Общая анатомия человека

История анатомии как науки. Строение скелета человека. Классификация соединений тканей. Мышцы, сухожилия, суставы и их взаимодействие. Система пищеварительных и выделительных органов. Строение сердца и кровеносной системы. Нервная ткань и типы нейронов.

Рубрика Медицина
Вид шпаргалка
Язык русский
Дата добавления 21.03.2016
Размер файла 279,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Анатомия. История анатомии

Анатомия- наука, которая изучает строение организма, его органов и систем в связи с их функциями. Включает следующие дисциплины: нормальную анатомию (изучает строение органов и тканей здорового человека), топографическую анатомию (изучает расположение органов и их взаимосвязи), патологическую анатомию (изучает строение органов и тканей больного организма). Анатомия является основой для таких наук как антропология, физиология, гистология, эмбриология, сравнительная анатомия, палеонтология, эволюционное учение. Физиология, гистология и эмбриология возникли из анатомии. Анатомию человека нельзя понять и правильно изучить без анатомии позвоночных животных (т.к. существует ряд сходных черт). К сравнительной анатомии близка палеонтология - наука о вымерших организмах, остатки которых находятся в земле. Изучение ископаемых остатков животных способствует выявлению родственных связей между систематическими группами животных и их происхождение.

Истоки анатомии уходят в доисторические времена. Наскальные рисунки эпохи палеолита свидетельствуют о том, что первобытные охотники уже знали о положении жизненно важных органов (сердца, печени и др.). Среди первых известных ученых-анатомов следует называть Алкмеона из Кротоны, который жил в первой половине V в. до н. э. Он первым начал вскрывать трупы животных для изучения строения их тела. Его утверждение: что органы чувств непосредственно связаны с мозгом и восприятие ощущений зависит от мозга. Гиппократ -- один из величайших древнегреческих врачей и анатомов, которого называют отцом медицины, сформулировал учение о четырех основных типах телосложения и темперамента, собрал в своих книгах имевшиеся в то время сведения о строении тела человека, описал некоторые кости крыши черепа, позвонки, ребра, внутренние органы, глаз, суставы, мышцы, крупные сосуды. Аристотель изложил в своих книгах множество фактов о строении животных организмов, различал у животных, которых вскрывал, сухожилия и нервы, кости и хрящи. По его мнению, самым главным органом является сердце. Аристотель дал название «аорта», он интересовался развитием зародыша человека, отметил общие черты сходства человека с животными и ввел термин «антропология». Герофил описал некоторые из черепных нервов, оболочки мозга, синусы твердой оболочки, продолговатый мозг, двенадцатиперстную кишку (дал название), оболочки и стекловидное тело глазного яблока, лимфатические сосуды брыжейки тонкой кишки, предстательную железу. Римский врач Руф (I в. н. э.) описал перекрест зрительных нервов. Выдающийся врач и энциклопедист Древнего мира Клавдий Гален из Пергама (131--201 гг.) обобщил имеющиеся к тому времени анатомические знания, описал ряд черепных нервов, соединительную ткань и нервы в мышцах глаз, некоторые кровеносные сосуды, надкостницу, многие связки. Он первым заинтересовался функцией органов. Однако Гален изучал анатомию путем вскрытия свиней, собак, овец, обезьян, львов и был уверен в тождественности строения тела животных и человека. Он рассматривал строение тела человека, как осуществление заранее предопределенных целей свыше, что является телеологическим. Труды Галена в течение 14 веков были основными источниками анатомических и медицинских знаний и неизменно пользовались покровительством церкви. Труд Галена «О назначении частей тела человека». Господство церкви в эпоху раннего феодализма (V--X вв.) тормозило прогресс науки в странах Европы. В то же время быстро развивалась культура народов Востока. Мусульманская религия также запрещала вскрывать трупы, поэтому анатомия изучалась по книгам Гиппократа, Аристотеля, Галена, которые переводились на арабский язык. Великий философ, ученый и врач Востока Авиценна, написал энциклопедический труд «Канон врачебной науки», в котором содержались многочисленные сведения по анатомии и физиологии, созвучные представлениям Галена. Утверждение о том: что мозг передает при посредстве нервов ощущения и движения другим органам. В начале второго тысячелетия в Европе возникли первые медицинские школы. Одной из них была Салернская -- в Италии близ Неаполя. В эпоху Возрождения анатомия, как и другие науки, шагнула далеко вперед. Великий художник, математик, инженер Леонардо да Винчи вскрыл 30 трупов. Благодаря этому он сделал около 800 весьма точных и оригинальных рисунков костей, мышц, сердца и других органов и научно