Молекулярно-генетические маркеры физических качеств человека

Влияние полиморфных вариантов генов на уровень двигательной подготовленности у детей. Методология поиска генетических маркеров физической работоспособности человека. Диагностика наследственной предрасположенности человека к двигательной деятельности.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 29.12.2017
Размер файла 697,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

03.02.07 - Генетика

14.03.11 - Восстановительная медицина, спортивная медицина, лечебная физкультура, курортология и физиотерапия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора медицинских наук

Молекулярно-генетические маркеры физических качеств человека

Ахметов Ильдус Ильясович

Москва 2010

Работа выполнена в Федеральном государственном учреждении «Санкт-Петербургский научно-исследовательский институт физической культуры».

Научные консультанты: Заслуженный деятель науки РФ,

доктор биологических наук, профессор

Рогозкин Виктор Алексеевич

доктор биологических наук, профессор

Виноградова Ольга Леонидовна

Официальные оппоненты: доктор медицинских наук, профессор

Петрин Александр Николаевич

доктор медицинских наук

Писарев Владимир Митрофанович

доктор медицинских наук, профессор

Смоленский Андрей Вадимович

Ведущая организация: ГОУ ВПО Российский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию

Защита состоится 4 октября 2010 г. в 14 часов на заседании Диссертационного совета Д 001.016.01 при Учреждении Российской академии медицинских наук Медико-генетическом научном центре РАМН по адресу: 115478, Москва, ул. Москворечье, д.1.

С диссертацией можно ознакомиться в библиотеке Учреждения Российской академии медицинских наук Медико-генетическом научном центре РАМН по адресу: 115478, Москва, ул. Москворечье, д.1.

Автореферат разослан «___» ___________ 2010 г.

Ученый секретарь диссертационного совета Д 001.016.01

по защите докторских и кандидатских диссертаций,

доктор медицинских наук, профессор Зинченко Р.А.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Определение генетической детерминированности проявления физических качеств человека играет важную роль во многих сферах профессиональной подготовки специалистов (спортсмены, спасатели, пожарные, космонавты, сотрудники специальных подразделений Министерства обороны, Министерства внутренних дел, Федеральной службы безопасности и других ведомств). Наиболее ярко это проявляется в спорте и именно поэтому изучение генетического полиморфизма, определяющего формирование, развитие и проявление физических качеств, целесообразно изучать на спортсменах различных специализаций. Именно у них, в силу специфических особенностей энергетического обмена в организме при выполнении различных по интенсивности и длительности физических нагрузок, можно с большой долей вероятности выявить генетические детерминанты, регулирующие этот процесс.

В последнее десятилетие в связи с расшифровкой структуры генома человека появилась возможность определения генетических маркеров, ассоциированных с развитием и проявлением физических качеств, а также с биохимическими, антропометрическими и физиологическими показателями, значимыми в условиях спортивной деятельности (Рогозкин В.А. и др., 2000, 2005; Roth S., 2007; Weedon M.N., Frayling T.M., 2008; Bray M.S. et al., 2009). Генетические маркеры физической работоспособности, выявляемые с помощью молекулярно-генетического анализа полиморфизма ДНК, представляют собой варианты генов, обуславливающие индивидуальные различия в развитии и проявлении фенотипических признаков.

Исследования по функциональной геномике показали сложность изучаемого явления и участия в нем многих генов. В настоящее время сделаны только первые открытия, и дальнейший путь лежит через выявление взаимосвязей генетических маркеров и физиологических показателей, определяющих проявление различных физических качеств человека. Согласно последним обобщающим данным («Карта генов физической активности человека»; Bray M.S. et al., 2009), зарубежными специалистами обнаружены полиморфизмы 8 генов (ACE, ACTN3, ADRA2A, ADRB2, AMPD1, BDKRB2, EPAS1, PPARGC1A), ассоциированных со спортивной деятельностью. Вместе с тем, проведенные исследования не обеспечивают целостного представления о молекулярных механизмах, лежащих в основе наследственной предрасположенности человека к двигательной деятельности. Остается неразработанной также методология поиска генетических маркеров физической работоспособности человека и их значимость в диагностике предрасположенности к выполнению физических упражнений различной направленности и длительности.

Главным преимуществом молекулярно-генетического метода выявления наследственной предрасположенности человека к двигательной деятельности является высокая информативность при оценке потенциала развития физических качеств и возможность осуществления ранней диагностики. К отличительным свойствам такой диагностики также следует отнести возможность определения наследственной предрасположенности к развитию профессиональных патологий - факторов, лимитирующих физическую работоспособность человека и ухудшающих его качество жизни.

Наличие функционально значимых ДНК-полиморфизмов в генах, участвующих в функционировании сердечно-сосудистой системы и опорно-двигательного аппарата, предполагает выявление их взаимосвязи с физическими качествами человека, развивающимися в онтогенезе под значительным влиянием среды. Установление ассоциаций полиморфизмов данных генов с предрасположенностью к выполнению физических упражнений различной длительности и интенсивности, а также с фенотипами, значимыми в условиях спортивной деятельности, позволит разработать систему критериев прогностической оценки физических способностей человека.

Таким образом, внедрение молекулярно-генетических методов в практику профессионального отбора может существенно повысить прогностические возможности, улучшить профессиональную ориентацию в разных сферах деятельности человека и сохранить его здоровье.

Цель исследования - изучить молекулярно-генетические основы предрасположенности к двигательной деятельности, а также разработать и апробировать метод молекулярно-генетической диагностики развития физических качеств человека.

Задачи исследования:

Провести поиск и анализ полиморфных вариантов генов, определяющих функционирование сердечно-сосудистой системы и опорно-двигательного аппарата (HIF1A Pro582Ser, NFATC4 Gly160Ala, PPARA rs4253778 G/C, PPARG Pro12Ala, PPARD rs2016520T/C, PPARGC1A Gly482Ser, PPARGC1B Ala203Pro, PPP3R1 5I/5D, TFAM Ser12Thr, UCP2 Ala55Val, UCP3 rs1800849 C/T и VEGFA rs2010963 G/C) у спортсменов, специализирующихся в различных видах спорта в зависимости от характера двигательной деятельности и спортивной квалификации, сравнить их с данными контрольной группы, а также оценить суммарный вклад полиморфизмов генов в предрасположенность к занятиям различными видами спорта.

Определить ассоциацию полиморфизмов генов HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA с физической работоспособностью и силовыми показателями спортсменов, а также выявить влияние полиморфных вариантов генов на уровень двигательной подготовленности у детей 10-11 лет.

Установить связь полиморфизмов генов HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA с составом тела и мышечной композицией у спортсменов и в контрольной группе.

Выявить ассоциацию полиморфизмов генов HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA с показателями эхокардиографии у спортсменов.

Разработать методологию поиска генетических маркеров физической работоспособности человека и оценки их значимости.

