. 789-801.
9. Teufel, M., et al., Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem, 2003. 278(8): p. 6521-31.
10. Северин С. Е., К., М.В., Кафтанова, Т.М., Влияние карнозина и ансерина на работу изолированной мышцы лягушки. Доклад. АН СССР, 1953. 91: p. 691-694.
11. Viola, E.R., Hartzell, R. C., Villafranca, J. J. , Spectroscopic studies on the copper(II) complexes of carnosine. Journal of Inorganic Biochemistry, 1979. 10(4): p. 281-292.
12. Brown, C.E. and W.E. Antholine, Chelation chemistry of carnosine. Evidence that mixed complexes may occur in vivo. The Journal of Physical Chemistry, 1979. 83(26): p. 3314-3319.
13. Vladimirov, Y.A., Studies of the antioxidant activity by measuring chemiluminescence kinetics. Proc. Int. Symp. On Natural Antioxidants Molecular Mechanisms and Health Effects, ed. L. Packer, Traber, M.G., Xin, W. . 1996, Champang, Illinois.
14. Pavlov, A.R., et al., [Interactions of carnosine and superoxide radicals in aqueous solutions]. Biull Eksp Biol Med, 1990. 110(10): p. 391-3.
15. Kohen, R., et al., Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A, 1988. 85(9): p. 3175-9.
16. Chan, W.K.M., et al., EPR spin-trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J Agric Food Chem, 1994. 42: p. 1407-1410.
17. Klebanov, G.I., et al., Evidence for a direct interaction of superoxide anion radical with carnosine. Biochem Mol Biol Int, 1997. 43(1): p. 99-106.
18. Dupin, A.M., et al., [Carnosine protection of Ca2+ transport against damage induced by lipid peroxidation]. Biull Eksp Biol Med, 1984. 98(8): p. 186-8.
19. Zhou, S. and E.A. Decker, Ability of carnosine and other skeletal muscle components to quench unsaturated aldehydic lipid oxidation products. J Agric Food Chem, 1999. 47(1): p. 51-5.
20. Nagai, K. and T. Suda, [Antineoplastic effects of carnosine and beta-alanine--physiological considerations of its antineoplastic effects]. Nihon Seirigaku Zasshi, 1986. 48(11): p. 741-7.
21. Renner, C., et al., Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model. Mol Cancer, 2010. 9: p. 2.
22. McFarland, G.A. and R. Holliday, Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res, 1994. 212(2): p. 167-75.
23. Holliday, R. and G.A. McFarland, Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer, 1996. 73(8): p. 966-71.
24. Burhans, W.C. and N.H. Heintz, The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med, 2009. 47(9): p. 1282-93.
25. Menon, S.G. and P.C. Goswami, A redox cycle within the cell cycle: ring in the old with the new. Oncogene, 2007. 26(8): p. 1101-9.
26. Goswami, P.C., et al., Cell cycle-coupled variation in topoisomerase IIalpha mRNA is regulated by the 3'-untranslated region. Possible role of redox-sensitive protein binding in mRNA accumulation. J Biol Chem, 2000. 275(49): p. 38384-92.
27. Sarsour, E.H., et al., Manganese superoxide dismutase regulates a metabolic switch during the mammalian cell cycle. Cancer Res, 2012. 72(15): p. 3807-16.
28. Laurent, A., et al., Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res, 2005. 65(3): p. 948-56.
29. Burdon, R.H., Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med, 1995. 18(4): p. 775-94.
30. Weydert, C.J., et al., Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med, 2006. 41(2): p. 226-37.
31. Cadenas, E. and H. Sies, Oxidative stress: excited oxygen species and enzyme activity. Adv Enzyme Regul, 1985. 23: p. 217-37.
32. Chen, Q., et al., Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem, 2003. 278(38): p. 36027-31.
33. Suh, Y.A., et al., Cell transformation by the superoxide-generating oxidase Mox1. Nature, 1999. 401(6748): p. 79-82.
34. Corda, S., et al., Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol, 2001. 24(6): p. 762-8.
35. Bedard, K. and K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev, 2007. 87(1): p. 245-313.
36. Thannickal, V.J. and B.L. Fanburg, Reactive oxygen species in cell signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000. 279(6): p. L1005-L1028.
37. Buettner, G.R., The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys, 1993. 300(2): p. 535-43.
38. Gardner, H.W., Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med, 1989. 7(1): p. 65-86.
39. Laing, M., The Three Forms of Molecular Oxygen. Journal of Chemical Education, 1989. 66(6): p. 453-55.
40. Meisel, D., Czapski, G. , One-electron transfer equilibria and redox-potentials of radicals studied by pulse radiolysis. J. Phys. Chem., 1975. 79: p. 1503.
41. Halliwell, B., J.M. Gutteridge, and C.E. Cross, Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med, 1992. 119(6): p. 598-620.
42. Boldyrev, A.A., Significance of reactive oxygen species for neuronal function., in Free Radicals, Nitric Oxide and Inflammation: Molecular, Biochemical, and Clinical Aspects, A. Tomasi, Цzben, T., Skulachev, V. P., Editor. 2003, IOS Press. p. 157-173.
43. Sena, L.A. and N.S. Chandel, Physiological roles of mitochondrial reactive oxygen species. Mol Cell, 2012. 48(2): p. 158-67.
