Миндалевидный комплекс мозга в системе регуляции репродуктивных функций организма

Изучение структурно-функциональной организации репродуктивных центров переднего отдела миндалевидного комплекса мозга. Их роль в механизмах регуляции эстрального цикла, а также интеграции модулирующего влияния половых стероидов на стволовые центры мозга.

Рубрика Медицина
Вид автореферат
Язык русский
Дата добавления 24.12.2017
Размер файла 110,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

16.00.02 - патология, онкология и морфология животных

Автореферат

диссертации на соискание ученой степени

доктора биологических наук

Миндалевидный комплекс мозга в системе регуляции репродуктивных функций организма

Хисматуллина Зухра Рашидовна

Уфа 2009

Работа выполнена в ГОУ ВПО «Башкирский государственный университет»

Научный консультант - Заслуженный деятель науки РБ, доктор биологических наук, профессор Калимуллина Лилия Барыевна

Официальные оппоненты: - доктор ветеринарных наук, профессор Селезнев Сергей Борисович

доктор биологических наук, профессор Волкова Екатерина Станиславовна

доктор биологических наук, Мусина Ляля Ахияровна

Ведущая организация - Московская Государственная Академия ветеринарной медицины и биотехнологии имени К.И.Скрябина

Защита состоится на заседании диссертационного совета Д 220. 003. 02 при ФГОУ ВПО «Башкирский государственный аграрный университет» 450001, г.Уфа, ул. 50 лет Октября, 34, корпус 4.

С диссертацией можно ознакомиться в библиотеке ФГОУ ВПО «Башкирский государственный аграрный университет»

Ученый секретарь диссертационного совета, доктор ветеринарных наук, профессор Каримов Ф.А.

1. Общая характеристика работы

миндалевидный комплекс мозг репродуктивный

Актуальность темы. Эффективность животноводства напрямую зависит от продуктивности сельскохозяйственных животных и предопределяется возможностями репродуктивной системы поголовья. Основу работы репродуктивной системы составляют сложные нейроэндокринные механизмы, в осуществлении которых принимают участие различные структуры лимбической системы мозга.

В многочисленных работах расшифрованы механизмы взаимосвязей гипоталамических центров регуляции секреции гонадотропинов и гонад (Данилова, 1971, Эскин, 1975, Вундер, 1980, Розен, 1981, 1986, Бабичев, 1981, 1984, 1986, Резников и соавт., 2004 и др.) и на основе этих знаний разработаны лечебные мероприятия по коррекции нарушений деятельности репродуктивной системы (Прокофьев, 1999, Бабичев, 2005, Шириев, 2006). Однако, о роли экстрагипоталамических образований, включающихся в модуляцию деятельности гипоталамических центров, известно крайне недостаточно.

В многочисленных экспериментальных исследованиях установлена вовлеченность миндалевидного комплекса (МК) мозга в регуляцию секреции гонадотропинов (Катеренчук, 1979, Kawakami, Terasawa, 1972, Kawakami et al., 1974, Docke, 1976, Docke et al., 1983, Резников и соавт., 2004, Бабичев, 2005), при этом большую роль играют обонятельные стимулы, анализ которых осуществляется в МК (Шрейбер, 1987, Gustavson, 1987, Dominguez, Hull, 2001, Калуев, 2000, 2004).

Формирование миндалевидного комплекса как нейроэндокринного центра мозга происходит в периоде половой дифференциации мозга, что доказано выявлением на его территории активности маркерных ферментных систем метаболизма половых стероидов (ферменты ароматазного и 5-б-редуктазного пути, Резников и др., 1990, Акмаев, Калимуллина, 1993). Показано, что активность и метаболические перестройки, предопределяемые этими ферментными комплексами, различны в ростральных и каудальных частях МК, что предопределяет формирование зон полового диморфизма в переднем (передняя амигдалярная область, переднее кортикальное ядро) и заднем (дорсомедиальное ядро) отделе МК (Акмаев, Калимуллина, 1993). Локализация репродуктивных центров на полюсах МК лежит в основе существования в нем ростро-каудального градиента (Калимуллина, 2004).

Несмотря на наличие большого количества экспериментальных работ, посвященных вопросу участия МК в обеспечении нейроэндокринных взаимодействий, роль выявленных на его территории зон полового диморфизма в регуляции репродуктивных процессов, остается не выясненной. В первую очередь, это касается переднего кортикального ядра и передней амигдалярной области, в отношении которых в литературе полностью отсутствуют сведения, характеризующие ультраструктурную организацию составляющих их нейронов и особенности их синапсоархитектоники. Не исследован вопрос об ультраструктурных и функциональных перестройках, происходящих в переднем кортикальном ядре и передней амигдалярной области под влиянием половых стероидов. Ранее не изучался вопрос о взаимодействии репродуктивных центров переднего и заднего отдела МК в процессе реализации эстрального цикла. Между тем, новые знания, которые можно получить при изучении всех поставленных выше вопросов, способны приблизить нас к пониманию фундаментальных закономерностей взаимодействия гипоталамических и амигдалярных центров регуляции в модуляции секреции гонадотропинов и дать ключ к пониманию механизмов синхронизации их деятельности. Понимание структурных основ и механизмов функционирования репродуктивных центров МК способно сформировать теоретический базис для разработки научно-обоснованных профилактических и лечебных мероприятий в ветеринарии. При этом немаловажно отметить, что такие мероприятия могут быть разработаны на основе интраназального введения медикаментозных средств, т.к. известно, что репродуктивные центры МК имеют прямые связи с основной и добавочной обонятельными луковицами (Scalia, Winans, 1975, de Olmos et al., 1978, Калуев, 2000, 2002).

Известно, что половые стероиды являются универсальными регуляторами деятельности различных систем и тканей организма, обладая способностью влиять на экспрессию генов. Активизирующий эффект половых стероидов реализуется как гуморальным, так и нервно-проводниковым путем, поэтому проводя исследование его репродуктивных центров представлялось важным также выяснить вопрос о том, как отражается влияние половых стероидов на деятельности его интегративного центра - центрального ядра. Сведения, полученные о локализации нейроэндокринных нейронов в субъядрах этого ядра и выявление показателей модулирующего влияния на них половых стероидов, позволили определить канал реализации выходящей и входящей в МК информации, которая испытывает модулирующее влияние половых стероидов.

Цель и задачи исследования. Целью настоящей работы являлось изучение структурно-функциональной организации репродуктивных центров переднего отдела миндалевидного комплекса мозга и выяснение их роли в механизмах регуляции эстрального цикла, а также интеграции модулирующего влияния половых стероидов на стволовые центры мозга.