Разработать принципы молекулярно-генетической диагностики наследственной предрасположенности человека к двигательной деятельности. ген двигательный работоспособность наследственный

Научная новизна работы. Впервые разработана и апробирована молекулярно-генетическая диагностика развития физических качеств человека. В работе впервые изучены полиморфизмы генов HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA у спортсменов. Показано, что вариации в этих генах ассоциированы с предрасположенностью к занятиям различными видами спорта, а также с аэробной работоспособностью, силовыми, антропометрическими, композиционными и эхокардиографическими показателями и уровнем двигательной подготовленности. Впервые установлен суммарный вклад полиморфизмов 10 генов (NFATC4, PPARA, PPARD, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA) в развитие и проявление качества выносливости и полиморфизмов 4 генов (HIF1A, PPARA, PPARG, PPARGC1B) в развитие и проявление скоростно-силовых качеств. Разработана методология поиска генетических маркеров физической работоспособности человека и оценки их значимости.

Практическая значимость работы. Анализ полиморфизмов генов HIF1A, NFATC4, PPARA, PPARG, PPARD, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA можно рекомендовать в качестве дополнительного диагностического комплекса для оценки предрасположенности к развитию и проявлению физических качеств человека. Результаты работы открывают новые возможности в разработке инновационной системы медико-генетического обеспечения физической культуры и спорта. Новая система, основанная на современных ДНК-технологиях, позволит оказывать помощь тренерам и спортивным врачам 1) в определении предрасположенности детей и подростков к конкретному виду двигательной деятельности; 2) в повышении роста спортивных показателей за счет оптимизации и коррекции тренировочного процесса; 3) в профилактике различных заболеваний, связанных с профессиональной деятельностью спортсменов. Предлагаемая методология поиска генетических маркеров физической работоспособности и оценки их значимости может быть применена в рамках научных исследований по генетике физической активности.

Основные положения, выносимые на защиту

В основе индивидуальных различий в проявлении признаков, значимых в условиях спортивной деятельности, помимо средовых факторов, лежат полиморфизмы генов, регулирующих метаболизм скелетных мышц и миокарда (HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA).

Варианты генов HIF1A, NFATC4, PPARA, PPARG, PPARD, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3, VEGFA и их комбинации являются объективными маркерами физических способностей человека.

Полиморфизмы генов HIF1A, NFATC4, PPARA, PPARD, PPARG, PPARGC1A, PPARGC1B, PPP3R1, TFAM, UCP2, UCP3 и VEGFA оказывают суммирующее влияние на предрасположенность к занятиям различными видами спорта: чем большим числом аллелей выносливости/быстроты и силы обладает индивид, тем больше вероятность того, что он может стать выдающимся стайером/спринтером/«силовиком».

Проведение генотипирования по наиболее значимым полиморфизмам генов позволяет оценить степень предрасположенности к занятиям различными видами спорта, выявить слабые и сильные стороны организма, провести оптимизацию и коррекцию тренировочного процесса и питания, способствовать сохранению здоровья.

Апробация работы. Основные результаты диссертационной работы были представлены на X, XI и XII конгрессах Европейского колледжа спортивных наук (2005 г., Белград, Сербия и Черногория; 2006 г., Лозанна, Швейцария, 2007 г., Ювяскюля, Финляндия), V съезде Российского общества медицинских генетиков (Уфа, 2005); II Международной конференции «Молекулярная медицина и биобезопасность» (Москва, 2005 г.), III Всероссийской конференции «Дети России образованы и здоровы» (Москва, 2005 г.), IX Международном конгрессе «Олимпийский спорт и спорт для всех» (Киев, Украина, 2005 г.), IX Всероссийской конференции «Человек и его здоровье» (Санкт-Петербург, 2006) итоговых конференциях ФГУ «СПбНИИФК» (2005, 2006 гг.), V Международной конференции по силовой тренировке (2006, Оденсе, Дания), IV Всероссийской с международным участием школы-конференции по физиологии мышц и мышечной деятельности «Инновационные направления в физиологии двигательной системы и мышечной деятельности» (2007, Москва), III Международном конгрессе «Человек, спорт, здоровье» (2007, Санкт-Петербург), Всероссийской медико-биологической научной конференции молодых учёных «Фундаментальная наука и клиническая медицина» (2007, Санкт-Петербург), Европейской конференции по генетике человека 2007 (Ницца, Франция), Международной школе-конференции «Системный контроль генетических и цитогенетических процессов» (2007, Санкт-Петербург), Международной научно-практической конференции «Современные проблемы физической культуры и спорта» (2008, Санкт-Петербург), Европейской конференции по генетике человека 2008 (Барселона, Испания), XX Международном конгрессе по генетике (2008, Берлин, Германия), Научно-практической конференции, посвященной 75-летию ВНИИФК «Проблемы и перспективы развития российской спортивной науки» (2008, Москва), V Всероссийской с международным участием Школы-конференции по физиологии мышц и мышечной деятельности «Системные и клеточные механизмы в физиологии двигательной системы и мышечной деятельности» (2009, Москва), Европейской конференции по генетике человека 2009 (Вена, Австрия), I Российском конгрессе с международным участием «Молекулярные основы клинической медицины - возможное и реальное» (2010, Санкт-Петербург).

По итогам исследования получены три премии: 1) премия за лучший стендовый доклад («The role of gene variants in determination of individual differences in aerobic performance») в конкурсе молодых ученых 12-го ежегодного конгресса Европейского колледжа спортивных наук (Ювяскюля, Финляндия, 2007); 2) премия Академии наук Республики Татарстан в конкурсе молодых ученых за работу «Разработка и апробация метода на основе ДНК-технологий для изучения и молекулярной диагностики предрасположенности к занятиям спортом» (Казань, 2010); 3) грант Британского королевского общества за проект «Polygenic profiles of elite strength athletes» (Лондон, Великобритания, 2010).

Внедрение результатов. Результаты научного исследования внедрены в практику спортивной ориентации и многолетней подготовки спортсменов училищ олимпийского резерва Санкт-Петербурга и Казани, школы высшего спортивного мастерства по тяжелой атлетике г. Подольска, СДЮШОР №2 по лыжному спорту Невского района г. Санкт-Петербурга, ШИОР по велосипедному спорту г. Сестрорецка, учащихся общеобразовательных школ г. Набережные Челны и Сургут, членов олимпийской сборной команды РФ по лыжному двоеборью, гребле на байдарках и каноэ и сборной команды г. Москвы по самбо.

Личное участие автора. Автором лично определены цель и задачи исследования, разработаны методические подходы для их решения, выполнены не менее 80% объема молекулярно-генетической диагностики (забор биологического материала, выделение ДНК из эпителиальных клеток, анализ полиморфизма длин рестрикционных фрагментов), анкетирование испытуемых, анализ, обработка и обобщение полученных результатов, написание и оформление рукописи.

Публикации. По материалам диссертации опубликовано 157 печатных работ (1 монография, 1 глава в зарубежной книге, 68 статей, 2 методических рекомендаций, 85 тезисов научных докладов), в том числе 36 статей в изданиях, рекомендованных ВАК МОН РФ.