44. Brieger, K., et al., Reactive oxygen species: from health to disease. Swiss Med Wkly, 2012. 142: p. w13659.
45. Murrell, G.A., M.J. Francis, and L. Bromley, Modulation of fibroblast proliferation by oxygen free radicals. Biochem J, 1990. 265(3): p. 659-65.
46. Stirpe, F., et al., Stimulation by xanthine oxidase of 3T3 Swiss fibroblasts and human lymphocytes. Exp Cell Res, 1991. 192(2): p. 635-8.
47. Schafer, F.Q. and G.R. Buettner, Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med, 2001. 30(11): p. 1191-212.
48. Smith, C.V., et al., Compartmentation of glutathione: implications for the study of toxicity and disease. Toxicol Appl Pharmacol, 1996. 140(1): p. 1-12.
49. Kirlin, W.G., et al., Glutathione redox potential in response to differentiation and enzyme inducers. Free Radic Biol Med, 1999. 27(11-12): p. 1208-18.
50. McCord, J.M. and I. Fridovich, Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 1969. 244(22): p. 6049-55.
51. Fridovich, I., Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem, 1989. 264(14): p. 7761-4.
52. Folz, R.J. and J.D. Crapo, Extracellular superoxide dismutase (SOD3): tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene. Genomics, 1994. 22(1): p. 162-71.
53. Lebovitz, R.M., et al., Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9782-7.
54. Li, Y., et al., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 1995. 11(4): p. 376-81.
55. Van Remmen, H., et al., Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics, 2003. 16(1): p. 29-37.
56. Van Remmen, H., et al., Knockout mice heterozygous for Sod2 show alterations in cardiac mitochondrial function and apoptosis. Am J Physiol Heart Circ Physiol, 2001. 281(3): p. H1422-32.
57. Williams, M.D., et al., Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem, 1998. 273(43): p. 28510-5.
58. Loew, O., A NEW ENZYME OF GENERAL OCCURRENCE IN ORGANISMIS. Science, 1900. 11(279): p. 701-2.
59. Chance, B., H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs. Physiol Rev, 1979. 59(3): p. 527-605.
60. Mills, G.C., Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem, 1957. 229(1): p. 189-97.
61. Cohen, G. and P. Hochstein, GLUTATHIONE PEROXIDASE: THE PRIMARY AGENT FOR THE ELIMINATION OF HYDROGEN PEROXIDE IN ERYTHROCYTES. Biochemistry, 1963. 2: p. 1420-8.
62. Zanetti, M., Z.S. Katusic, and T. O'Brien, Adenoviral-mediated overexpression of catalase inhibits endothelial cell proliferation. Am J Physiol Heart Circ Physiol, 2002. 283(6): p. H2620-6.
63. Preston, T.J., W.J. Muller, and G. Singh, Scavenging of extracellular H2O2 by catalase inhibits the proliferation of HER-2/Neu-transformed rat-1 fibroblasts through the induction of a stress response. J Biol Chem, 2001. 276(12): p. 9558-64.
64. Nargi, J.L., R.R. Ratan, and D.E. Griffin, p53-independent inhibition of proliferation and p21(WAF1/Cip1)-modulated induction of cell death by the antioxidants N-acetylcysteine and vitamin E. Neoplasia, 1999. 1(6): p. 544-56.
65. Sato, N., et al., N-Acetyl cysteine (NAC) inhibits proliferation, collagen gene transcription, and redox stress in rat palatal mucosal cells. Dent Mater, 2009. 25(12): p. 1532-40.
66. Sarsour, E.H., et al., Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell, 2008. 7(3): p. 405-17.
67. Chiu, J. and I.W. Dawes, Redox control of cell proliferation. Trends Cell Biol, 2012. 22(11): p. 592-601.
68. Gius, D. and D.R. Spitz, Redox signaling in cancer biology. Antioxid Redox Signal, 2006. 8(7-8): p. 1249-52.
69. Gupta, S.C., et al., Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal, 2012. 16(11): p. 1295-322.
70. Cairns, R.A., I.S. Harris, and T.W. Mak, Regulation of cancer cell metabolism. Nat Rev Cancer, 2011. 11(2): p. 85-95.
71. Hutter, D.E., B.G. Till, and J.J. Greene, Redox state changes in density-dependent regulation of proliferation. Exp Cell Res, 1997. 232(2): p. 435-8.
72. Menon, S.G., et al., Differential susceptibility of nonmalignant human breast epithelial cells and breast cancer cells to thiol antioxidant-induced G(1)-delay. Antioxid Redox Signal, 2005. 7(5-6): p. 711-8.
73. Leung, S.W., et al., Effect of L-buthionine sulfoximine on the radiation response of human renal carcinoma cell lines. Cancer, 1993. 71(7): p. 2276-85.
74. Oberley, L.W. and G.R. Buettner, Role of superoxide dismutase in cancer: a review. Cancer Res, 1979. 39(4): p. 1141-9.
75. Zhong, W., et al., Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncogene, 1997. 14(4): p. 481-90.
76. Oberley, L.W., et al., Manganese superoxide dismutase in normal and transformed human embryonic lung fibroblasts. Free Radic Biol Med, 1989. 6(4): p. 379-84.