описал их. Он изучил пропорции тела человека, классифицировал мышцы и сделал попытку объяснить их функцию с точки зрения законов механики, описал ряд особенностей детского и старческого организма. Леонардо да Винчи первым изучил функциональную анатомию двигательного аппарата. Его интересовали также вопросы сравнительной анатомии. Андрей Везалий является основоположником описательной анатомии. Основываясь на изучении трупов, он в 1543 г. издал труд «О строении человеческого тела», в котором научно описал строение органов и систем человека, указал на анатомические ошибки многих анатомов и открыто выступил против ошибочных взглядов Галена. Не спасло ученого от преследований церкви. Малый круг кровообращения, движение крови из правого желудочка в левое предсердие - описал М. Сервет (1511 --1553). Он предположил существование соединений между мельчайшими разветвлениями легочной артерии и легочных вен. За свои открытия в анатомии и материалистические убеждения М. Сервет был сожжен на костре вместе со своей книгой. Г. Фаллопий в «Анатомических наблюдениях» впервые тщательно описал строение многих костей, женских половых органов, мышц, органа слуха, зрения. Б. Евстахий в «Руководстве по анатомии» описал надпочечники, строение зубов, почек, органа слуха, вен, занимался сравнительной анатомией. И. Фабриций из Аквапенденте изучал строение пищевода, гортани, глаза, описал венозные клапаны и высказал мысль о том, что они способствуют притоку крови к сердцу и препятствуют ее обратному движению. Фабриций -- один из основоположников эмбриологии и сравнительной анатомии. В XVII--XIX вв. анатомия обогащалась все новыми и новыми фактами. В анатомии возникло и успешно развивалось функциональное направление. В 1628 г. английский ученый Уильям Гарвей (1578--1657) в книге «Анатомические исследования о движении сердца и крови у животных» доказал, что кровь движется по замкнутому кругу. В 1751 г. Гарвей в «Исследованиях о происхождении животных» опроверг учение Аристотеля о самозарождении и впервые высказал положение «всякое живое из яйца». Благодаря усовершенствованию микроскопа Антоном ван Левенгуком (1632--1723) появилась возможность изучить тонкое строение органов и тканей. Левенгук по праву считается основоположником научной микроскопии. М. Мальпиги (1628--1694) опубликовал «Анатомические наблюдения над легкими» (1661), в которых впервые описал легочные альвеолы и капилляры, являющиеся связующим звеном между артериями и венами легких. Кроме того, он первым изучил и описал микроскопическое строение эритроцитов, почек, селезенки, кожи и других органов. В XVII в. были опубликованы многие книги и анатомические атласы. Значительную роль в развитии анатомии человека и микроскопической анатомии сыграл труд М. Ф. К. Бита (1771 --1802) «Общая анатомия», в которой впервые было изложено учение о тканях, органах и системах. Тем самым Биша положил начало гистологии. К. М. Бэр (1792--1876) заложил основы эмбриологии. Он открыл яйцеклетку человека и описал развитие ряда органов. Одним из виднейших анатомов и физиологов является А. фон Галлер (1708--1771). Его основной труд носит название «Живая анатомия». Галлер был первым подлинным экспериментатором. XIX в. был золотым веком для анатомии. Выдающийся немецкий ученый Т. Шванн (1810--1882) создал клеточную теорию. В 1839 г. была опубликована его книга «Микроскопические исследования о соответствии в строении и росте животных и растений». Р. Вирхов (1821 --1902) он не только свел воедино все многочисленные разрозненные факты, но и убедительно показал, что клетки являются постоянной структурой и возникают только путем размножения: «всякая клетка от клетки». Вирхов рассматривал клетку как структуру. Эволюционная теория Ч. Дарвина (1809--1882), которой были посвящены книги «Происхождение видов путем естественного отбора» (1859) и «Происхождение человека и половой отбор» (1871), открыла перед анатомией новые горизонты и в первую очередь возможность не только объяснения строения тела человека, но и пути его направленного совершенствования. Благодаря трудам Ч. Дарвина в XIX в. возникла новая наука -- антропология, развитие которой связано с именами многих крупных анатомов. И. Блюменбах описал 5 современных человеческих рас и высказал мысль об их едином происхождении. А. Кис изучил и описал черепа ископаемых предков человека. Одним из выдающихся достижений науки XIX в. была трудовая теория происхождения человека, сформулированная Ф. Энгельсом в книге «Роль труда в процессе превращения обезьяны в человека». Конец XIX в. ознаменовался еще одним великим открытием, которое сыграло огромную роль для развития анатомии. Это было открытие Х-лучей В. К. Рентгеном в 1895 г., которое привело к созданию принципиально новой главы анатомии -- анатомии живого человека, рентгеноанатомии.