Поставленная в работе цель была достигнута путем решения следующих задач:

1. исследования цитоархитектоники и нейронной организации структур переднего отдела миндалевидного комплекса, проведения их классификации и выяснения принципа организации серого вещества нервной системы в репродуктивных центрах - передней амигдалярной области и переднем кортикальном ядре;

2. изучения синапсоархитектоники и ультраструктурной организации нейроэндокринных нейронов переднего кортикального ядра и передней амигдалярной области и их перестроек, определяемых колебаниями половых стероидов в динамике эстрального цикла;

3. уточнения и обобщения результатов цитоархитектонического анализа и исследования нейронной организации центрального ядра с помощью математического аппарата многофакторного анализа и создания целостной схемы ее субъядерной организации, позволяющей выявить каналы взаимодействия МК и стволовых структур мозга;

4. выяснения в модельном эксперименте электрофизиологических коррелятов взаимодействия репродуктивных центров переднего и заднего отдела миндалевидного комплекса в динамике эстрального цикла;

Научная новизна. Впервые выполнен детальный анализ цитоархитектоники и нейронной организации переднего отдела миндалевидного комплекса мозга крысы, позволивший разработать классификацию его структур на основе учета представительства двух основных принципов организации серого вещества нервной системы - ядерного и экранного. Впервые установлено, что зоны полового диморфизма переднего отдела миндалевидного комплекса мозга - переднее кортикальное ядро и передняя амигдалярная область - являются межуточными формациями и входят в состав редковетвистой нейронной системы. Впервые разработана цитологическая классификация нейроэндокринных нейронов изученных репродуктивных центров на светооптическом (кариохромные, светлые и цитохромные нейроны) и электронно-микроскопическом (темные и светлые) уровнях. Впервые дана характеристика ультраструктурных перестроек нейроэндокринных нейронов в переднем кортикальном ядре и передней амигдалярной области и их синапсоархитектоники в динамике эстрального цикла. Впервые в изученных репродуктивных центрах и субъядрах центрального ядра выявлен CART-пептид и установлено модулирующее влияние половых стероидов на уровни его экспрессии. Впервые создана целостная схема субъядерной организации центрального ядра миндалевидного комплекса, разработанная на базе уточнения и обобщения результатов цитоархитектонического анализа и исследования нейронной организации и выявлены субъядра центрального ядра, нейроны которых испытывают модулирующее влияние половых стероидов, что важно для понимания механизмов интегративной деятельности мозга. Впервые в электрофизиологическом эксперименте с моделированием эстрального цикла выявлен механизм активации и взаимодействия двух основных репродуктивных центров, расположенных в переднем и заднем отделах МК - переднего кортикального ядра и дорсомедиального ядра. Впервые показано, что введение прогестерона на фоне предшествующих инъекций 17в эстрадиола вызывает одновременную десинхронизацию ритмической активности указанных двух центров в в2 - диапазоне.

Практическая значимость. Полученные в работе результаты, раскрывающие фундаментальные закономерности структурно-функциональной организации репродуктивных центров МК, формируют теоретический базис для разработки научно-обоснованных рекомендаций по коррекции нарушений деятельности гипоталамических центров регуляции секреции гонадотропинов, проявляющихся нарушением регулярности эстрального цикла, с использованием интраназального введения медикаментозных препаратов.

Результаты научных исследований внедрены и используются в учебном процессе ряда высших учебных заведений и в работе научно-исследовательских институтов.

Апробация результатов работы. Основные положения работы доложены и обсуждены на Всероссийской конференции «Нейроэндокринология - 95» (Санкт-Петербург, 1995), на III Конгрессе Международной ассоциации морфологов (Тюмень, 1996), на конференции молодых ученых с Международным участием «Фундаментальные исследования науки и прогресс клинической медицины» (Москва, 1998), на научной конференции по научно-техническим программам Минобразования России (Москва, 1999), на Всероссийской научной конференции с Международным участием, посвященной 150-летию И. П. Павлову (Санкт-Петербург, 1999), на конференции «Механизмы структурной, функциональной и нейрохимической пластичности мозга» (Москва, 1999), на конференции «Новое в изучении пластичности мозга» (Москва, 1999), на IV съезде Российских морфологов с Международным участием (Ижевск, 1999), на V Конгрессе международной ассоциации морфологов (Ульяновск, 2000), на Всероссийской конференции «Нейроэндокринология - 2000» (Санкт-Петербург, 2000), на Международной конференции, посвященной 75-летию со дня рождения А.М. Уголева, в институте физиологии им.И.П.Павлова (Санкт-Петербург, 2001), на ХVIII Съезде физиологического общества им.И.П.Павлова (Казань, 2001), на Международной конференции по функциональной нейроморфологии «Колосовские чтения - 2002» (Санк-Петербург, 2002), на VI Конгрессе Международной ассоциации морфологов (Уфа, 2002), на Всероссийской конференции с Международным участием «Нейроэндокринология - 2003» (Санкт-Петербург, 2003), на научной конференции «Фундаментальные и прикладные проблемы гистологии. Гистогенез и регенерация тканей» (Санкт-Петербург, 2004), на VII Конгрессе Международной ассоциации морфологов (Казань, 2004), на V Общероссийском съезде анатомов, гистологов и эмбриологов (Казань, 2004), на Международной конференции по функциональной нейроморфологии «Колосовские чтения - 2006» (Санкт-Петербург, 2006), на VIII Конгрессе Международной ассоциации морфологов (Орел, 2006), на ХХ съезде физиологического общества имени И.П.Павлова (Москва, 2007), на IX Конгрессе Международной ассоциации морфологов (Бухара, 2008)

Публикации. По материалам диссертации опубликовано 67 научных работ, их них 23 в журналах, рекомендуемых ВАК РФ для опубликования результатов докторских диссертаций, в том числе 2 монографии.

Основные положения, выносимые на защиту.

1. Передний отдел миндалевидного комплекса мозга крысы является ядерно - палеокортикальным компонентом мозга, в состав которого входят ядерные, палеокортикальные и межуточные формации. Репродуктивные центры переднего отдела - переднее кортикальное ядро и передняя амигдалярная область - являются межуточными формациями и относятся к редковетвистой нейронной системе мозга.