77. Brigelius-Flohe, R. and A. Kipp, Glutathione peroxidases in different stages of carcinogenesis. Biochim Biophys Acta, 2009. 1790(11): p. 1555-68.
78. Sagone, A.L., Jr., et al., Effect of catalase on the proliferation of human lymphocytes to phorbol myristate acetate. J Immunol, 1984. 133(3): p. 1488-94.
79. Evans, T., et al., Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 1983. 33(2): p. 389-96.
80. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., Molecular Biology Of The Cell. Fifth Edition. 2008: New York: Garland Science.
81. Grana, X. and E.P. Reddy, Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995. 11(2): p. 211-9.
82. Coller, H.A., What's taking so long? S-phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol, 2007. 8(8): p. 667-70.
83. Ducommun, B., et al., cdc2 phosphorylation is required for its interaction with cyclin. EMBO J, 1991. 10(11): p. 3311-9.
84. Jeffrey, P.D., et al., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature, 1995. 376(6538): p. 313-20.
85. Diehl, J.A. and C.J. Sherr, A dominant-negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation by CDK-activating kinase. Mol Cell Biol, 1997. 17(12): p. 7362-74.
86. Porter, L.A. and D.J. Donoghue, Cyclin B1 and CDK1: nuclear localization and upstream regulators. Prog Cell Cycle Res, 2003. 5: p. 335-47.
87. Lolli, G. and L.N. Johnson, CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle, 2005. 4(4): p. 572-7.
88. van den Heuvel, S., Cell-cycle regulation. WormBook, 2005: p. 1-16.
89. Golias, C.H., A. Charalabopoulos, and K. Charalabopoulos, Cell proliferation and cell cycle control: a mini review. Int J Clin Pract, 2004. 58(12): p. 1134-41.
90. Rayess, H., M.B. Wang, and E.S. Srivatsan, Cellular senescence and tumor suppressor gene p16. Int J Cancer, 2012. 130(8): p. 1715-25.
91. Sherr, C.J. and J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 1999. 13(12): p. 1501-12.
92. Kim, Y.T. and M. Zhao, Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J, 2005. 46(5): p. 597-613.
93. Caldon, C.E., et al., Cell cycle control in breast cancer cells. J Cell Biochem, 2006. 97(2): p. 261-74.
94. Nam, E.J. and Y.T. Kim, Alteration of cell-cycle regulation in epithelial ovarian cancer. Int J Gynecol Cancer, 2008. 18(6): p. 1169-82.
95. Sudakin, V., et al., The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell, 1995. 6(2): p. 185-97.
96. Yu, H., et al., Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr Biol, 1996. 6(4): p. 455-66.
97. Hershko, A., Ubiquitin-mediated protein degradation. J Biol Chem, 1988. 263(30): p. 15237-40.
98. Peters, J.M., The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 2006. 7(9): p. 644-56.
99. Hershko, A. and A. Ciechanover, The ubiquitin system. Annu Rev Biochem, 1998. 67: p. 425-79.
100. Kastan, M.B. and D.S. Lim, The many substrates and functions of ATM. Nat Rev Mol Cell Biol, 2000. 1(3): p. 179-86.
101. Matsuoka, S., et al., Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci U S A, 2000. 97(19): p. 10389-94.
102. Hirao, A., et al., DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science, 2000. 287(5459): p. 1824-7.
103. Falck, J., et al., The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature, 2001. 410(6830): p. 842-7.
104. Robinson, M.J. and M.H. Cobb, Mitogen-activated protein kinase pathways. Curr Opin Cell Biol, 1997. 9(2): p. 180-6.
105. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-310.
106. Chambard, J.C., et al., ERK implication in cell cycle regulation. Biochim Biophys Acta, 2007. 1773(8): p. 1299-310.
107. Mebratu, Y. and Y. Tesfaigzi, How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 2009. 8(8): p. 1168-75.
108. Pages, G., et al., Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A, 1993. 90(18): p. 8319-23.
109. Squires, M.S., P.M. Nixon, and S.J. Cook, Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK) 1/2 but not ERK5/BMK1. Biochem J, 2002. 366(Pt 2): p. 673-80.
110. Sherr, C.J., Mammalian G1 cyclins. Cell, 1993. 73(6): p. 1059-65.
111. Ortega, S., M. Malumbres, and M. Barbacid, Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta, 2002. 1602(1): p. 73-87.
112. Ohtsubo, M. and J.M. Roberts, Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science, 1993. 259(5103): p. 1908-12.
113. Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev, 1998. 12(22): p. 3499-511.
114. Zou, Y., et al., Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. J Biol Chem, 2004. 279(26): p. 27790-8.
115. Musgrove, E.A., et al., Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci U S A, 1994. 91(17): p. 8022-6.
116. Blomberg, I. and I. Hoffmann, Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol, 1999. 19(9): p. 6183-94.
117. Hsu, J.Y., et al., E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nat Cell Biol, 2002. 4(5): p. 358-66.
118. Bell, S.P. and A. Dutta, DNA replication in eukaryotic cells. Annu Rev Biochem, 2002. 71: p. 333-74.
119. Diffley, J.F., Regulation of early events in chromosome replication. Curr Biol, 2004. 14(18): p. R778-86.
120. Groth, A., et al., Chromatin challenges during DNA replication and repair. Cell, 2007. 128(4): p. 721-33.
121. Pines, J. and T. Hunter, Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell, 1989. 58(5): p. 833-46.
122. Ito, M., Factors controlling cyclin B expression. Plant Mol Biol, 2000. 43(5-6): p. 677-90.
123. Trembley, J.H., et al., Genomic organization and promoter characterization of the rat cyclin B1 gene. Gene, 2000. 255(1): p. 93-104.