Структура и объем работы. Диссертация состоит из введения, обзора литературы, описания материалов и методов исследования, результатов, обсуждения, выводов, практических рекомендаций и списка литературы. Текст диссертации изложен на 344 страницах, содержит 38 рисунков и 50 таблиц. Список литературы включает 438 источников отечественных и иностранных авторов.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Организация исследования. В исследовании приняло участие 2596 человек, из которых 1423 являлись спортсменами различной специализации и квалификации (425 женщин и 998 мужчин), 1132 человека относились к контрольной группе, 67 человек (41 физически активный мужчина и 26 конькобежцев-многоборцев) прошли биопсию скелетных мышц для изучения связи полиморфизмов генов с типом мышечных волокон. Из совокупной группы спортсменов 90 гребцов-академистов были отобраны для физиологического тестирования, 63 человека, занимающихся бодибилдингом, бодифитнесом и фитнесом (42 мужчины, 21 женщина) - для антропометрического и динамометрического обследования, 175 спортсменов, занимающихся академической греблей, конькобежным многоборьем и баскетболом - для выявления взаимосвязи полиморфизмов генов с длиной тела, 26 конькобежцев-многоборцев - для изучения состава мышечных волокон, 77 спортсменов, занимающихся академической греблей и конькобежным многоборьем - для определения ассоциации полиморфизмов генов с эхокардиографическими показателями. 455 детей среднего школьного возраста (215 мальчиков и 240 девочек; конец периода второго детства - начало подросткового возраста; 11±0,4 лет) из состава контрольной группы были отобраны для оценки уровня двигательной подготовленности. Испытуемые были предупреждены об условиях эксперимента и дали письменное соглашение на добровольное участие в нем. Эксперимент был одобрен Физиологической секцией Российской Национальной комиссии по биологической этике.

В соответствии с типом энергообеспечения соревновательной нагрузки, спортсмены относились к одной из пяти групп: I) виды спорта с преимущественным проявлением выносливости умеренной мощности (n=288; продолжительность соревновательного упражнения > 30 мин; плавание 5-25 км (n=21), лыжные гонки 15-50 км (n=78), биатлон, спортивная ходьба, велошоссе, триатлон); II) виды спорта с преимущественным проявлением выносливости большой мощности (n=290; продолжительность соревновательного упражнения 5-30 мин; бег 3-10 км (n=5), конькобежный спорт 5-10 км (n=4), лыжные гонки 5-10 км (n=64), плавание 800-1500 м (n=26), академическая гребля); III) виды спорта с преимущественным проявлением выносливости субмаксимальной мощности (n=116; продолжительность соревновательного упражнения 45 с - 5 мин; плавание 200-400 м (n=24), бег 800-1500 м (n=7), конькобежный спорт 1500-3000 м (n=53), гребля на байдарках 500-1000 м); IV) виды спорта с проявлением смешанных качеств переменной мощности (n=248; баскетбол, бокс, хоккей с шайбой, футбол, большой теннис, различные виды борьбы); V) виды спорта с преимущественным проявлением скоростно-силовых качеств (n=481; плавание 50-100 м (n=35), бег 100-400 м (n=122), конькобежный спорт 500-1000 м (n=52), горнолыжный спорт, спортивная гимнастика, бодибилдинг, прыжковые виды в легкой атлетике, пауэрлифтинг, прыжки с трамплина, метания, толкание ядра и тяжелая атлетика). Спортсмены I и II группы относятся к стайерам. На момент получения биологического материала для генотипирования 58 спортсменов являлись заслуженными мастерами спорта (ЗМС), 177 - мастерами спорта международного класса (МСМК), 404 - мастерами спорта (МС), 401 - кандидатами в мастера спорта (КМС) и 383 спортсмена имели взрослый разряд.

Контрольная группа (без спортивного стажа) состояла из 1132 человек (595 женщин 17,3±0,2 лет, 537 мужчин 17,1±0,3 лет), в которую входили: 392 студента СПбГПУ (17-27 лет), 206 жителей Санкт-Петербурга (18-42 лет) и 534 учащихся школ г. Набережные Челны (11-12 лет).

Методы исследования

Для молекулярно-генетического анализа использовали образцы ДНК испытуемых, выделенных методом щелочной экстракции или сорбентным методом, в зависимости от способа забора биологического материала (смыв либо соскоб эпителиальных клеток ротовой полости). Генотипирование осуществляли с помощью анализа полиморфизма длин рестрикционных фрагментов. Для определения каждого полиморфизма генов использовали двухпраймерную систему. Для выявления однонуклеотидных замен ампликоны инкубировали вместе с эндонуклеазами рестрикции (NmuCI (HIF1A), Apa I (NFATC4), TaqI (PPARA), Bsc4I (PPARD), Bsh1236I (PPARG), Msp I (PPARGC1A), PspN4 I (PPARGC1B), VspI (PPP3R1), Bst DEI (TFAM), HincII (UCP2), SmaI (UCP3), BslF I (VEGFA rs2010963)). Анализ длин рестрикционных продуктов проводился электрофоретическим разделением в 8% полиакриламидном геле с последующей окраской бромистым этидием и визуализацией в проходящем ультрафиолетовом свете.

Определение показателей аэробной и анаэробной работоспособности в тесте со ступенчато повышающейся нагрузкой до отказа. Определение аэробных возможностей в тесте с нарастающей нагрузкой проводилось на механическом гребном эргометре PM 3 (Concept II, США) сотрудниками Института медико-биологических проблем РАН Поповым Д.В. и Миссиной С.С. Начальная нагрузка составила 150 Вт для мужчин и 100 Вт - для женщин, длительность ступени 3 мин, время отдыха между ступенями 30 с. Работа выполнялась до отказа, по окончанию которой определяли максимальную мощность (Wmax). Во время теста постоянно регистрировали показатели газообмена и частоту сердечных сокращений (ЧСС, уд/мин) (газоанализатор MetaMax 3B, Cortex, Германия и Vmax 229, SensorMedics, США). Максимальное потребление кислорода (МПК, л/мин или мл/мин/кг) определяли по значениям усредненных за последние 30 с каждой ступени теста показателей газообмена. Кислородный пульс (КП, мл/уд) оценивали по отношению МПК к ЧСС. При достижении концентрации лактата 2 ммоль/л и 4 ммоль/л (порог аэробного обмена (АэП) и порог анаэробного обмена (ПАНО), соответственно) определяли ЧСС (ЧСС на АэП и ПАНО), абсолютную мощность (мощность на АэП и ПАНО). Кроме того, регистрировали процент потребления кислорода на пороге анаэробного обмена от максимального потребления кислорода, полученного в тесте (ПАНО от МПК, %). Содержание лактата в крови определяли электрохимическим методом (Super GL easy, Dr. Mueller, Германия); капиллярную кровь (20 мкл) брали из пальца после каждой ступени и сразу в после окончания работы (Lamax, ммоль/л).

Определение гистоморфометрических показателей мышечных волокон m. vastus lateralis. Биопсия скелетных мышц у физически активных молодых мужчин и конькобежцев-многоборцев проводилась сотрудниками Института медико-биологических проблем РАН Любаевой Е.В., Таракиным П.П. и Шенкманом Б.С. Для определения состава мышечных волокон, предварительно из m. vastus lateralis методом игольчатой биопсии по Бергстрему брали пробы мышечной ткани и замораживали в жидком азоте. Серийные поперечные срезы толщиной 10 мm готовили в криостате при -20єС и монтировали на предметные стекла. Для иммуногистохимического выявления изоформ ТЦМ использовали иммунопероксидазную технику. Применяли антитела против медленных (MHCs) и быстрых (MHCf) цепей миозина (Novocastra Laboratories). Распределение волокон выражали как соотношение между числом волокон каждого типа на срезе к общему количеству волокон. Измеряли все волокна (200-300 волокон) на каждом срезе.