2. Цитологическая характеристика, ультраструктурная организация нейроэндокринных нейронов репродуктивных центров переднего отдела миндалевидного комплекса и их синапсоархитектоника различаются на различных стадиях эстрального цикла, что отражает изменение их функциональной активности под модулирующим влиянием половых стероидов;

3 Схема субъядерной организации центрального ядра миндалевидного комплекса, разработанная на базе уточнения и обобщения результатов цитоархитектонического анализа и исследования нейронной организации с помощью математического аппарата многофакторного анализа;

4. Электрофизиологические корреляты активации и взаимодействия двух основных репродуктивных центров, расположенных в переднем и заднем отделах МК - переднего кортикального ядра и дорсомедиального ядра в динамике эстрального цикла.

Объем и структура диссертации. Содержание диссертации изложено на 276 стр. и состоит из введения, обзора литературы (1 глава), характеристики материала и методов исследования (1 глава), собственных исследований (7 глав), обсуждения полученных результатов (1 глава), выводов и списка литературы (508 источников). Диссертация иллюстрирована 35 таблицами и 80 рисунками (микрофотографиями и электронограммами).

2. Материал и методы исследований

Работа выполнена на 288 половозрелых крысах линии Вистар массой тела 220-300 г. Всех животных содержали в идентичных условиях вивария с продолжительностью светового дня 12-14 часов.

Материал для исследования цитоархитектонических особенностей и цитологии нейронов брали путем декапитации, соблюдая основные требования, изложенные в приложении № 4 к «Правилам проведения работ с использованием экспериментальных животных». Мозг извлекали из полости черепа и фиксировали в 10 % растворе нейтрального формалина. После фиксации мозг промывали, обезвоживали в спиртах, заливали в парафин и готовили серии фронтальных срезов толщиной 8-10 и 15-20 мкм, которые окрашивали по Нисслю крезиловым фиолетовым.

Нейронную организацию исследовали на фронтальных срезах мозга 30 крыс, импрегнированных нитратом серебра по Гольджи. С препаратов производили точные зарисовки нейронов с помощью рисовального аппарата. При увеличении 200х зарисовано 298 нейронов. Идентификацию нейронов проводили по классификации Леонтович (1978). Рисунки сканировали, затем в программе Аdobe Photoshop 5.0 создавали композиции в соответствии с их положением внутри субъядер СЕ.

Количественный анализ нейронов производили по методике Леонтович (1978). Просчитано 13 параметров для каждого нейрона. В обрабатываемый массив данных было включено 148 нейронов. Исходным материалом служила матрица данных типа «объект-признак».

Полученный цифровой материал обрабатывали с помощью математического аппарата многомерного анализа. На первом этапе, для выявления линейной взаимосвязи изучаемых параметров дендритного дерева, была построена корреляционная матрица. Далее использовался факторный анализ, в частности, один из его вариантов - метод «главных компонент». В последующем, на основании выделенных параметров - факторов (или главных компонент), был осуществлен кластерный анализ, основная идея которого состоит в разделении исходного множества объектов на небольшое число групп или кластеров (Олденденфер, Блекфилд, 1989; Уильямс, Ланс, 1986).

Далее, полученные результаты кластеризации нейронов сопоставили с их морфологическим описанием по классификации Леонтович (1978) при помощи таблиц сопряженности, полученных с использованием мер категориальной связи Пирсона и Фишера. Этот же подход использовали для демонстрации представительства кластеров в субъядрах с целью выяснения вопроса - существует ли какая-либо закономерность в представительстве каждого кластера в субъядрах.

Исследование особенностей реактивности нейронов передней амигдалярной области, переднего кортикального ядра и субъядер центрального ядра в динамике эстрального цикла проведено на 60 животных. Стадии эстрального цикла определяли по цитологической картине влагалищных мазков, крыс умерщвляли на стадиях эструса и метэструса. Парафиновые фронтальные срезы мозга толщиной 10 мкм окрашивали гематоксилином-эозином. Регистрацию кариоволюметрических показателей ядер нейронов осуществляли с помощью метода проекции на проекционной установке, созданной по образцу в лаборатории экспериментальной морфологии Института экспериментальной эндокринологии ВЭНЦ РАМН (директор и зав. лаб эксп. морфологии акад. И.Г.Акмаев). Проекции ядер нейронов зарисовывали при линейном увеличении 2000х. В каждой из изучаемых областей проведено измерение 100 клеточных ядер. Измеряли длинный и короткий диаметр клеточного ядра по формуле эллипсоида вращения (Хесин, 1967; Ташке, 1980), так как ядра нейронов имели коэффициент элонгации, превышающий величину 1,14. Математико-статистическую обработку, а также построение гистограмм, осуществляли в десятичных логарифмах.

Планиметрирование структур переднего отдела миндалевидного комплекса было проведено на парафиновых срезах толщиной 20 мкм, окрашенных по Нисслю. На проекционной установке зарисовывали контуры исследуемых структур при увеличении в 50 раз. Величину площади структур определяли планиметром ПП-2. Определяли абсолютные и удельные площади структур МК, достоверность различий определяли по t-критерию Стьюдента.

Иммуноцитохимическое выявление CART-пептида проводили на криостатных срезах головного мозга половозрелых самок крыс линии Вистар, которые были умерщвлены на стадиях эструса и метэструса эстрального цикла. После перфузии головной мозг обрабатывали 1М фосфатным буфером (РВ, рН=7,4) и 4% раствором параформальдегида на 0,1 М РВ на свободно плавающих фронтальных срезах одновременно для двух групп животных. После удаления эндогенной пероксидазы и выдерживания в блокировочном растворе, который содержал 3% бычий сывороточный альбумин (BSA; Sigma, США) и 1% козьий альбумин (GSA, Sigma, США), срезы инкубировали в растворе первичных антител, содержащих поликлональные rabbit-anti-CART (55-102) антитела (H-003-62, Phoenix Pharm., Incorp, Belmont, CA, CША) при +4 С0 в течение 48 часов. Потом срезы промывали и в течение двух часов инкубировали во вторичных goat-anti-rabbit антителах, конъюгированных с авидиновым комплексом (ABC-kit 689321, ICN Biomedicals Inc., США). После промывания срезов, их инкубировали со стрептавидин-пероксидазой (ABC-kit 689321, ICN Biomedicals Ins., CША). Перед заключением под стекло, срезы промывали и инкубировали с раствором 3,3-диаминобензидинтетрагидрохлорида (DAB, Sigma, США) на фосфатно-солевом буфере. Контрольные срезы обрабатывали в указанной выше последовательности без использования первичных антител. Измерение оптической плотности проводили в программе «ФОТО-М»