124. Kakino, S., et al., Intracellular localization of cyclin B1 during the cell cycle in glioma cells. Cytometry, 1996. 24(1): p. 49-54.
125. Lukas, C., et al., Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature, 1999. 401(6755): p. 815-8.
126. Li, J., A.N. Meyer, and D.J. Donoghue, Nuclear localization of cyclin B1 mediates its biological activity and is regulated by phosphorylation. Proc Natl Acad Sci U S A, 1997. 94(2): p. 502-7.
127. Walsh, S., S.S. Margolis, and S. Kornbluth, Phosphorylation of the cyclin b1 cytoplasmic retention sequence by mitogen-activated protein kinase and Plx. Mol Cancer Res, 2003. 1(4): p. 280-9.
128. Yang, J., et al., Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev, 1998. 12(14): p. 2131-43.
129. Solomon, M.J., T. Lee, and M.W. Kirschner, Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol Biol Cell, 1992. 3(1): p. 13-27.
130. Sebastian, B., A. Kakizuka, and T. Hunter, Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3521-4.
131. Krek, W. and E.A. Nigg, Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J, 1991. 10(2): p. 305-16.
132. Palmer, A., A.C. Gavin, and A.R. Nebreda, A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J, 1998. 17(17): p. 5037-47.
133. Strausfeld, U., et al., Dephosphorylation and activation of a p34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature, 1991. 351(6323): p. 242-5.
134. Honda, R., et al., Dephosphorylation of human p34cdc2 kinase on both Thr-14 and Tyr-15 by human cdc25B phosphatase. FEBS Lett, 1993. 318(3): p. 331-4.
135. Graves, P.R., et al., The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem, 2000. 275(8): p. 5600-5.
136. Peng, C.Y., et al., C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ, 1998. 9(3): p. 197-208.
137. Matsuoka, S., M. Huang, and S.J. Elledge, Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science, 1998. 282(5395): p. 1893-7.
138. Peng, C.Y., et al., Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997. 277(5331): p. 1501-5.
139. Dalal, S.N., et al., Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol, 1999. 19(6): p. 4465-79.
140. Sanchez, Y., et al., Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science, 1997. 277(5331): p. 1497-501.
141. Furnari, B., N. Rhind, and P. Russell, Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science, 1997. 277(5331): p. 1495-7.
142. Foley, E.A. and T.M. Kapoor, Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol, 2013. 14(1): p. 25-37.
143. Rapkine, L., Sur les processus chimiques au cours de la division cellulaire. Ann. Physiol. Physicochim. Biol. , 1931. 7: p. 382-418.
144. Kawamura, N., Cytochemical and quantitative study of protein-bound sulfhydryl and disulfide groups in eggs of Arbacia during the first cleavage. Exp Cell Res, 1960. 20: p. 127-38.
145. Mauro, F., A. Grasso, and L.J. Tolmach, Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J, 1969. 9(11): p. 1377-97.
146. Tu, B.P., et al., Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science, 2005. 310(5751): p. 1152-8.
147. Jonas, C.R., et al., Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radic Biol Med, 2002. 33(11): p. 1499-506.
148. Li, N. and T.D. Oberley, Modulation of antioxidant enzymes, reactive oxygen species, and glutathione levels in manganese superoxide dismutase-overexpressing NIH/3T3 fibroblasts during the cell cycle. J Cell Physiol, 1998. 177(1): p. 148-60.
149. Conour, J.E., W.V. Graham, and H.R. Gaskins, A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol Genomics, 2004. 18(2): p. 196-205.
150. Oberley, T.D., et al., Antioxidant enzyme levels as a function of growth state in cell culture. Free Radic Biol Med, 1995. 19(1): p. 53-65.
151. Sarsour, E.H., A.L. Kalen, and P. Goswami, Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal, 2013.
152. Sarsour, E.H., et al., Redox control of the cell cycle in health and disease. Antioxid Redox Signal, 2009. 11(12): p. 2985-3011.
153. Bae, Y.S., et al., Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem, 1997. 272(1): p. 217-21.
154. Sundaresan, M., et al., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995. 270(5234): p. 296-9.
155. DeYulia, G.J., Jr., et al., Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci U S A, 2005. 102(14): p. 5044-9.
156. Krieger-Brauer, H.I. and H. Kather, Antagonistic effects of different members of the fibroblast and platelet-derived growth factor families on adipose conversion and NADPH-dependent H2O2 generation in 3T3 L1-cells. Biochem J, 1995. 307 ( Pt 2): p. 549-56.
157. Rhee, S.G., Redox signaling: hydrogen peroxide as intracellular messenger. Exp Mol Med, 1999. 31(2): p. 53-9.
158. Chu, C.T., et al., Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem, 2004. 271(11): p. 2060-6.
159. Nishida, M., et al., Activation mechanism of Gi and Go by reactive oxygen species. J Biol Chem, 2002. 277(11): p. 9036-42.