Оценку уровня двигательной подготовленности детей проводили под руководством Гаврилова Д.Н. (СПбНИИФК) с использованием ряда педагогических тестов: динамометрия, определение силового индекса (отношение показателей динамометрия в кг к собственному весу в кг), быстроты (тест падающая линейка), мышечной (поднимание туловища лежа на спине) и аэробной (сит-тест) выносливости, результатов прыжков в длину с места, индекса функциональных изменений по Баевскому Р.М. (ИФИ) и общей физической подготовки (ОФП). Кроме того, испытуемым проводили антропометрию, а также определяли некоторые показатели состояния сердечно-сосудистой и дыхательной систем (жизненная емкость легких (ЖЕЛ), систолическое и диастолическое артериальное давление (САД и ДАД) в покое), ЧСС в покое, при физической нагрузке (сит-тест) и восстановлении.

Эхокардиографическое обследование спортсменов проводилось на ультразвуковом сканере Aloka-3500 сотрудниками Института медико-биологических проблем РАН (Москва) под руководством Линде Е.В. Определяли толщину межжелудочковой перегородки в диастолу (МЖП, см), толщину задней стенки левого желудочка (ЛЖ) в диастолу (ЗСЛЖ, см), конечно-диастолический размер ЛЖ (КДРЛЖ, см), конечно-систолический размер ЛЖ (КСРЛЖ, см), конечно-диастолический объем ЛЖ (КДОЛЖ, мл), конечно-систолический объем ЛЖ (КСОЛЖ, мл), массу миокарда ЛЖ (ММЛЖ, г), индекс ММЛЖ (ИММЛЖ), ударный объем в покое (УО, мл) и минутный объем кровообращения в покое (МОК, л).

Антропометрия. У всех спортсменов и школьников измеряли рост и вес тела, а также проводили расчет индекса массы тела (кг/м2). В группе бодибилдеров и женщин, занимающихся бодифитнесом и фитнесом кроме сбора анкетных данных по силовым параметрам (жим штанги от груди, приседание со штангой на плечах, становая тяга) под руководством Дондуковской Р.Р. (СПбНИИФК) проводили замеры различных антропометрических (масса тела, длина тела, окружность грудной клетки, талии, бедра, голени, плеча, предплечья) и композиционных показателей (толщина кожно-жировых складок; КЖС). Обхватные размеры тела измеряли сантиметровой лентой, толщину КЖС - калипером. Теоретический расчет компонентов состава массы тела (абсолютная и относительная жировая и мышечная массы) проводили по формулам J. Matiegka (1921).

Методы статистической обработки материала. Для хранения и обработки результатов исследования была создана матрица данных в виде электронных таблиц «Excel». Последующий статистической анализ проводился на персональной ЭВМ с применением пакета прикладных программ «Statistica 6.0» и «GraphPad InStat». Определяли: средние значения (M), стандартную ошибку (±SEM) и среднее квадратическое отклонение (SD). Значимость различий в частоте аллелей, генотипов и комбинаций генотипов между сравниваемыми выборками определяли с использованием критерия хи-квадрат или точного теста Фишера. Сравнение групп по количественному признаку проводили с помощью непарного t теста либо дисперсионного анализа (ANOVA). При проведении корреляционного анализа использовали критерий Спирмена. Для оценки вклада генетического компонента в фенотипическую дисперсию использовали регрессионный анализ. Различия считались значимыми при P<0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для исследования были отобраны функционально значимые полиморфизмы 12 генов, белковые продукты которых взаимодействуют друг с другом и регулируют множество процессов в организме (ангиогенез, митохондриальный биогенез, обмен инсулина, жиров, кальция и углеводов, гипертрофия скелетных мышц и миокарда, регуляция состава мышечных волокон, термогенезе и др.) (рис. 1).

1. Результаты генотипирования спортсменов и лиц контрольной группы В целом, показана значимо более высокая частота NFATC4 Gly160 (P = 2,5 x 10-7), PPARA rs4253778 G (P = 0.018), PPARD rs2016520 C (P =0.006), PPARGC1A Gly482 (P = 6 x 10-5), PPARGC1B 203Pro (P = 0.004), PPP3R1 5I (P = 0.009), TFAM 12Thr (P = 6,1 x 10-9), UCP2 55Val (P = 0.0025), UCP3 rs1800849 T (P = 3 x 10-6) и VEGFA rs2010963 C (P = 0.003) аллелей в группе стайеров, и более высокая частота HIF1A 582Ser (P = 0.0054), PPARA rs4253778 C (P = 0.048), PPARG 12Ala (P = 0.0017) и PPARGC1B 203Pro (P = 0.0017) аллелей в группе спортсменов, занимающихся скоростно-силовыми видами спорта, по сравнению с контрольной выборкой.

1.1. Распределение генотипов и аллелей по HIF1A

Частота 582Ser аллеля в группе спортсменов не отличалась от контрольной выборки (9,3% против 7,8%; P=0.136). При распределении спортсменов на 5 групп с учетом проявления необходимых физических качеств, частота HIF1A 582Ser аллеля в IV группе значимо превышала популяционные данные (11,5% против 7,8%; P = 0.027). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что во II-й группе спортсменов частота 582Ser аллеля значимо снижается с ростом квалификации (10,1% (разряд+КМС) < 6,9% (МС) < 4,1% (МСМК+ЗМС); P = 0.038), а в IV (10,1% (разряд+КМС) > 13,5% (МС) > 33,3% (МСМК+ЗМС); P = 0.007) и V (6,4% (разряд+КМС) > 9,3% (МС) > 11,3% (МСМК+ЗМС); P = 0.04) группах спортсменов частота 582Ser аллеля значимо повышается.

Размещено на http://www.allbest.ru//

Рис. 1. Схема влияния основных стрессорных факторов на экспрессию некоторых генов нервно-мышечного аппарата человека, ответственных за развитие различных фенотипов.

Таким образом, можно предположить, что 582Ser аллель благоприятен для развития и проявления скоростно-силовых качеств. Значимо более высокий процент носителей 582Ser аллеля среди спортсменов IV и V групп по сравнению с контрольной группой, а также повышение у них частоты 582Ser аллеля с ростом спортивной квалификации, возможно, связан с постепенным спортивным отбором, поскольку 582Ser аллель ассоциируется с высокими гликолитическими возможностями (Tanimoto К. et al., 2003).

1.2. Распределение генотипов и аллелей по NFATC4

Частота Gly160 аллеля в группе спортсменов значимо отличалась от контрольной выборки (47,6% против 43,9%; P=0.008). При распределении спортсменов на 5 групп частота NFATC4 Gly160 аллеля в I-III группах значимо превышала популяционные данные (53,0%, 49,5% и 51,3% против 43,9%, соответственно; P < 0.05).

При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в I-III группах спортсменов частота Gly160 аллеля значимо повышается с ростом квалификации (I группа: 48,3% (разряд+КМС) > 59,2% (МС) > 60,9% (МСМК+ЗМС); P = 0.008; II группа: 43,6% (разряд+КМС) > 53% (МС) > 55,1% (МСМК+ЗМС); P = 0.027; III группа: 41% (разряд+КМС) > 55,8% (МС) > 58,8% (МСМК+ЗМС); P = 0.037).