Электрофизиологическое исследование в эксперименте с моделированием эстрального цикла проведено на половозрелых самках крыс линии Вистар массой тела 280-330 г. Эксперимент включал в себя ряд этапов. На первом этапе изучали влагалищные мазки самок крыс линии Вистар, которые брали строго в определенное время (12 часов дня) для определения его регулярности. Исследование динамики эстральных циклов у самок линии Вистар показало, что самки этой линии (более 80 %) имеют регулярные циклы. Крысам было проведено вживление хронических электродов в переднее кортикальное и в дорсомедиальное ядро МК и через неделю после операции проведена запись фоновой ЭЭГ. На втором этапе самки с вживленными электродами в мозг были подвергнуты операции гонадэктомии (Кабак, 1969). Через месяц после гонадэктомии была повторно проведена запись ЭЭГ. Заместительная терапия гонадэктомированным крысам включала в себя введение инъекции 17в эстрадиола (в дозе 1 мкг/100г массы тела животного) один раз в сутки в течение двух дней, а затем (на третьи сутки) введение 17в эстрадиола с прогестероном (доза 5 мг/100г массы тела животного). Запись ЭЭГ проводилась после двух инъекций 17вэстрадиола (на второй день, через три часа после инъекции) и на третий день через три часа после введение 17в эстрадиола с прогестероном.

Для регистрации фоновой электрической активности было произведено стереотаксическое вживление биполярных электродов в переднее кортикальное ядро переднего отдела и в дорсомедиальное ядро заднего отдела МК. После операции по вживлению электродов в течение экспериментального периода крыс содержали в индивидуальных клетках. Для регистрации ЭЭГ были использованы биполярные электроды из изолированной нихромовой проволоки поперечным сечением 0,1 мм. Использовали стереотаксический прибор Хорслея-Делла, предназначенный для кошек (тип ЭМИБ-1), заменив опору верхней челюсти, с учетом особенности строения черепа крысы и уменьшили диаметр кончиков ушных стержней по размерам наружных слуховых проходов у крыс.

Операции по вживлению электродов проводили в условиях, близких к стерильным, под общим эфирным наркозом. Имплантацию стерильных электродов проводили по координатам стереотаксического атласа мозга De Groot (1959).Для фиксации электродов использовали протакрил - М.

Регистрацию ЭЭГ проводили в условиях свободного поведения с помощью программно-управляемого комплекса, включающего четырехканальный полный усилитель УБФ4-03 и IBM PC совместимый компьютер с установленной платой аналого-цифрового и цифро-аналогового преобразователя (АЦП-ЦАП) марки DigiLine (DL-160). Специальная программа управления комплексам, разработанная для операционной системы МS-DOS в НИИ ВНД и НФ (автор Ю.Райгородцев), дает возможность задавать множество параметров эксперимента и первичного анализа данных. С помощью данного комплекса, сигнал, поступающий с аналогового входа, усиливается и подается на плату АЦП-ЦАП, где оцифровывается и затем отображается на мониторе компьютера в реальном режиме.

Перед началом регистрации устанавливали параметры записи. Использовали следующие параметры: частотный интервал пропускания 0,3-70 Гц, интервал дискретизации 10 мс, усиление на выходном усилителе 10 , длина эпохи 10 секунд. Перед записью ЭЭГ сигнал центрировали по нулевой линии.

Проводили визуальный и частотно-спектральный анализы участков ЭЭГ, зарегистрированных в состоянии спокойного бодрствования. Визуальный анализ был направлен на определение характера ЭГ-активности. Также при помощи визуального анализа проводили исключение видимых артефактов. Спектральный анализ был направлен на определение спектра частот, составляющих тот или иной сигнал. Пользовались информативной и помехоустойчивой частотной характеристикой - относительной спектральной плотностью (ОСП) (Ронкин, Зенков, 1992; Зенков, 1996). Анализ представлял собой вычисление спектральных плотностей колебаний в следующих диапазонах: Д-диапазон (1-4 Гц), и - диапазон (4-8 Гц), б - диапазон (8-13 Гц), в1- диапазон (13-18 Гц) и в2- диапазон (18-32 Гц). Затем, на основании результатов спектрального анализа, в программе «Excel 8,0» производили вычисление ОСП колебаний в пяти диапазонах, определяемой как процентная доля спектральной плотности отдельного диапазона от суммы спектральных плотностей колебаний во всем анализируемом интервале 1-32 Гц. После окончания всех предусмотренных опытов на крысах с вживленными электродами, проводили морфологический контроль, для уверенности в правильном попадании электрода в пределы определенного анатомического образования.

Периодически на протяжении всего эксперимента проводили определение содержания в крови лютеинизирующего гормона (ЛГ). Анализ исследуемых сывороток крови на ЛГ проводили иммунорадиометрическим методом с использованием теста SPECTRIA LH IRMA [125I] фирмы ORION Diagnostica (Финдляндия).

Статистическую обработку осуществляли с помощью пакета программ «Statistica 5.5».

3. Результаты собственных исследований

Общая структурная организация переднего отдела миндалевидного комплекса мозга

Передний отдел миндалевидного комплекса (МК) крысы, на территории которого находятся изученные нами репродуктивные центры, имеет значительную ростро-каудальную протяженность и включает в себя большое количество гетероморфных структур. Это обстоятельство, а также существующая терминологическая неточность в их обозначении, продиктовали необходимость детального изучения их структурной организации с целью последующей классификации.

На ростральном уровне отдела находится передняя амигдалярная область, которая занимает самое медиальное положение среди остальных структур МК, примыкая к супраоптическому ядру гипоталамуса медиально и ядру латерального обонятельного тракта латерально. При ее изучении видно, что нервные клетки располагаются дисперсно. Размеры перикарионов варьируют от мелких до крупных (8-10 и 20-25 мкм), различаясь по содержанию хроматофильной субстанции. Нейроны по своим характеристикам соответствуют длинноаксонным редковетвистым нейронам короткодендритного и ретикулярного типа. Впервые нами в составе этой области выявлены гигантские мультиполярные нейроны, которым приписывают функции интегративно-пусковых нейронов.

Латерально к передней амигдалярной области располагается ядро латерального обонятельного тракта. Название структуры "ядро" на первый взгляд, адекватно отражает наблюдаемую в препаратах картину, так как оно имеет характер очагового скопления нейронов, обладающего овальной конфигурацией. Однако, более детальное изучение цитоархитектоники обнаруживает наличие послойного расположения нейронов и их отростков, что отражает его принадлежность к формациям палеокортекса.