160. Li, F., et al., Superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of AKT and ERK. PLoS One, 2013. 8(4): p. e61195.
161. Sun, Y. and L.W. Oberley, Redox regulation of transcriptional activators. Free Radic Biol Med, 1996. 21(3): p. 335-48.
162. Cho, Y., et al., Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science, 1994. 265(5170): p. 346-55.
163. Rainwater, R., et al., Role of cysteine residues in regulation of p53 function. Mol Cell Biol, 1995. 15(7): p. 3892-903.
164. Toledano, M.B. and W.J. Leonard, Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4328-32.
165. Abate, C., et al., Redox regulation of fos and jun DNA-binding activity in vitro. Science, 1990. 249(4973): p. 1157-61.
166. Burch, P.M. and N.H. Heintz, Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal, 2005. 7(5-6): p. 741-51.
167. Klatt, P., et al., Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J, 1999. 13(12): p. 1481-90.
168. Bergholtz, S., et al., The highly conserved DNA-binding domains of A-, B- and c-Myb differ with respect to DNA-binding, phosphorylation and redox properties. Nucleic Acids Res, 2001. 29(17): p. 3546-56.
169. Nakshatri, H., P. Bhat-Nakshatri, and R.A. Currie, Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J Biol Chem, 1996. 271(46): p. 28784-91.
170. Menon, S.G., et al., Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. Cancer Res, 2003. 63(9): p. 2109-17.
171. Onumah, O.E., et al., Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells. Free Radic Biol Med, 2009. 46(12): p. 1658-67.
172. Wang, H.P., et al., Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic Res, 2003. 37(6): p. 621-30.
173. Martinez Munoz, C., et al., The effect of hydrogen peroxide on the cyclin D expression in fibroblasts. Cell Mol Life Sci, 2001. 58(7): p. 990-6.
174. Yamauchi, A. and E.T. Bloom, Control of cell cycle progression in human natural killer cells through redox regulation of expression and phosphorylation of retinoblastoma gene product protein. Blood, 1997. 89(11): p. 4092-9.
175. Menon, S.G., et al., Superoxide signaling mediates N-acetyl-L-cysteine-induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase. Cancer Res, 2007. 67(13): p. 6392-9.
176. Havens, C.G., et al., Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol, 2006. 26(12): p. 4701-11.
177. Savitsky, P.A. and T. Finkel, Redox regulation of Cdc25C. J Biol Chem, 2002. 277(23): p. 20535-40.
178. Sohn, J. and J. Rudolph, Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry, 2003. 42(34): p. 10060-70.
179. Chang, T.S., et al., Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J Biol Chem, 2002. 277(28): p. 25370-6.
180. Kalen, A.L., et al., Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Antioxid Redox Signal, 2006. 8(7-8): p. 1273-81.
181. Thomas, C.G., et al., Vitamin C transiently arrests cancer cell cycle progression in S phase and G2/M boundary by modulating the kinetics of activation and the subcellular localization of Cdc25C phosphatase. J Cell Physiol, 2005. 205(2): p. 310-8.
182. Obin, M., et al., Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J, 1998. 12(7): p. 561-9.
183. Demasi, M., G.M. Silva, and L.E. Netto, 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J Biol Chem, 2003. 278(1): p. 679-85.
184. Li, Y.P., et al., Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol, 2003. 285(4): p. C806-12.
185. Galperin, M.Y. and E.V. Koonin, A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol ligase activity. Protein Sci, 1997. 6(12): p. 2639-43.
186. Bauer, K., et al., Characterization and biosynthesis of omega-aminoacyl amino acids from rat brain and the C-6 glioma cell line. J Biol Chem, 1979. 254(14): p. 6402-7.
187. Bauer, K., et al., Biosynthesis of carnosine and related peptides by glial cells in primary culture. J Biol Chem, 1982. 257(7): p. 3593-7.
188. Schulz, M., et al., Peptide uptake by astroglia-rich brain cultures. J Neurochem, 1987. 49(3): p. 748-55.
189. Hoffmann, A.M., A. Bakardjiev, and K. Bauer, Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes. Neurosci Lett, 1996. 215(1): p. 29-32.
190. Biffo, S., M. Grillo, and F.L. Margolis, Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system. Neuroscience, 1990. 35(3): p. 637-51.
191. Bakardjiev, A. and K. Bauer, Transport of beta-alanine and biosynthesis of carnosine by skeletal muscle cells in primary culture. Eur J Biochem, 1994. 225(2): p. 617-23.
192. Bauer, K. and M. Schulz, Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture. Eur J Biochem, 1994. 219(1-2): p. 43-7.
193. Perry, T.L., S. Hansen, and D.L. Love, Serum-carnosinase deficiency in carnosinaemia. Lancet, 1968. 1(7554): p. 1229-30.
194. Lenney, J.F., et al., Characterization of human tissue carnosinase. Biochem J, 1985. 228(3): p. 653-60.
195. Lenney, J.F., et al., Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin Chim Acta, 1982. 123(3): p. 221-31.
196. Bando, K., et al., Fluorometric assay of human serum carnosinase activity in normal children, adults and patients with myopathy. Ann Clin Biochem, 1984. 21 ( Pt 6): p. 510-4.