Обнаруженная более высокая частота NFATC4 Gly160 аллеля у спортсменов, занимающихся видами спорта с преимущественным проявлением выносливости, по сравнению с контрольной группой и ее повышение с ростом спортивной квалификации может свидетельствовать о том, что носительство NFATC4 Gly160 аллеля благоприятствует развитию аэробных механизмов энергообеспечения.

1.3. Распределение генотипов и аллелей по PPARA

Частота PPARA C аллеля в группе спортсменов (n=1423) не отличалась от контрольной выборки (17,3% против 16,4%; P=0.434). Распределение спортсменов на 5 групп показало, что частота PPARA C аллеля во II группе значимо ниже, чем в контрольной группе (11,9% против 16,4%; P = 0.0085), и значимо выше в группах IV и V (21,9% и 19,3% против 16,4%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в I и II группах спортсменов частота PPARA C аллеля имеет тенденцию к снижению с ростом квалификации, при этом частота PPARA C аллеля среди высококвалифицированных стайеров (I и II группы) встречается значимо реже по сравнению с контрольной группой (9,0% против 16,4%, P = 0.01).

На основании выявленных различий в частоте аллелей PPARA между выборками спортсменов и контрольной группой, можно предположить, что G аллель дает преимущество в развитии и проявлении выносливости, в то время как C аллель благоприятен для развития и проявления скоростно-силовых качеств. Эти предположения подтверждаются предыдущими исследованиями, в которых была показана связь PPARA C аллеля с риском развития ГМЛЖ (Jamshidi Y. et al., 2002), а также обнаружена более высокая частота генотипов PPARA GC и CC среди израильских спринтеров по сравнению со стайерами (Eynon N. et al., 2009).

1.4. Распределение генотипов и аллелей по PPARD

Частота C аллеля в группе спортсменов не отличалась от контрольной выборки (16,4% против 14,3%; P=0.052). При распределении спортсменов на 5 групп, частота PPARD C аллеля в I-III группах значимо превышала популяционные данные (18,6%, 17,9% и 20,7% против 16,4%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в I группе спортсменов частота PPARD C аллеля достигает максимальных значений (23,6%; P=0.01) у высококвалифицированных спортсменов.

Таким образом, полученные результаты позволяют сделать предположение, что носительство PPARD C аллеля, ассоциирующееся с повышенной экспрессией самого транскрипционного фактора, а значит, и с увеличением окисления жирных кислот, благоприятствует развитию и проявлению качества выносливости. В пользу данной гипотезы свидетельствует высокая частота PPARD C аллеля у стайеров и ее повышение с ростом спортивной квалификации.

1.5. Распределение генотипов и аллелей по PPARG

Частота PPARG 12Ala аллеля в группе спортсменов не отличалась от контрольной выборки (17,1% против 15,3%; P=0.085). При распределении спортсменов на 5 групп, частота PPARG 12Ala аллеля в V группе (занимающиеся видами спорта с преимущественным развитием скоростно-силовых качеств) значимо превышала популяционные данные (19,9% против 15,3%; P = 0.0017). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в V группе спортсменов частота 12Ala аллеля значимо (P < 0.0001) повышается с ростом квалификации: у квалифицированных (26,3%) и высококвалифицированных спортсменов частота PPARG 12Ala аллеля достигла максимальных значений (26%).

Полученные результаты позволяют сделать предположение, что носительство PPARG 12Ala аллеля, повышающее чувствительность мышечной ткани к инсулину, а значит, усиливающее его анаболическое действие на скелетные мышцы, предрасполагает к развитию и проявлению скоростно-силовых качеств.

1.6. Распределение генотипов и аллелей по PPARGC1A

Частота PPARGC1A 482Ser аллеля в группе спортсменов значимо отличалась от контрольной выборки (30,6% против 34,5%; P=0.0038). При распределении спортсменов на 5 групп частота PPARGC1A 482Ser аллеля в I и II группах была значимо ниже по сравнению с популяционными данными (29,7% и 26,1% против 34,5%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что во II группе спортсменов частота 482Ser аллеля значимо понижается с ростом квалификации (МС: 24,6%; P = 0.0015; МСМК+ЗМС: 20,5%; P = 0.014). Отдельный анализ также выявил значимо более низкую частоту 482Ser аллеля среди МСМК III группы (15,4%; P = 0.041).

Полученные результаты подтвердили данные Lucia A. et al. (2005) о том, что частота PPARGC1A 482Ser аллеля значимо ниже в группе элитных стайеров по сравнению с контрольной группой, а Gly482 аллель ассоциируется с повышенными показателями максимального потребления кислорода. В нашем исследовании, как у стайеров, так и спортсменов, занимающихся видами спорта с преимущественным проявлением смешанных качеств переменной мощности, частота 482Ser аллеля была значимо ниже по сравнению с контрольной группой. Поскольку Ser аллель ассоциируется со снижением экспрессии гена PPARGC1A (Ling C. et al., 2004), то это также влияет на окислительные процессы и митохондриальный биогенез в клетках, а значит, снижает аэробный потенциал организма.

1.7. Распределение генотипов и аллелей по PPARGC1B

Частота 203Pro аллеля в группе спортсменов значимо отличалась от контрольной выборки (7,2% против 4,9%; P=0.0009). Распределение спортсменов на 5 групп показало, что в I, II, IV и V группах, в которые входят виды спорта, развивающие как выносливость, так и скоростно-силовые качества, частота PPARGC1B 203Pro аллеля значимо выше, чем в контрольной группе (7,1%, 7,2%, 7,9% и 7,1%, соответственно, против 4,9%; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что во всех группах спортсменов частота 203Pro аллеля значимо повышается с ростом квалификации. Особенно наглядно это представлено в III (0% (разряд+КМС) > 8,3% (МС) > 14,7% (МСМК+ЗМС); P = 0.0017) и объединенной (I-V: 6,5% (разряд+КМС) > 6,8% (МС) > 10,2% (МСМК+ЗМС); P < 0.0001) группах.

Таким образом, носительство PPARGC1B 203Pro аллеля может благоприятствовать занятиям видами спорта, направленными на развитие, как выносливости, так и скоростно-силовых качеств.

1.8. Распределение генотипов и аллелей по PPP3R1

Частота PPP3R1 5D аллеля в группе спортсменов значимо отличалась от контрольной выборки (6,5% против 8,7%; P=0.004). Распределение спортсменов на 5 групп показало, что в I (4,7%; P = 0.0019) и III (3,0%; P = 0.0039) группах частота PPP3R1 5D аллеля значимо ниже, чем в контрольной группе. При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в I-III группах спортсменов частота 5D аллеля понижается с ростом квалификации. В объединенной группе стайеров и средневиков (I-III группы) это наглядно представлено (6,1% (P = 0.035) > 5,3% (P = 0.015) > 3,2% (P = 0.006)). Стоит отметить, что среди наиболее высококвалифицированных спортсменов (ЗМС) I-III групп отсутствовали носители PPP3R1 5D аллеля.