Переднее кортикальное ядро на ростральном уровне переднего отдела занимает небольшую площадь, но она возрастает на каудальном уровне переднего отдела и оно является самым массивным образованием среди структур переднего отдела. При этом общий план строения переднего кортикального ядра сохраняется таким же, что и на ростральном уровне. Особенности строения этого ядра, выявленные при изучении его цитоархитектоники, находят отражение и в особенностях нейронной организации. Эти особенности находят выражение в наличии трех зон. Поверхностная зона содержит скопление волокон с небольшим количеством нейронов, относящихся к длинноаксонным редковетвистым. В поверхностной клеточной зоне хорошо определяется дифференциация на медиальную и латеральную части. В латеральной части преобладают нейроны коркового типа в виде пирамидообразных, в то время как, в медиальной - пирамидообразные и веретенообразные нейроны единичны, и преобладающим типом клеток являются длинноаксонные редковетвистые нейроны короткодендритного класса. В глубокой зоне представлены длинноаксонные густоветвистые нейроны подкоркового типа.

Медиобазальный угол МК занят медиальным ядром, которое по цитоархитектонике имеет много общего с передним кортикальным ядром и отнесено нами к межуточным формациям. Изучение цитоархитектоники показывает, что его территория включает в себя поверхностную (выходящую на базальную поверхность мозга) бесклеточную зону и скопление нейронов, различные части которого отличаются плотностью упаковки нейронов. Нейронная организация медиального ядра характеризуется мономорфностью. Все нейроны медиального ядра относятся к длинноаксонным редковетвистым нейронам - короткодендритным и ретикулярным.

Дорсальнее медиального ядра находится центральное ядро, оно образовано очаговым скоплением преимущественно среднего размера нейронов, границы которого хорошо определяются в цитоархитектонических препаратах.

Среди структур переднего отдела хорошо дифференцируются множественные гнездные скопления малых нейронов, получившие название "вставочных масс". Все эти нейроны можно отнести к длинноаксонным редковетвистым нейронам короткодендритного типа или к длинноаксонным редковетвистым нейронам с признаками переходных от короткодендритных к ретикулярным.

В центральных зонах переднего отдела находятся большие по площади латеральное и базолатеральное ядра. Они образованы средними и крупными нервными клетками, перикарионы которых имеют преимущественно полигональную форму. Входящие в состав этого ядра нейроны обладают пирамидообразной формой.

Латеральнее переднего кортикального ядра располагается пириформноая кора. В составе этой структуры есть четкие слои. Первый слой - плексиформный, на поверхности мозга; II - густоклеточный, образован нейронами, которые располагаются с большой плотностью и упорядоченно; III слой - глубокий; большинство нейронов которого обладают характеристиками длинноаксонных густоветвистых нейронов.

Между указанными выше структурами располагаются переходные зоны. Во всех этих зонах определяется дисперсное расположение нейронов с примерно одинаковой плотностью. Все переходные зоны, располагающиеся между структурами МК, формируют своеобразный фон, на котором выделяются ядра и клеточные слои палеокортикальных формаций.

Приведенный выше обзор структурной организации переднего отдела показывает, что основную часть его территории занимают скопления нейронов, различающиеся по своей цитоархитектонике и нейронной организации. При этом вошедшие в употребление термины в отношении ряда структур не отражают особенностей их структурной организации. Это создает затруднения при организации экспериментальных работ и указывает на необходимость их классификации на основании двух основных принципов организации серого вещества нервной системы - ядерного и экранного.

При проведении их классификации мы опирались на учение Заварзина А.А. (1986) о ядерных и экранных центрах нервной системы. При этом оценка принадлежности экранных структур к формациям древней коры была выполнена на основе положений, разработанных Pigache (1971) и Калимуллиной Л.Б. (1989). Ядерными центрами на территории переднего отдела являются латеральное, базолатеральное, центральное, эндопириформное ядра и вставочные массы. Все эти образования имеют четкие границы с окружающими структурами, что позволяет корректно определить их количественные характеристики. Экранными центрами являются пириформная кора, ядро латерального обонятельного тракта, в цитоархитектонике которых группировки нейронов формируют четкие слои. При этом пириформная кора полностью отвечает критериям палеокортекса (Pigache,1971, Калимуллина,1989).

Промежуточное положение между экранными и ядерными центрами занимают межуточные формации (Филимонов, 1949), клеточные массы которых имеют тенденцию к расслоению, но еще не формируют четко дифференцирующихся слоев. Определяющим признаком в них является отсутствие сетчатых слоев, которые присутствуют в экранных центрах за счет переплетения отростков составляющих их нейронов. Это подтверждено нами с использованием метода Гольджи. К межуточным формациям относятся переднее кортикальное ядро, медиальное ядро и передняя амигдалярная область, для характеристики их гетероморфных частей нами использован термин «зона». Территория МК, свободная от ядерных, экранных и межуточных формаций, занята переходными зонами и волокнистыми прослойками.

Анализ цитоархитектоники переднего отдела и нейронной организации входящих в его состав структур дал ключ к пониманию филогенетического возраста структур. Для филогенетически древних отделов мозга характерно преобладание длинноаксонных редковетвистых нейронов, а для филогенетически более молодых - преобладающим типом нейронов становятся длинноаксонные густоветвистые (Леонтович, 1978).

Приведенные выше сведения о нейронной организации структур переднего отдела МК показали, что его территория делится на две части. Медиальную (меньшую по величине), в которой преобладают длинноаксонные редковетвистые нейроны, и латеральную, где в большей степени представлены длинноаксонные густоветвистые нейроны. Среди последних в ряде ядер (базолатеральном и латеральном) есть немало длинноаксонных густоветвистых нейронов, обладающих характеристиками корковых нейронов.

Распределение длинноаксонных редковетвистых и длинноаксонных густоветвистых нейронов позволяет говорить о присутствии на территории МК двух нейронных систем - редковетвистой и густоветвистой (Леонтович, 1978). В состав редковетвистой нейронной системы МК входят медиальное ядро, передняя амигдалярная область, медиальная часть поверхностной клеточной зоны переднего кортикального ядра, медиальное субъядро центрального ядра и вставочные массы. Густоветвистая нейронная система включает в себя латеральное, базолатеральное, эндопириформные ядра и пириформную кору.

Репродуктивные центры переднего отдела МК, к которым относятся передняя амигдалярная область, медиальное и переднее кортикальное ядра, находятся на территории редковетвистой нейронной системы МК, что свидетельствует о том, что они появляются на ранних этапах филогенетического развития позвоночных. Это обстоятельство легко объяснимо с точки зрения их функции - свойство воспроизведения является самым важным свойством организмов, направленным на сохранение особей и вида в ходе эволюции.