Подходы анатомии. История

Подходы применяемые в исследованиях по анатомии: 1 - систематический (описательный метод) 2 - функциональный (учитывает функции органов) 3 - индивидуальный (учитываются индивидуальные особенности организма) 4 - анатомический (каждый орган по отдельности и организм в целом) 5 - причинный.

Методы анатомии: макроскопические (изучение органов или систем, видимые глазом) и микроскопические (изучение внутреннего строения органов при помощи микроскопов).

Методы анатомии: наблюдение и осмотр организма; вскрытие; заморозка и распил; наливки; рентгеновский; эндоскопический; экспериментальный.

Номенклатура: 1955 (PNA).

Линии и плоскости. Для определения положения органов используют три взаимно перпендикулярные плоскости: сагиттальную (от лат. sagitta -- стрела), вертикально рассекающую тело спереди назад; фронтальную (от лат. frons -- лоб) плоскость, перпендикулярную к первой, вертикальную (ориентированную справа налево) соответственно плоскости лба; и горизонтальную (плоскость, перпендикулярную первым двум). В теле человека условно можно провести множество таких плоскостей. Сагиттальную плоскость, которая делит тело пополам на правую и левую половины, называют срединной. Для обозначения расположения органов по отношению к горизонтальной плоскости применяют термины верхний (краниальный -- от лат. cranium -- череп), нижний (каудальный -- от лат. cauda -- хвост); по отношению к фронтальной плоскости -- передний (вентральный -- от лат. venter -- живот), задний (дорсальный -- от лат. dorsum -- спина). Выделяют также понятия боковой (латеральный), расположенный на удалении от срединной сагиттальной плоскости, и средний (медиальный), лежащий ближе к срединной плоскости. Для обозначения частей конечностей применяются термины -- проксимальный (расположенный ближе к началу конечности) и дистальный, находящийся дальше от туловища.

Вертикальных линий. Это -- передняя и задняя срединные, правая и левая грудинные, проведенные вдоль соответствующих краев грудины; среднеключичные, проведенные через середины ключиц; подмышечные: передние, задние, средние, проведенные через соответствующие края и середину подмышечной ямки; лопаточные -- проведенные через нижние углы лопаток.

Понятие о тканях, стр-функ единицах, органах, системах органов, аппаратах органов

В процессе анатомического изучения человека его структуры условно подразделяются на клетки, ткани, органы, системы органов, которые и формируют организмы. Организм един, он может существовать лишь благодаря своей целостности. Основной структурной единицей строения живого является клетка.