197. Perry, T.L., et al., Homocarnosine in human cerebrospinal fluid: an age-dependent phenomenon. J Neurochem, 1968. 15(10): p. 1203-6.
198. Sobue, K., H. Konishi, and T. Nakajima, Isolation and identification of N-acetylhomocarnosine and N-acetylcarnosine from brain and muscle. J Neurochem, 1975. 24(6): p. 1261-2.
199. Kish, S.J., T.L. Perry, and S. Hansen, Regional distribution of homocarnosine, homocarnosine-carnosine synthetase and homocarnosinase in human brain. J Neurochem, 1979. 32(6): p. 1629-36.
200. Crush, K.G., Carnosine and related substances in animal tissues. Comp Biochem Physiol, 1970. 34(1): p. 3-30.
201. I.R., M., Enzymatic synthesis of anserine in skeletal muscle by N-methylation of carnosine. The Journal of Biological Chemistry 1962. 237: p. 1207-1211.
202. Jackson, M.C., C.M. Kucera, and J.F. Lenney, Purification and properties of human serum carnosinase. Clin Chim Acta, 1991. 196(2-3): p. 193-205.
203. ChemSpider Free chemical structure database, www.chemspider.com
204. Brown, C.E. and W.E. Antholine, Multiple forms of the cobalt(II)-carnosine complex. Biochem Biophys Res Commun, 1979. 88(2): p. 529-36.
205. Viola, R.E., C.R. Hartzell, and J.J. Villafranca, Copper(II) complexes of carnosine, glycylglycine, and glycylglycine-imidazole mixtures. Journal of Inorganic Biochemistry, 1979. 10(4): p. 293-307.
206. Aruoma, O.I., M.J. Laughton, and B. Halliwell, Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem J, 1989. 264(3): p. 863-9.
207. Kang, J.H., Protective effects of carnosine and homocarnosine on ferritin and hydrogen peroxide-mediated DNA damage. BMB Rep, 2010. 43(10): p. 683-7.
208. Renner, C., Seyffarth, A., Garcia de Arriba, S., Meixensberger, J., Gebhardt, R., Gaunitz, F., Carnosine Inhibits Growth of Cells Isolated from Human Glioblastoma Multiforme. International Journal of Peptide Research and Therapeutics 2008. 14: p. 127-135.
209. Iovine, B., et al., Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production. Cancer Lett, 2012. 315(2): p. 122-8.
210. Rybakova, Y.S. and A.A. Boldyrev, Effect of Carnosine and Related Compounds on Proliferation of Cultured Rat Pheochromocytoma PC-12 Cells. Bulletin of Experimental Biology and Medicine, 2012. 154(1): p. 136-140.
211. Dahl, T.A., W.R. Midden, and P.E. Hartman, SOME PREVALENT BIOMOLECULES AS DEFENSES AGAINST SINGLET OXYGEN DAMAGE. Photochemistry and Photobiology, 1988. 47(3): p. 357-362.
212. Hartman, P.E., Z. Hartman, and K.T. Ault, Scavenging of singlet molecular oxygen by imidazole compounds: high and sustained activities of carboxy terminal histidine dipeptides and exceptional activity of imidazole-4-acetic acid. Photochem Photobiol, 1990. 51(1): p. 59-66.
213. Швачко, А.Г., Формазюк, В.Е., Сергиенко В.И., Тушение хемилюминесценции синглетного кислорода в присутствии карнозина. 1990: p. 155-156.
214. Brawn, K. and I. Fridovich, DNA strand scission by enzymically generated oxygen radicals. Arch Biochem Biophys, 1981. 206(2): p. 414-9.
215. Klebanov, G.I., et al., Effect of carnosine and its components on free-radical reactions. Membr Cell Biol, 1998. 12(1): p. 89-99.
216. RUBTSOV, A., et al., HYDROXYL RADICAL-SCAVENGING ACTIVITY OF CARNOSINE - A SPIN TRAPPING STUDY. Acta Pharmaceutica Jugoslavika, 1991. 41(4): p. 401-407.
217. Poli, G. and R.J. Schaur, 4-Hydroxynonenal in the pathomechanisms of oxidative stress. IUBMB Life, 2000. 50(4-5): p. 315-21.
218. Северин С. Е., Б.А.А., Стволинский С. Л., Бордюков, М.М., Гончаренко, Е.Н., Деев, Л.И., Малинина, И.Е., Кудряшов, Ю.Е. , О радиомодифицирующих свойствах карнозина. Радиобиология, 1990. 30(6): p. 765-768.
219. Курелла, Е.Г., Мальцева, В. В., Сеславина, С. Л., Стволинский, С. Л., Стимулирующее действие карнозина на гемопоэтические стволовые клетки. Бюл. эксп. биол. мед, 1991. 7: p. 52-53.
220. Мальцева, В.В., Сергиенко, В. И., Стволинский, С.Л., Влияние карнозина на активность гемопоэтических стволовых клеток у облученных животных. Биохимия, 1992. 57(9): p. 1378-1382.
221. Hayflick, L., THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res, 1965. 37: p. 614-36.
222. McFarland, G.A. and R. Holliday, Further evidence for the rejuvenating effects of the dipeptide L-carnosine on cultured human diploid fibroblasts. Exp Gerontol, 1999. 34(1): p. 35-45.