Во всех репродуктивных центрах переднего отдела преобладающим классом нейронов являются длинноаксонные редковетвистые нейроны типа короткодендритных, которым приписывают участие в нейроэндокринных взаимоотношениях (Леонтович, 1978, Ахмадеев, Калимуллина, 2007). Ориентируясь на локализацию этих нейронов, мы определяли положение вводимых в мозг электродов в эксперименте по изучению ростро-каудального градиента в структурно-функциональной организации МК.

В работе приведены подробные данные анализа структурно-количественных характеристик (измерения абсолютных и удельных площадей) различных формаций переднего отдела, а также результаты математико-статистического анализа их формообразующих функций.

Полученные данные показали, что на ростральном уровне переднего отдела наибольшая площадь занята палеокортикальными и межуточными формациями. Полученные данные при использовании рангового показателя корреляции по Спирмену свидетельствуют о том, что определяется высокая степень корреляции между величинами общей площади и размерами площади, занятой как структурами палеокортекса, так и ядерными структурами. Это показывает, что ядерные и палеокортикальные структуры являются равноправными партнерами при формировании общей конструкции МК.

Результаты планиметрирования каудального уровня переднего отдела показали, общая площадь МК, составляющая 1517,91±61,6 ус.пл.ед.(5,706 мм2) распределяется между четырьмя категориями структур практически поровну. и можно говорить о практически «равноправном» их представительстве на территории МК. Величина рангового показателя корреляции по Спирмену свидетельствуют о том, что существуют тесная связь между общей площадью МК и площадью межуточных формаций, при отсутствии таковой с площадью ядерных, экранных структур и переходных зон. Обнаруженный факт указывает на наличие важных функций у межуточных формаций МК, включая и участие в регуляции репродуктивных процессов, которые рассматриваются в нашей работе.

Результаты структурно-количественного анализа переднего отдела показали соотношение представительства ядерных, экранных и межуточных формаций на его территории. Они подтвердили данные изучения нейронной организации и цитоархитектонического анализа переднего отдела, впервые показав, что передний отдел МК является ядерно-палеокортикальным компонентом мозга. Значительная часть площади МК занята репродуктивными центрами (переднее кортикальное ядро, передняя амигдалярная область), которые по своей структурной организации представляют собой межуточные формации и находятся на территории редковетвистой нейронной системы МК.

Цитологическая характеристика нейроэндокринных нейронов репродуктивных центров переднего отдела МК

На ростральном уровне основная масса нейронов, находящихся в поверхностной клеточной зоне переднего кортикального ядра, концентрируется в срединных зонах. В медиальной части поверхностной клеточной зоны хорошо выражен полиморфизм нейронов, которые носят характер либо кариохромных, либо светлых нейронов. Для кариохромных нейронов характерно наличие интенсивно окрашенного крезиловым фиолетовым клеточного ядра и узкого ободка цитоплазмы. В светлых нейронах клеточное ядро богато эухроматином, с хорошо выявляющимся ядрышком, цитоплазма содержит небольшие количества мелкоглыбчатой базофильной субстанции. Кроме мелких и средних нейронов определяются и отдельные крупные нейроны. Они имеют пирамидообразные, веретеновидные или сферические тела, в которых находится мелкозернистая базофильная субстанция. Крупное ядро имеет больших размеров ядрышко, мелкозернистый хроматин, диффузно распределённый в кариоплазме. Главные дендриты у пирамидообразных клеток смотрят в сторону глубокой зоны. В латеральной части поверхностной клеточной зоны больше (по сравнению с медиальной частью) становится пирамидообразных клеток. Они имеют крупные ядра с четко выделяющимся ядрышком и большие количества базофильной субстанции.

Глубокая клеточная зона содержит большее число крупных нейронов по сравнению с поверхностно-клеточной зоной. Ярко выражен полиморфизм: он проявляется не только различными размерами тел, но и вариабельностью окрашиваемости ядра и цитоплазмы, предопределяемой различиями в содержании гетерохроматина, эухроматина и базофильной субстанции. Нейроны, для которых характерно наличие светлого, богатого эухроматином, клеточного ядра и наличие мелкоглыбчатых скоплений хроматофильной субстанции в цитоплазме обозначены нами как цитохромные.

На каудальном уровне переднего отдела поверхностная клеточная зона переднего кортикального ядра содержит большое количество клеточных элементов, это преимущественно мелкие нейроны, носящие характер кариохромных или светлых нейронов. В поверхностной зоне медиальной части ядра встречаются крупные и средние нейроны светлого или кариохромного типа, что не характерно для латеральной части поверхностной зоны.

Характерной чертой медиальной части поверхностно-клеточной зоны переднего кортикальной ядра на каудальном уровне переднего отдела является полиморфизм. Примерно в равных количествах присутствуют мелкие, средние и крупные нейроны. Кариохромные нейроны обладают мелкими и средними размерами, светлые - преимущественно среднего размера, крупные нейроны являются цитохромными и обладают либо пирамидообразной, либо веретеновидной формой. Для цитохромных нейронов характерно наличие малых или умеренных количеств хроматофильной субстанции. Много переходных форм между светлыми кариохромными и цитохромными нейронами, но вариабельность особенно велика среди цитохромных нейронов - как по количеству эухроматина, так и степени развития эргастоплазмы.

В латеральной части поверхностно-клеточной зоны большинство нейронов обладает средними размерами и носит переходный характер между светлыми и кариохромными нейронами. Наиболее крупные нейроны, обладающие чертами цитохромных и светлых нейронов, концентрируются в краевых частях глубокой зоны, которые примыкают, с одной стороны, к глубокому слою пириформной коры, а с другой - к медиальному ядру. Кроме крупных нейронов, есть и средние и мелкие нейроны кариохромного типа.

Нейроны передней амигдалярной области имеют различные размеры. Тела крупных нейронов обладают полигональной формой, у них выявляются два или три крупных дендрита, содержащих в своих проксимальных частях базофильное вещество. Крупные нейроны имеют массивные тела, цитоплазма содержит большое количество глыбок и зерен хроматофильного вещества, вследствие чего они хорошо выделяются среди остальных нейронов. Средние нейроны имеют округло-овальную форму тела, центрально расположенное светлое ядро. Мелкие нейроны обладают узким ободком цитоплазмы, в которой определяются небольшие количества хроматофильной субстанции.