Клетки и их производные образуют ткани, из которых сформированы органы, образующие системы органов. И, наконец, системы интегрируются в целостный организм. Целостность организма обеспечивается благодаря единой нейро-гуморально-гормональной регуляции его функций. И. П. Павлов доказал ведущую роль нервной системы в интеграции организма и осуществлении его связи с внешней средой.

Клетки входят в состав тканей. Ткань -- это исторически сложившаяся общность клеток и межклеточного вещества, объединенных единством происхождения, строения и функции. В организме человека выделяют 4 типа тканей: эпителиальную, соединительную, мышечную и нервную.

Орган (от греч. organon -- орудие, инструмент) отличается свойственной лишь ему формой и строением, приспособленным к выполнению определенной функции. Органы построены из тканей. Каждый орган содержит все виды тканей. Одна из тканей является основной, «рабочей», выполняющей главную функцию органа.

Органы анатомически и функционально объединяются в системы органов. Система -- это ряд органов, имеющих общий план строения, единство происхождения и выполняющих одну большую функцию (например, пищеварения, дыхания). В организме человека выделяют следующие системы органов: пищеварения (пищеварительную), дыхания (дыхательную), мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную. Некоторые органы объединяются по функциональному принципу в аппараты: они зачастую имеют различное строение и происхождение, могут быть не связаны анатомически, но их объединяет участие в выполнении общей функции (например, опорно-двигательный, эндокринный аппараты), либо эти органы различны по своим функциональным задачам, но связаны онтогенетически (например, мочеполовой аппарат).

Эпителиальная, мышечная, нервная ткани

Ткань -- это исторически сложившаяся общность клеток и межклеточного вещества, объединенных единством происхождения, строения и функции. В организме человека выделяют 4 типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань покрывает поверхность тела, выстилает слизистые оболочки, отделяя организм от внешней среды, выполняет покровную и защитную функции, секреторная функция и обмен веществ, а также образует железы. Эпителий состоит из эпителиальных клеток, лежащих в виде пласта на базальной мембране. Он лишен кровеносных сосудов, его питание происходит за счет диффузии веществ из подлежащей соединительной ткани. Выделяют эпителий многослойный: ороговевающий, неороговевающий и переходный и однослойный: простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий). Кожа покрыта ороговевающим многослойным (плоским) сквамозным эпителием. Слизистые оболочки, в зависимости от строения и функции, выстланы однослойным простым столбчатым (тонкая, толстая кишки, желудок, дыхательные пути -- гортань, трахея, бронхи), неороговевающим многослойным (плоским) сквамозным эпителием (ротовая полость, глотка, пищевод, конечный отдел прямой кишки). Слизистая оболочка мочевыводящих путей покрыта переходным эпителием. Серозные оболочки (брюшина, плевра) выстланы простым сквамозным (однослойным плоским) эпителием (мезотелием).

Мышечная ткань осуществляет функцию движения, способна сокращаться. Существуют две разновидности мышечной ткани: неисчерченная (гладкая) и исчерченная (скелетная и сердечная) -- поперечно-полосатая. Неисчерченная (гладкая) мышечная ткань состоит из веретенообразных клеток -- миоцитов, длиной до 500 мкм, которые располагаются в стенках кровеносных и лимфатических сосудов, внутренних органов. Миоцит имеет одно удлиненное ядро, в цитоплазме множество сократительных органелл -- миофиламентов и утолщений -- плотных телец, часть из них прикрепляется к плазматической мембране. Неисчерченная (гладкая) мышечная ткань иннервируется вегетативной нервной системой. Исчерченная (поперечно-полосатая) мышечная ткань образует скелетные мышцы, приводящие в движение костные рычаги, а также входит в состав языка, глотки, верхнего отдела пищевода, формирует наружный сфинктер заднего прохода. Исчерченная скелетная мышечная ткань построена из многоядерных поперечнополосатых мышечных волокон сложного строения, в которых чередуются более темные и более светлые участки (диски), имеющие различные светопреломляющие свойства. Скелетные мышцы иннервируются спинно-мозговыми и черепными нервами. Исчерченная сердечная мышечная ткань, которая по своему строению и функции отличается от скелетных мышц, состоит из сердечных миоцитов (кардиомиоцитов), образующих соединяющиеся друг с другом комплексы. По своему микроскопическому строению сердечная мышечная ткань похожа на скелетную (поперечно-полосатая исчерченность), однако сокращения сердечной мышцы не подконтрольны сознанию человека.