Полученные результаты свидетельствуют о том, что носительство PPP3R1 5D аллеля может оказывать неблагоприятный эффект на развитие и проявление качества выносливости. Это предположение согласуется с данными о том, что наличие PPP3R1 5D аллеля ассоциировано с предрасположенностью к развитию ГМЛЖ у больных гипертензией (фактор, лимитирующий физическую работоспособность) (Tang W. et al., 2005).

1.9. Распределение генотипов и аллелей по TFAM

Частота TFAM 12Thr аллеля в группе спортсменов значимо отличалась от контрольной выборки (12,3% против 9,1%; P=0.0004). При распределении спортсменов на 5 групп, частота TFAM 12Thr аллеля в I, II и IV группах значимо превышала популяционные данные (15,6%, 13,6% и 12,6% против 9,1%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в I, II и IV группах спортсменов частота 12Thr аллеля значимо повышается с ростом квалификации (I группа: 14,5% (разряд+КМС) > 16,7% (МС) > 18,2% (МСМК+ЗМС); II группа: 7,2% (разряд+КМС) > 17,5% (МС) > 19,2% (МСМК+ЗМС); P = 0.0006; IV группа: 11,1% (разряд+КМС) > 13,2% (МС) > 25% (МСМК+ЗМС); P = 0.02).

Таким образом, носительство TFAM 12Thr аллеля благоприятствует развитию и проявлению выносливости. Данное предположение согласуются с ранее опубликованными данными, где была показана ассоциация TFAM 12Thr аллеля с низким риском развития ГМЛЖ у спортсменов (Goriyeva S.B. et al., 2009) и высокой физической работоспособностью дайверов (Linde E.V. et al., 2009).

1.10. Распределение генотипов и аллелей по UCP2

Частота UCP2 55Val аллеля в группе спортсменов значимо отличалась от контрольной выборки (41,5% против 36,7%; P=0.0006). При распределении спортсменов на 5 групп, частота UCP2 55Val аллеля в I, III и IV группах значимо превышала популяционные данные (44,4%, 45,3% и 44,9% против 36,7%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в совокупной выборке, состоящей из спортсменов I-III групп, частота UCP2 55Val аллеля повышается с ростом квалификации и значимо отличается от данных контрольной группы (разряд+КМС: 41,8%, P=0.019; МС: 43,3%, P=0.0065; МСМК+ЗМС: 43,7%, P = 0.047).

Предположение, что носительство UCP2 55Val аллеля благоприятствует развитию и проявлению выносливости, согласуется с данными об ассоциации UCP2 55Val аллеля с высокой метаболической эффективностью мышечной деятельности и физической активностью, а также с пониженным расходом энергии в покое (Astrup A. et al., 1999; Buemann B. et al., 2001).

1.11. Распределение генотипов и аллелей по UCP3

Частота UCP3 rs1800849 T аллеля в группе спортсменов значимо отличалась от контрольной выборки (28,5% против 24,2%; P=0.0007). При распределении спортсменов на 5 групп, частота UCP3 rs1800849 T аллеля в I-III группах значимо превышала популяционные данные (33,0%, 29,7% и 35,3% против 24,2%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в совокупной выборке, состоящей из спортсменов I-III групп, частота UCP3 rs1800849 T аллеля значимо повышается с ростом квалификации (28,9% (разряд+КМС) > 33,7% (МС) > 37,4% (МСМК+ЗМС; P = 0.011).

Таким образом, носительство UCP3 rs1800849 T аллеля благоприятствует развитию аэробных механизмов энергообеспечения. Это предположение согласуется с данными о том, что наличие UCP3 rs1800849 T аллеля ассоциировано с высокой активностью гена (Schrauwen P. et al., 1999), пониженным индексом массы тела, сниженным уровнем жироотложения и минимальным приростом толщины межжелудочковой перегородки в течение года тренировок у гребцов (Halsall D.J. et al., 2001; Liu Y.J. et al., 2005; Goriyeva S.B. et al., 2008).

1.12. Распределение генотипов и аллелей по VEGFA

Частота rs2010963 C аллеля в группе спортсменов значимо отличалась от контрольной выборки (29,5% против 24,5%; P<0.0001). При распределении спортсменов на 5 групп частота VEGFA rs2010963 C аллеля в I, III, IV и V группах значимо превышала популяционные данные (31,1%, 32,8%, 29,8% и 28,5% против 24,5%, соответственно; P < 0.05). При оценке распределения частот аллелей в зависимости от спортивной квалификации было обнаружено, что в совокупной выборке спортсменов (I-V группы) частота VEGFA rs2010963 C аллеля повышается с ростом квалификации (разряд+КМС: 28,1%, P=0.015; МС: 31,2%, P=0.0003; МСМК+ЗМС: 31,3%, P = 0.0027).

Полученные результаты свидетельствуют о том, что носительство VEGFA rs2010963 C аллеля благоприятствует развитию и проявлению аэробных механизмов энергообеспечения. Данное предположение согласуются с ранее опубликованными данными на примере 148 добровольцев, ведущих малоподвижный образ жизни в возрасте 50-75 лет (Prior S.J. et al., 2006). Прирост МПК в результате 24 недель аэробных тренировок был значимо большим у носителей VEGFA гаплотипов, содержащих -634C (rs2010963 C) аллель. В той же работе обнаружено, что в культуре миобластов человека VEGFA rs2010963 C аллель экспрессируется в большей степени, чем rs2010963 G аллель. Высокая экспрессия VEGFA rs2010963 C аллеля предполагает более выраженный адаптационный рост капилляров в ответ на физические нагрузки аэробного характера.

1.13. Комплексный анализ по результатам генотипирования

В таблицах 1-2 представлены наиболее значимые генетические маркеры выносливости и быстроты/силы в отдельных видах спорта. При проведении комплексного анализа для каждой группы и видов спорта определялись суммарные частоты аллелей, а также процент носителей высокого числа аллелей выносливости либо быстроты/силы.

Суммарная частота аллелей выносливости и быстроты/силы

Один из подходов комплексного анализа предполагает определение суммарной частоты аллелей выносливости или быстроты/силы среди спортсменов и лиц контрольной группы. Для этого общее число аллелей разных генов со сходным эффектом суммируется и определяется их процент от общего числа всех аллелей. В таблице 3 представлено распределение аллелей выносливости и быстроты/силы у спортсменов различной специализации (при анализе не учитывались данные по разрядникам). В целом, в совокупной выборке спортсменов частота аллелей, как выносливости (43,6% против 39,8%; P<0.0001), так и быстроты/силы (12,8% против 11,4%; P=0.014), была статистически значимо выше, чем в контрольной группе.

Еще один «аллельный» подход предполагает сравнение процентного соотношения индивидов с высоким и низким числом аллелей, благоприятствующих развитию и проявлению какого-либо физического качества между спортсменами и контрольной группой. Каждому индивиду присваивается свой балл (число аллелей выносливости) и устанавливается соотношение носителей высокого (например, от 9 до 14) и низкого (например, от 3 до 8) числа аллелей выносливости (табл. 4). Можно видеть, что в I (64,3%), II (56,2%), III (56,9%) и IV (49,2) группах индивидов с высоким числом аллелей выносливости значимо больше по сравнению с контролем (37,8%). Эти различия становятся еще более выраженными при стратификации спортсменов на подгруппы с учетом спортивной квалификации (рис. 2). В этом случае в I-IV группах спортсменов процент носителей высокого числа аллелей выносливости повышается с ростом спортивной квалификации.