Большая часть средних по размерам нейронов носит характер кариохромных, но среди средних нейронов есть и определённый процент светлых. Кроме средних нейронов, носящих характер кариохромных и светлых, в составе передней амигдалярной области встречаются и крупные кариохромные нейроны.

Как показали приведённые исследования цитологии нейронов на световом уровне, все нейроны передней амигдалярной области и переднего кортикального ядра могут быть разделены на три большие группы: кариохромные, светлые и цитохромные.

При изучении в электронном микроскопе вся популяция указанных нейронов носила характер тёмных нейронов, для которых была характерна высокая электронная плотность, как ядра, так и цитоплазмы, и светлых - с высокой проницаемостью для электронов, что приводило к формированию светлого фона, на котором хорошо выявлялись все ультраструктуры клетки. Есть и переходные формы нейронов, в которых светлое ядро сочетается с тёмной цитоплазмой вследствие её богатства тёмным гранулярным материалом и свободными рибосомами. Анализ электронно-микроскопических эквивалентов темных и светлых нейронов, изученных нами в передней амигдалярной области и в переднем кортикальном ядре, показал:

а) «темные» нейроны имеют крупное электронноплотное ядро, богатое РНП-гранулами, узкий перикарион, содержащий большое количество рибосом, крупные светлые митохондрии и гипертрофированный комплекс Гольджи с признаками секреторной активности. Эти нейроны соответствуют кариохромным нейронам, описанным нами на светооптическом уровне.

Выявленные нами особенности структурной организации ядра и рибосомального аппарата темных нейронов свидетельствуют об интенсивных процессах белкового синтеза. По своей структурной организации, выявленные нами «темные» нейроны передней амигдалярной области и переднего кортикального ядра имеют сходные черты организации с перикарионами нейронов нейросекреторных ядер гипоталамуса.

б) «светлые» нейроны, имеющее богатое эухроматином ядро, более широкий перикарион, содержащий узкие или умеренные расширенные канальцы гранулярной цитоплазматической сети, небольшие количества свободных рибосом, так же в перикарионе определяются везикулы с плотным центром, размеры которых варьирую от 75 до 300 нм, размеры, которых позволяют предполагать, что в них могут содержаться нонапептиды, пептиды или катехоламины.Определяются темные митохондрии и группы лизосом. Эти нейроны являются эквивалентом светлых нейронов, выявленных нами на светооптическом уровне.

в) цитохромные нейроны имеют большие размеры, чем светлые и темные нейроны. Крупное светлое ядро в этих нейронах окружено значительной массой цитоплазмы, содержащей хорошо развитую гранулярную цитоплазматическую сеть отдельные канальцы которой, накладываясь друг на друга, формируют стопки (тельца Ниссля). По своим характеристикам они соответствуют классическим нейронам и крупным нейроэндокринным нейронам.

Глиальные элементы представлены астроцитарной (протоплазматической и волокнистой) глией, олигодендроглией. Отростки астроцитов, выявляющиеся около сосудов набухшие, в некоторых из них наблюдаются липидные капли и везикулы с плотным центром. Эндотелий сосудов имеет многочисленные микроворсинки, высота которых достигает 1,5-2,0 мкм, что свидетельствует о функциональной активности этих клеток.

В составе нейропиля находятся крупные терминали, содержащие многочисленные везикулы с плотным центром, диаметр которых колеблется от 70-120 нм. Они хорошо выделяются на фоне нейропиля осмиофильным содержимым. Выявлено немало терминалей с пустыми пузырьками того же диаметра.

Итак, цитология нейронов двух репродуктивных центров переднего отдела характеризуется своеобразием. Последнее заключается в том, что для каждой из зон характерен свой набор нейронов. Для передней амигдалярной области это средние и крупные кариохромные нейроны. В переднем кортикальном ядре выражен полиморфизм и имеет место представительство трех типов нейронов - кариохромных, светлых и цитохромных. В медиальной части поверхностноклеточной зоны на фоне мелких и средних кариохромных нейронов появляется крупные цитохромные нейроны, обладающие пирамидообразной формой. Количество таких крупных цитохромных пирамидообразных нейронов прогрессивно возрастает в латеральной части поверхностной клеточной зоны, и имеющий место полиморфизм в этой части переднего кортикального ядра присутствует среди указанного типа нейронов. В глубокой зоне имеет место представительство всех трех указанных типов нейронов, различающихся ещё и по своим размерам, что предопределяет выраженный полиморфизм этой части ядра. Проведенное электронно-микроскопическое исследование нейронов передней амигдалярной и переднего кортикального ядра показало, что они могут быть разделены на две основные группы: темные и светлые. Темные нейроны соответствуют описанным с помощью светового микроскопа кариохромным нейронам, светлые - светлым и цитохромным нейронам.

CART (cocaine-amphetamine-regulated transcript) пептид выявлен иммуноцитохимической реакцией как в нейронах изучаемых нами репродуктивных центров, так и в составе поверхностных слоев переднего кортикального ядра, медиального ядра и передней амигдалярной области.

В передней амигдалярной области иммунореактивные нейроны имеют крупные и средние размеры. При этом выраженная иммунореактивность имеет место в крупных нейронах, обладающих угловатой формой, интенсивность осадка в средних нейронах, тела которых обладают округло-овальной формой, ниже. Нейроны средних размеров распределены по всей территории, занимаемой передней амигдалярной областью и образуют сеть. В переднем кортикальном ядре определяются среднего размера нейроны, с угловатой формой тел и умеренной экспрессией CART-пептида, Они встречаются чаще в составе глубокой зоны ядра, а также в медиальной части поверхностно-клеточной зоны. В медиальном ядре нейроны имеют средние размеры, форма тел иммунореактивных нейронов различная - от округло-овальных до полигональных, среди них встречаются и веретенообразные.

На ростральном уровне переднего отдела на препаратах с иммунореактивными структурами выделяется полоску хорошо прокрашенных волокон, берущих начало на границе с супраоптическим ядром гипоталамуса. Волокна полоски строго ориентированы и заканчиваются на границе с ядром латерального обонятельного тракта. На каудальном уровне переднего отдела МК полоска иммунореактивных волокон становится плотнее и шире. Подходя вплотную к переднему кортикальному ядру, волокна расщепляются.

Репродуктивные центры МК в системе обратных связей с гонадами в динамике эстрального цикла.

Нами изучены электронно-микроскопические характеристики нейронов передней амигдалярной области и переднего кортикального ядра крыс линии Вистар на стадии эструса и метаэструса.