Нервная ткань образует центральную нервную систему (головной и спинной мозг) и периферическую -- нервы с их концевыми приборами, нервные узлы (ганглии). Нервная ткань состоит из нервных клеток -- нейронов (нейроцитов), отличающихся особым строением и функцией, и нейроглии, которая выполняет опорную, трофическую, защитную и разграничительную функции. Нервная клетка (нейрон) имеет тело и отростки различной длины, является морфофункциональной единицей нервной системы. Длинный отросток, по которому нервный импульс движется от тела нервной клетки к концевым аппаратам, к рабочим органам (мышце, железе) или к другой нервной клетке, называется аксоном (нейритом). Другие, более короткие отростки (один или несколько), обычно древовидно ветвящиеся, по которым нервный импульс направляется к телу клетки, называются дендритами. Их окончания получают нервный импульс от другой нервной клетки или воспринимают различного вида внешние воздействия. Нервная ткань обеспечивает анализ и синтез сигналов (импульсов), поступающих в мозг. Она устанавливает взаимосвязь организма с внешней средой и участвует в координации функции внутри организма, обеспечивая его целостность (вместе с гуморальной системой -- кровью, лимфой).

Соединительная ткань

Соединительная ткань представляет обширную группу, включающую собственно соединительные ткани (рыхлая волокнистая и плотная волокнистая неоформленная и оформленная), ткани со специальными свойствами (ретикулярная, жировая), твердые скелетные (костная и хрящевая) и жидкие (кровь и лимфа). Соединительные ткани выполняют опорную, защитную (механическую) функции (плотная волокнистая соединительная ткань, хрящ, кость), другие -- трофическую (питательную), защитную (фагоцитоз и выработка антител) функции (рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа). В отличие от других тканей соединительная сформирована из многочисленных клеток и межклеточного вещества (состоящего из гликозаминогликанов, часть которых, связываясь с белками, образует протеогликаны), в котором находятся различные волокна (коллагеновые, эластические, ретикулярные). Межклеточное вещество кости твердое, крови и лимфы жидкое.

В рыхлой волокнистой соединительной ткани находится значительное количество различных клеточных элементов и волокна, беспорядочно ориентированные в основном веществе. Располагается эта ткань преимущественно по ходу кровеносных и лимфатических сосудов, нервов, покрывает мышцы. Клеточный состав рыхлой соединительной ткани представлен фибробластами, фиброцитами, плазмоцитами, тканевыми базофилами, липоцитами, пигментными клетками, эндотелиоцитами и перицитами сосудов, а также макрофагоцитами. Фибробласты -- основная разновидность клеток соединительной ткани -- крупные клетки с хорошо выраженной зернистой эндоплазматической сетью и комплексом Гольджи. Фибробласты синтезируют и выделяют компоненты межклеточного вещества. Заканчивая свой цикл развития, фибробласты превращаются в фиброциты -- отростчатые клетки, содержащие множество вакуолей. Фиброциты не синтезируют или крайне слабо синтезируют основное вещество соединительной ткани. Плазмоциты, или плазматические клетки, -- клетки иммунной системы, участвуют в защитных реакциях организма, синтезируя антитела (белки иммуноглобулины). Они богаты элементами зернистой эндоплазматической сети. Плазматические клетки образуются из В-лимфоцитов. Тканевые базофилы (тучные клетки) -- большие клетки, богатые крупными гранулами, содержащими гепарин и гистамин. Макрофагоциты -- крупные клетки, имеющие большое количество псевдоподий и выростов цитоплазмы, покрытых плазматической мембраной, богатые лизосомами, и фагосомами. Макрофагоциты происходят из моноцитов. Различают оседлые (в органах кроветворения и печени) и кочующие макрофагоциты (в соединительной ткани, серозных полостях, альвеолярные и др.). Липоциты -- жировые клетки округлой формы, которые накапливают жир. Последний занимает практически всю клетку, а цитоплазма и уплощенное ядро лежат по периферии, окружая каплю жира. Скопления липоцитов образуют жировую ткань. Пигментные клетки содержат множество зерен меланиная.