Таблица 1

Значимые генетические маркеры выносливости в отдельных видах спорта

Группа

Вид спорта

Аллели выносливости

NFATC4 Gly160

PPARA rs4253778 G

PPARD rs2016520 C

PPARGC1A Gly482

PPARGC1B 203Pro

PPP3R1 5I

TFAM 12Thr

UCP2 55Val

UCP3 rs1800849 T

VEGFA rs2010963 C

I

Биатлон

+

+

+

+

Велошоссе

+

+

+

+

Лыжные гонки 15-50 км

+

+

+

+

+

+

+

+

+

Плавание 5-25 км

+

+

+

Спортивная ходьба

+

+

+

+

Триатлон

+

+

+

+

+

+

Все

+

+

+

+

+

+

+

+

+

+

II

Академическая гребля

+

+

+

+

+

+

+

Бег 3-10 км

+

Коньки 5-10 км

+

Лыжные гонки 5-10 км

+

+

+

Плавание 800-1500 м

+

+

+

+

+

+

Все

+

+

+

+

+

+

+

+

+

III

Бег 800-1500 м

Гребля на байдарках

+

Коньки 1,5-3 км

+

+

+

+

+

+

Плавание 200-400 м

+

Все

+

+

+

+

+

+

+

+

IV

Баскетбол

+

+

Бокс

+

+

Борьба

+

+

+

+

Теннис

+

+

+

Футбол

+

Хоккей с шайбой

+

+

Все

+

+

+

+

+

Аналогичным образом проведен комплексный анализ по определению соотношения спортсменов различных групп с высоким числом аллелей быстроты и силы (от 3 до 5 аллелей) и низким (от 0 до 2 аллелей) (табл. 5). Как видно, в I (7,4%), IV (8,3%) и V (7,9%) группах индивидов с 3-5 аллелями быстроты/силы значимо больше по сравнению с контролем (3,4%). При стратификации спортсменов на подгруппы с учетом спортивной квалификации соотношение носителей с высоким числом аллелей быстроты/силы (3-5) возрастает с ростом спортивной квалификации в III-V группах (рис. 3). Эти данные также свидетельствуют о том, что вероятность достижения высоких результатов в видах спорта, в различной степени направленных на развитие быстроты и силы, повышается с увеличением носительства числа аллелей, ассоциированных с этими качествами.

Таблица 2

Значимые генетические маркеры быстроты/силы

Вид спорта

Аллели быстроты/силы

HIF1A 582Ser

PPARA s4253778 С

PPARG 12Ala

PPARGC1B 203Pro

Бег 60-400 м

+

+

+

Бодибилдинг

+

Горнолыжный спорт

+

Коньки 500-1000 м

+

+

Метания

+

+

+

Пауэрлифтинг

+

Плавание 50-100 м

+

Прыжки в длину

+

Прыжки с шестом

+

Прыжки с трамплина

Спортивная гимнастика

+

Тяжелая атлетика

+

+

+

+

Все

+

+

+

+

Таблица 3

Распределение аллелей выносливости и быстроты/силы у спортсменов различной специализации

Группа

Вид спорта

Аллели

выносливости

быстроты/силы

%

P

%

P

I

Биатлон

47,4

<0.0001*

13,0

0.549

Велошоссе

46,9

0.024*

18,8

0.009*

Лыжные гонки 15-50 км

47,3

<0.0001*

10,6

0.628

Плавание 5-25 км

42,9

0.225

7,8

0.262

Спортивная ходьба

49,1

<0.0001*

12,5

0.736

Триатлон

47,3

0.0004*

10,3

0.682

Все

47,0

<0.0001*

11,7

0.766

II

Академическая гребля

44,3

<0.0001*

11,7

0.777

Бег 3-10 км

47,0

0.173

18,8

0.595

Коньки 5-10 км

49,0

0.077

9,4

0.938

Лыжные гонки 5-10 км

48,8

0.0015*

6,7

0.141

Плавание 800-1500 м

46,6

0.0025*

9,9

0.599

Все

45,0

<0.0001*

11,2

0.827

III

Бег 800-1500 м

48,6

0.043*

5,0

0.308

Гребля на байдарках

44,1

0.029*

13,7

0.307

Коньки 1,5-3 км

44,8

0.0015*

14,4

0.096

Плавание 200-400 м

43,1

0.156

13,0

0.564

Все

44,5

<0.0001*

13,4

0.093

IV

Баскетбол

40,8

0.736

15,6

0.178

Бокс

47,0

0.0025*

7,2

0.143

Борьба

42,1

0.061

12,0

0.669

Теннис

45,4

0.089

12,5

0.875

Футбол

46,3

0.289

18,8

0.304

Хоккей с шайбой

46,7

0.151

8,3

0.663

Все

43,3

0.0003*

11,9

0.689

V

Бег 60-400 м

40,5

0.575

14,3

0.048*

Бодибилдинг

41,5

0.407

10,6

0.771

Горнолыжный спорт

44,6

0.151

12,5

0.858

Коньки 500-1000 м

38,8

0.554

13,3

0.297

Метания

45,0

0.059

21,1

0.001*

Пауэрлифтинг

42,2

0.561

13,9

0.633

Плавание 50-100 м

42,2

0.302

10,9

0.921

Прыжки (легк. атлетика)

41,7

0.605

15,3

0.398

Прыжки с трамплина

40,4

0.902

12,5

0.893

Спортивная гимнастика

39,4

0.851

10,7

0.883

Тяжелая атлетика

41,1

0.409

19,0

<0.0001*

Все

40,9

0.115

14,3

0.0003*

Все спортсмены

43,6

<0.0001*

12,8

0.014*

Контрольная группа

39,8

1.000

11,4

1.000

*P<0.05, статистически значимые различия между группами спортсменов и контрольной выборкой.

Таблица 4

Соотношение индивидов (%) с различным числом аллелей выносливости в 5 группах спортсменов и в контрольной группе

Число аллелей выносливости

Контроль

Группы

V

IV

III

II

I

14

0

0,2

0

0

1,4

0

13

0,8

0,2

1,2

0

1,0

2,1

12

1,9

2,7

2,8

4,3

4,8

8,7

11

6,2

5,4

7,7

9,5

11,4

9,4

10

11,9

14,1

13,3

19,8

14,8

17,7

9

17,0

18,1

24,2

23,3

22,8

26,4

8

21,7

23,5

20,2

28,5

19,3

16,3

7

18,8

18,1

16,1

10,3

13,5

12,8

6

12,9

10,4

9,7

4,3

7,9

5,6

5

5,6

6,0

3,2

0

3,1

1,0

4

3,0

1,1

1,6

0

0

0

3

0,2

0,2

0

0

0

0

9-14

37,8

40,7

49,2

56,9

56,2

64,3

3-8

62,2

59,3

50,8

43,1

43,8

35,7

P*

-

0.253

8,2 x 10-4

5,7 x 10-5

1,2 x 10-8

4,9 x 10-16

*P значения, полученные при сравнении соотношения носителей высокого числа аллелей выносливости (9-14) и низкого числа (3-8) между спортсменами I-V групп и контрольной группой.