223. Shao, L., Q.H. Li, and Z. Tan, L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem Biophys Res Commun, 2004. 324(2): p. 931-6.
224. Levy, M.Z., et al., Telomere end-replication problem and cell aging. J Mol Biol, 1992. 225(4): p. 951-60.
225. Renner, C., et al., Carnosine inhibits ATP production in cells from malignant glioma. Neurol Res, 2010. 32(1): p. 101-5.
226. McFarland, G. and R. Holliday, Differential response of embryonic stem cells and teratocarcinoma cells to carnosine. In Vitro Cell Dev Biol Anim, 1999. 35(1): p. 15-6.
227. Asperger, A., et al., Identification of factors involved in the anti-tumor activity of carnosine on glioblastomas using a proteomics approach. Cancer Invest, 2011. 29(4): p. 272-81.
228. Tsuchiya, H., T. Iseda, and O. Hino, Identification of a novel protein (VBP-1) binding to the von Hippel-Lindau (VHL) tumor suppressor gene product. Cancer Res, 1996. 56(13): p. 2881-5.
229. Luo, W., et al., Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem, 2010. 285(6): p. 3651-63.
230. Hohfeld, J. and S. Jentsch, GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J, 1997. 16(20): p. 6209-16.
231. Borges, J.C., et al., Free human mitochondrial GrpE is a symmetric dimer in solution. J Biol Chem, 2003. 278(37): p. 35337-44.
232. Graner, M.W., et al., Heat shock protein 70-binding protein 1 is highly expressed in high-grade gliomas, interacts with multiple heat shock protein 70 family members, and specifically binds brain tumor cell surfaces. Cancer Sci, 2009. 100(10): p. 1870-9.
233. Kizaka-Kondoh, S., et al., The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev, 2009. 61(7-8): p. 623-32.
234. Rybakova, Y., et al., Receptor-mediated oxidative stress in murine cerebellar neurons is accompanied by phosphorylation of MAP (ERK 1/2) kinase. Curr Aging Sci, 2012. 5(3): p. 225-30.
235. Dong, J., et al., EGFR-independent activation of p38 MAPK and EGFR-dependent activation of ERK1/2 are required for ROS-induced renal cell death. Am J Physiol Renal Physiol, 2004. 287(5): p. F1049-58.
236. Kulebyakin, K., et al., Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling. Amino Acids, 2012. 43(1): p. 91-6.
237. Ashmarin, I.P., et al., Natural and hybrid ("chimeric") stable regulatory glyproline peptides. Pathophysiology, 2005. 11(4): p. 179-185.
238. Gomazkov, O.A., [Regulatory molecular mechanisms of the neurochemical processes. History and the present time]. Usp Fiziol Nauk, 2003. 34(3): p. 42-54.
239. Anisimov, V.N., et al., Effect of Epitalon on biomarkers of aging, life span and spontaneous tumor incidence in female Swiss-derived SHR mice. Biogerontology, 2003. 4(4): p. 193-202.
240. Khavinson, V., et al., Effects of pancragen on the differentiation of pancreatic cells during their ageing. Bull Exp Biol Med, 2013. 154(4): p. 501-4.
241. Khavinson, V., et al., Tetrapeptide H-Ala-Glu-Asp-Arg-OH stimulates expression of cytoskeletal and nuclear matrix proteins. Bull Exp Biol Med, 2012. 153(4): p. 559-62.
242. Lin'kova, N.S., B.I. Kuznik, and V. Khavinson, [Peptide Ala-Glu-Asp-Gly and interferon gamma: their role in immune response during aging]. Adv Gerontol, 2012. 25(3): p. 478-82.
243. Sevostianova, N.N., et al., Immunomodulating effects of Vilon and its analogue in the culture of human and animal thymus cells. Bull Exp Biol Med, 2013. 154(4): p. 562-5.
244. Kozina, L.S., [Investigation of antihypoxic properties of short peptides]. Adv Gerontol, 2008. 21(1): p. 61-7.
245. Kozina, L.S., et al., [Biological activity of regulatory peptides in model experiments in vitro]. Adv Gerontol, 2008. 21(1): p. 68-73.
246. Arutjunyan, A., et al., Pinealon protects the rat offspring from prenatal hyperhomocysteinemia. Int J Clin Exp Med, 2012. 5(2): p. 179-85.
247. Khavinson, V., et al., Pinealon increases cell viability by suppression of free radical levels and activating proliferative processes. Rejuvenation Res, 2011. 14(5): p. 535-41.
248. Fedoreyeva, L.I., et al., Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA. Biochemistry (Mosc), 2011. 76(11): p. 1210-9.
249. Khavinson, V.K., L.I. Fedoreyeva, and B.F. Vanyushin, Site-Specific Binding of Short Peptides with DNA Modulated Eukaryotic Endonuclease Activity. Bulletin of Experimental Biology and Medicine, 2011. 151(1): p. 66-70.
250. Chen, X., et al., 2',7'-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy. Free Radic Res, 2010. 44(6): p. 587-604.
251. Patel, D.J. and C. Shen, Sugar pucker geometries at the intercalation site of propidium diiodide into miniature RNA and DNA duplexes in solution. Proc Natl Acad Sci U S A, 1978. 75(6): p. 2553-7.