Плотная волокнистая соединительная ткань может быть неоформленной и оформленной. В неоформленной - многочисленные волокна густо переплетаются, а между ними содержится небольшое количество клеточных элементов (например, сетчатый слой кожи). Оформленная плотная соединительная ткань отличается упорядоченным расположением пучков волокон, определенным их направлением (связки, сухожилия, фиброзные мембраны).

Разновидностью соединительной ткани, состоящей из ретикулярных клеток и ретикулярных волокон, является ретикулярная ткань. Она образует остов кроветворных и иммунных органов (костный мозг, вилочковая железа, селезенка, лимфатические узлы, миндалины и др.), в петлях которого располагаются развивающиеся клетки крови или иммунной (лимфоидной) системы.

Хрящевая и костная ткани также являются разновидностями соединительной. Хрящевая ткань состоит из хрящевых клеток хондробластов и хондроцитов и основного (хрящевого межклеточного) вещества, находящегося в состоянии геля, в котором имеются соединительно-тканные волокна. Различают три типа хрящевой ткани: 1- гиалиновый хрящ, из которого построены суставные, реберные, эпифизарные хрящи и ряд хрящей гортани; 2- волокнистый хрящ, в основном хрящевом веществе которого содержится большое количество коллагеновых волокон, придающих хрящу повышенную прочность. Из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, суставные диски и мениски, этим хрящом покрыты суставные поверхности в височно - нижнечелюстном и грудинно-ключичном суставах. 3- Эластический хрящ в хрящевом основном веществе содержит многочисленные сложно переплетающиеся эластические волокна. Он желтоватого цвета, отличается упругостью. Из эластического хряща построены клиновидные и рожковидные хрящи гортани, голосовой отросток черпаловидных хрящей, надгортанник, хрящ ушной раковины, хрящевая часть слуховой трубы и наружного слухового прохода. В отличие от гиалинового эластический хрящ не окостеневает. Костная ткань, отличающаяся особыми механическими свойствами, состоит из костных клеток, замурованных в костное основное вещество, содержащее коллагеновые волокна и пропитанное неорганическими соединениями.