Исследование электронно-микроскопических характеристик нейронов передней амигдалярной области у крыс на стадии эструс показало, что большинство (60%) нейронов находится в состоянии умеренной (25%) или повышенной функциональной активности (35%). Это отражается как на состоянии хроматина, так и ультраструктур цитоплазмы.

В клеточных ядрах нейронов передней амигдалярной области отмечаются признаки транскрипционной активности, что проявляется наличием очаговых скоплений интерхроматиновых гранул и перихроматиновых фибрилл. Интерхроматиновые гранулы выделяются четкой осмиофилией и имеют размер 20-25 нм. Скопления, формируемые ими, различны по величине в разных нейронах. Перихроматиновые фибриллы выявляются около гетерохроматина под внутренней ядерной мембраной или около его глыбок в центральных зонах кариоплазмы. Ядрышко увеличено, содержит гранулярный компонент. В нем выявляются фибриллярные центры, количество которых колеблется от двух до четырех. Перинуклерное пространство имеет ширину до 120-160 нм и переходит в расширенные канальцы гранулярной эндоплазматической сети. Ядерные поры выявляются четко, на тангенциальных срезах видны глобулярные белки поровых комплексов. Поверхность клеточного ядра неровная из-за складок, при этом их выраженность в разных зонах поверхности ядра и в разных нейронах имеет различную выраженность.

В цитоплазме определяется хорошо развитая сеть канальцев гранулярной эндоплазматической сети, просвет которых значительно расширен. Между канальцами эндоплазматической сети находятся полисомы, имеющие вид розеток из 6-8 рибосом. Размеры митохондрий и их число увеличены, матрикс обладает электронной плотностью, кристы хорошо различимы, располагаются поперек длинной оси. Митохондрии располагаются во всех зонах цитоплазмы. Гипертрофия комплекса Гольджи проявляется расширением просвета цистерн и увеличением числа транспортных пузырьков. Он располагается около ядра и в срединных зонах цитоплазмы. Около комплекса Гольджи видны формирующиеся мелкие и крупные осмиофильные капли секрета. В цитоплазме определяются многочисленные лизосомы, липофусциновые гранулы и липидные капли, наблюдается формирование мультиламилярных и мультивезикулярных телец. Выявляемые везикулы с плотным центром имеют размер от 50 до 250 нм. Состояние таких нейронов может быть определено как состояние «умеренной активности»

Для нейронов, находящихся в состоянии «повышенной функциональной активности» характерна большая выраженность показателей транскрипционной активности. Это проявляется крупными размерами ядрышка, наличием в нем не менее пяти фибриллярных центров, присутствием значительных скоплений интерхроматиновых гранул, четко выявляющимися перихроматиновыми фибриллами.

Меньшая часть нейронов передней амигдалярной области находится в состоянии, которое можно оценить как режим спокойного функционирования. Для них характерно наличие светлого, богатого эухроматином, клеточного ядра с расположенным в его центральных зонах компактным ядрышком. Перинуклерное пространство узкое (50 нм). В кариоплазме отдельные мелкие гранулы - интерхроматиновые (20 нм) и перихроматиновые (от 40 до 60 нм). Ядрышко имеет четкие контуры, в нем выявляются один или два крупных светлых фибриллярных центра. Небольшие глыбки конденсированного хроматина располагаются равномерно в различных зонах кариоплазмы. В различных зонах цитоплазмы представлены узкие канальцы гранулярной ЦС, небольшие скопления полисом и умеренное количество митохондрий с поперечно расположенными кристами. Матрикс митохондрий обладает умеренной осмиофилией. Комплекс Гольджи представлен стопками уплощенных цистерн различной протяженности, располагается в перинуклеарной зоне. В цитоплазме клеток выявляются первичные лизосомы и отдельные липофусциновые гранулы.


Подобные документы

  • Изучение физиологических особенностей дыхания, включающих деятельность периферических и центральных хеморецепторов в гуморальной регуляции вентиляции легких. Факторы регуляции кислородной ёмкости. Функциональная классификация нейронов спинного мозга.

    реферат [35,1 K], добавлен 23.12.2010

  • Сегменты спинного мозга и их структурно-функциональная характеристика. Закон Белла-Мажанди. Афферентные и эфферентные нейроны. Центры спинного мозга и управления скелетной мускулатурой. Принцип метамерии. Локализация восходящих путей в белом веществе.

    презентация [7,1 M], добавлен 26.01.2014

  • Роль нервной системы в регуляция мозгового кровотока. Роль парасимпатической системы в регуляции мозгового кровообращения. Роль ствола мозга в обеспечении адекватного кровотока. Регуляторные контуры: нейрогенный, гуморальный, метаболический и миогенный.

    реферат [16,7 K], добавлен 25.04.2009

  • Рефлекторная, проводниковая и тоническая функции структур ствола мозга. Расположение ядер черепных нервов. Основные проводящие пути от ядер мозга, передача информации от вестибулярного анализатора. Расположение двигательных центров в стволе мозга.

    презентация [12,3 M], добавлен 26.01.2014

  • Исторические аспекты трансплантации костного мозга. Гемопоэтические стволовые клетки. Роль микроокружения. Перспективы лечения миеломной болезни. Круг необходимых исследований для отбора больных на трансплантацию костного мозга и мониторинг систем.

    диссертация [1,9 M], добавлен 05.09.2015

  • Схема головного мозга человека, особенности эволюции. Сегментарные центры продолговатого мозга и моста. Строение среднего мозга на поперечном разрезе. Рецепторный аппарат тонических рефлексов. Схема медиальной и латеральной вестибуло-спинальной системы.

    лекция [1,4 M], добавлен 08.01.2014

  • История исследований функциональной асимметрии мозга. Понятие межполушарной асимметрии (латерализации) большого мозга. Функциональные особенности полушарий. Виды функциональных асимметрий. Результаты тестирования на определение двигательной асимметрии.

    реферат [39,7 K], добавлен 18.05.2014

  • Изучение строения коры головного мозга - поверхностного слоя мозга, образованного вертикально ориентированными нервными клетками. Горизонтальная слоистость нейронов коры головного мозга. Пирамидальные клетки, сенсорные зоны и моторная область мозга.

    презентация [220,2 K], добавлен 25.02.2014

  • Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.

    презентация [607,2 K], добавлен 20.06.2013

  • Особенности организации борозды и извилины медиальной и нижней поверхности правого полушария большого мозга. Общий план строения большого мозга. Деятельность анализаторов. Нервные центры извилин. Большая лимбическая доля Брока. Гиппокамп и их связи.

    реферат [23,2 K], добавлен 10.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.