Рис. 2. Соотношение индивидов (%) с различным числом аллелей выносливости в 5 группах спортсменов разной квалификации и в контрольной группе (37,8%). I группа: разряд, КМС - 56,6%, P = 2,3 x 10-6; МС - 75,0%, P = 8,7 x 10-9; МСМК+ЗМС - 76,4%, P = 1,0 x 10-8. II группа: разряд, КМС - 44,1%, P = 0,18; МС - 62,4%, P = 4,0 x 10-8; МСМК+ЗМС - 71,7%, P = 1,8 x 10-5. III группа: разряд, КМС - 46,2%, P = 0,28; МС - 60,0%, P = 5,6 x 10-4; МСМК+ЗМС - 70,5%, P = 6,0 x 10-3. IV группа: разряд, КМС - 45,6%, P = 3,8 x 10-2; МС - 62,9%, P = 2,6 x 10-3; МСМК+ЗМС - 60,0%, P = 4,2 x 10-2. V группа: разряд, КМС - 40,6%; МС - 41,4%; МСМК+ЗМС - 40,4%.

Таблица 5

Соотношение индивидов (%) с различным числом аллелей быстроты/силы в 5 группах спортсменов и в контрольной группе

Число аллелей быстроты/силы

Контроль

Группы

V

IV

III

II

I

5

0,2

0,9

4

0,4

1,2

1,5

1,8

0,7

0,8

3

3,0

6,5

6,9

3,7

3,5

6,7

2

21,6

20,2

26,0

21,1

15,9

17,8

1

37,2

43,3

28,9

38,5

42,1

37,5

0

37,8

28,6

36,7

34,0

37,8

37,2

3-5

3,4

7,9

8,3

6,4

4,2

7,4

0-2

96,6

92,1

91,7

93,6

95,8

92,6

P*

-

0.0017

0.0064

0.173

0.575

0.015

*P значения, полученные при сравнении соотношения носителей высокого числа аллелей быстроты/силы (3-5) и низкого числа (0-2) между спортсменами I-V групп и контрольной группой.

Рис. 3. Соотношение индивидов (%) с высоким (3-5) числом аллелей быстроты/силы в 5 группах спортсменов разной квалификации и в контрольной группе (3,4%).

I группа: разряд, КМС - 7,6%, P = 0.02; МС - 4,3%, P = 0.677; МСМК+ЗМС - 9,6%, P = 0.044. II группа: разряд, КМС - 4,3%, P = 0.592; МС - 5,4%, P = 0.311; МСМК+ЗМС - 0%, P = 0.627. III группа: разряд, КМС - 2,8%, P = 1.00; МС - 5,2%, P = 0.455; МСМК+ЗМС - 20%, P = 0.016. IV группа: разряд, КМС - 8,3%, P = 0.01; МС - 0%, P = 1.00; МСМК+ЗМС - 33,3%, P = 0.0036. V группа: разряд, КМС - 5,6%, P = 0.174; МС - 8,3%, P = 0.032; МСМК+ЗМС - 14,7%, P = 0.0002.

В целом, было показано, что индивиды с наличием 9 и более аллелей выносливости (какие-либо из NFATC4 Gly160, PPARA rs4253778 G, PPARD rs2016520 C, PPARGC1A Gly482, PPARGC1B 203Pro, PPP3R1 5I, TFAM 12Thr, UCP2 55Val, UCP3 rs1800849 T и VEGFA rs2010963 C аллелей) имеют шансы стать выдающимися стайерами в 3 раза больше, чем носители меньшего числа аллелей выносливости. Индивиды с наличием 3 и более аллелей быстроты/силы (какие-либо из HIF1A 582Ser, PPARA rs4253778 С, PPARG 12Ala, PPARGC1B 203Pro аллелей) имеют шансы стать выдающимися спортсменами в видах спорта, направленных на развитие быстроты и силы в 2,4 раза больше, чем носители меньшего числа аллелей быстроты/силы.

Таким образом, показана возможность использования комбинационного подхода (учет генотипов и групп аллелей) при анализе генотипических данных у спортсменов различных специализаций и квалификаций. На основании сочетаний генотипов разных генов существует возможность определения генетических маркеров (самые частые либо уникальные комбинации генотипов), ассоциированных с двигательной деятельностью. С другой стороны, формирование групп аллелей выносливости либо быстроты/силы позволяет выявлять суммарный вклад (аддитивный эффект) отдельных полиморфизмов генов в развитие и проявление физических качеств человека.


Подобные документы

  • Пирамидная система как регулирующая система целенаправленных движений человека. Экстрапирамидная система как система "тонкой" регуляции двигательной активности человека. Методы исследования движений человека. Аномалии двигательной координации человека.

    реферат [43,1 K], добавлен 10.03.2012

  • Понятие двигательной активности и ее роль для здоровья человека. Влияние на организм недостаточной двигательной активности. Значение физической культуры для профилактики гиподинамии.

    курсовая работа [38,3 K], добавлен 21.10.2005

  • Роль наследственных факторов в возникновении и развитии туберкулеза. Молекулярные механизмы патогенеза туберкулеза у человека. Физиологические функции белковых продуктов генов-кандидатов. Молекулярно–генетические методы анализа полиморфизма генов.

    дипломная работа [851,1 K], добавлен 11.08.2010

  • Гиподинамия как причина возникновения проблем со здоровьем у современного человека. Эффективность двигательной активности и закаливания для укрепления здоровья. Психологическая польза закаливания. Характеристика мягких и жестких методов закаливания.

    презентация [1,9 M], добавлен 08.05.2016

  • Сущность, значение и области применения молекулярно-генетических методов исследования. Специфика метода полимеразной цепной реакции. Блот-гибридизация по Саузерну. Картирование генов и идентификация хромосомных аберраций с помощью "FISH"-метода.

    презентация [971,4 K], добавлен 07.12.2014

  • Наследственные болезни и их виды. Моногенные и полигенные заболевания. Синдромы: Марфана, фенилкетонурия, Дауна, Патау, Клайнфельтера, Шерешевского-Тернера, кошачьего крика. Принципы лечения и профилактики заболеваний, наследственной предрасположенности.

    реферат [57,8 K], добавлен 19.09.2010

  • Ферментативная система биотрансформации ксенобиотиков. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология. Анализ роли полиморфных вариантов генов ферментов метаболизма ксенобиотиков в детерминации бронхиальной астмы и туберкулеза.

    диссертация [245,8 K], добавлен 15.01.2009

  • Рассмотрение понятия терапии как облегчения, снятия или устранения симптомов заболевания. Методы воздействия на организм и развитие альтернативной медицины. Характеристика двигательной активности человека. Лечебное питание, массаж и физиотерапия.

    контрольная работа [29,8 K], добавлен 25.01.2015

  • Изучение действия пива на органах человека. Особенность возникновения цирроза печени. Потеря работоспособности почек при повышенной их активности. Появление болей в области сердца у выпивающего человека. Вред нефильтрованного и безалкогольного пива.

    реферат [20,5 K], добавлен 21.03.2019

  • Возбудители паразитарных болезней, их действие на организм человека. Пути заражения паразитами. Органы человека, которые наиболее подвержены заражению. Паразитарные заболевания у детей, клинические проявления, диагностика и профилактические меры.

    презентация [437,6 K], добавлен 14.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.