252. Waring, M.J., Complex formation between ethidium bromide and nucleic acids. J Mol Biol, 1965. 13(1): p. 269-82.
253. Arndt-Jovin, D.J. and T.M. Jovin, Fluorescence labeling and microscopy of DNA. Methods Cell Biol, 1989. 30: p. 417-48.
254. Sarsour, E.H., et al., Manganese superoxide dismutase protects the proliferative capacity of confluent normal human fibroblasts. J Biol Chem, 2005. 280(18): p. 18033-41.
255. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-5.
256. Weydert, C.J., et al., Inhibition of oral cancer cell growth by adenovirusMnSOD plus BCNU treatment. Free Radic Biol Med, 2003. 34(3): p. 316-29.
257. Aebi, H., Catalase in vitro. Methods Enzymol, 1984. 105: p. 121-6.
258. Harms, W.S. and T. Winnick, Further studies of the biosynthesis of carnosine and anserine in vertebrates. Biochim Biophys Acta, 1954. 15(4): p. 480-8.
259. Boldyrev, A.A., et al., The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem Int, 1987. 15(6): p. 1105-13.
260. Gaunitz, F. and A.R. Hipkiss, Carnosine and cancer: a perspective. Amino Acids, 2012. 43(1): p. 135-42.
261. Chaudhuri, L., et al., Preferential selection of MnSOD transcripts in proliferating normal and cancer cells. Oncogene, 2012. 31(10): p. 1207-16.
262. Oberley, L.W., Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother, 2005. 59(4): p. 143-8.
263. Venkataraman, S., et al., Manganese superoxide dismutase overexpression inhibits the growth of androgen-independent prostate cancer cells. Oncogene, 2005. 24(1): p. 77-89.
264. Leinsoo, T.A., H. Abe, and A.A. Boldyrev, [Carnosine and relative compounds protect double-stranded DNA from oxidative damage]. Zh Evol Biokhim Fiziol, 2006. 42(5): p. 453-6.
265. Rauen, U., S. Klempt, and H. de Groot, Histidine-induced injury to cultured liver cells, effects of histidine derivatives and of iron chelators. Cell Mol Life Sci, 2007. 64(2): p. 192-205.
266. THE INTERNET JOURNAL OF VIBRATIONAL SPECTROSCOPY 1(2).
267. Anisimov, V.N., The role of pineal gland in breast cancer development. Crit Rev Oncol Hematol, 2003. 46(3): p. 221-34.
Подобные документы
Механизм действия аланина и карнозина на организм человека. Биологическая и фармакологическая роль пантотеновой кислоты. Характеристика нейропротективных лекарственных средств на основе аминокислот. Пантогам в лечении когнитивных расстройств у детей.
дипломная работа [1,9 M], добавлен 22.01.2018Распространенность доброкачественных и злокачественных опухолей молочной железы, их виды. Эпителиальная опухоль, исходящая из протоков или долек железы (рак груди), причины ее возникновения и типичные симптомы. Клиническая картина течения заболевания.
презентация [1,6 M], добавлен 19.03.2017Открытие фармакологической активности N-замещенных производных фенотиазина. Применение в фармацевтической практике лекарственных средств на основе производных фенотиазинового ряда. Классификация производных фенотиазина, их химические, физические свойства.
курсовая работа [515,9 K], добавлен 08.10.2015Морфогенез молочной железы. Особенности строения лактирующей и нелактирующей молочной железы в норме. Морфоколичественный анализ компонентов молочной железы. Оценка удельного объема структурных компонентов молочной железы с помощью сетки Автандилова.
курсовая работа [722,1 K], добавлен 08.02.2011Статистика заболеваемости раком молочной железы, основные причины его развития. Типы рака молочной железы по анатомической форме роста. Клинические признаки фиброзно-кистозной мастопатии. Симптомы фиброаденомы, ее виды. Самообследование молочной железы.
презентация [365,3 K], добавлен 14.07.2015Строение молочной железы. Лимфатическое метастазирование при раке молочной железы. Плюсы и минусы методики лоскута широчайшей мышцы спины. Виды хирургических операций. Секторальная резекция молочной железы. Радикальная мастэктомия по Холстеду-Майеру.
презентация [1,8 M], добавлен 21.12.2011Факторы риска развития рака молочной железы, связанные с репродуктивной функцией. Первые симптомы и жалобы пациентов при раке молочной железы. Диагностика и лечение рака молочной железы на фоне беременности. Возможные метастазы в плаценту и ткани плода.
презентация [6,8 M], добавлен 06.10.2016Изучение особенностей психологических реакций на наличие онкологического заболевания и способы его лечения. Определение основных проблем пациенток с раком молочной железы. Рекомендации по организации ухода за пациентками с раком молочной железы.
презентация [1,1 M], добавлен 13.12.2017Наименование, синонимы, химическая формула и физические свойства тиоамида изоникотиновой кислоты и ее производных. Связь структуры с фармакологическим действием. Определение подлинности и доброкачественности. Количественное определение и хранение.
курсовая работа [550,6 K], добавлен 23.12.2012Факторы риска, цитологическая диагностика рака молочной железы. Критерии злокачественности рака молочной железы. Интраоперационная цитологическая диагностика рака молочной железы. Аспекты дифференциальной цитологической диагностики рака молочной железы.
реферат [27,6 K], добавлен 05.11.2010