Кровь и лимфа выполняют трофическую, транспортную и защитную функции. Кровь и лимфа имеют жидкое межклеточное вещество сложного состава (плазму) и взвешенные в ней клетки. В крови содержатся безъядерные клетки эритроциты (4,0--5,0- 1012/л крови), лейкоциты (4,0--6,0- 109/л крови), среди которых выделяют незернистые, или агранулоциты (лимфоциты и моноциты), и зернистые, или гранулоциты (нейтрофильные, ацидофильные и базофильные). В крови имеются также кровяные пластинки (тромбоциты), число которых составляет 180,0--320,0- 109/л. Эритроциты, или красные кровяные тельца, имеют форму двояковогнутых дисков диаметром от 7 до 10 мкм, они содержат гемоглобин и участвуют в переносе кислорода и углекислого газа, а также ряда биологически активных веществ. Гранулоциты имеют шаровидную форму и содержат в цитоплазме гранулы. Гранулоциты выполняют защитную функцию благодаря способности к фагоцитозу. В нейтрофильных гранулоцитах различают гранулы двух типов: более крупные азурофильные, являющиеся лизосомами, и мелкие специфические нейтрофильные (преобладают), богатые бактерицидным веществом и щелочной фосфатазой. Диаметр нейтрофилов 7--8 мкм; они подвижны и осуществляют фагоцитоз. Цитоплазма эозинофильных гранулоцитов богата специфическими гранулами, которые являются лизосомами. Диаметр эозинофилов 9--10 мкм, они способны к фагоцитозу, однако их основная функция -- участие в аллергических реакциях. Крупные гранулы базофилъных гранулоцитов содержат гепарин, гистамин и серото-нин. Диаметр базофилов 9--10 мкм, они также способны к фагоцитозу и участвуют в регуляции сосудистой проницаемости, свертываемости крови, а также в аллергических реакциях. Лимфоциты являются основными участниками иммунологических реакций и осуществляют клеточные (Т-лимфоциты) и гуморальные (В-лимфоциты) защитные реакции (см. «Иммунная система»). Диаметр лимфоцитов варьирует от 7 до 12 мкм. В зависимости от этого выделяют малые (преобладают), средние и большие лимфоциты. Малые лимфоциты бедны органеллами, функционально они подразделяются на Т- и В-лимфоциты. Последние являются источником плазматических клеток, синтезирующих антитела. Моноциты -- крупные округлые клетки диаметром 12--15 мкм, в их цитоплазме имеются лизосомы. Моноциты являются источником всех макрофагов. Тромбоциты, или кровяные пластинки, -- безъядерные клетки неправильной формы, размеры их не превышают 2--3 мкм. Тромбоциты богаты лизосомами и содержат небольшое число гранул, в которых имеется серотонин. Тромбоциты участвуют в свертывании крови и выделяют тромбоцитарный фактор роста. Клеточный состав лимфы в отличие от крови представлен преимущественно лимфоцитами, число которых в периферической (предузловой) лимфе значительно меньше, чем в центральной (послеузловой). В лимфе отсутствуют эритроциты.

Общее о скелете Кости

УЧЕНИЕ О КОСТЯХ (ОСТЕОЛОГИЯ)

Одним из важнейших свойств живого организма является передвижение в пространстве. Эту функцию у млекопитающих (и человека) выполняет опорно-двигательный аппарат, состоящий из двух частей: пассивной и активной. К первой относятся кости, соединяющиеся между собой различным образом, ко второй -- мышцы.

Скелет (от греч. skeleton -- высохший, высушенный) представляет собой комплекс костей, выполняющих опорную, защитную, локомоторную функции. В состав скелета входит более 200 костей, из них 33--34 непарные. Скелет условно подразделяют на две части: осевой и добавочный. К осевому скелету относится позвоночный столб (26 костей), череп (29 костей), грудная клетка (25 костей); к добавочному -- кости верхних (64) и нижних (62) конечностей (рис. 15). Кости скелета являются рычагами, приводимыми в движение мышцами. В результате этого части тела изменяют положение по отношению друг к другу и передвигают тело в пространстве. К костям прикрепляются связки, мышцы, сухожилия, фасции. Скелет образует вместилища для жизненно важных органов, защищая их от внешних воздействий: в полости черепа расположен головной мозг, в позвоночном канале -- спинной, в грудной клетке -- сердце и крупные сосуды, легкие, пищевод и др., в полости таза -- мочеполовые органы. Кости участвуют в минеральном обмене, они являются депо кальция, фосфора и т. д. Живая кость содержит витамины A, D, С и др. Кости образованы костной тканью, которая относится к соединительной, состоит из клеток и плотного межклеточного вещества, богатого коллагеном и минеральными компонентами. Они-то и определяют физико-химические свойства костной ткани (твердость и упругость). В костной ткани содержится около 33 % органических веществ (коллаген, гликопротеиды и др.) и 67 % неорганических соединений. Это в основном кристаллы гидрооксиапа-тита. Сопротивление свежей кости на разрыв такое же, как меди, и в 9 раз больше, чем свинца. Кость выдерживает сжатие 10 кг/мм (аналогично чугуну). А предел прочности, например, ребер на излом 110 кг/см2. Кость (os) как орган снаружи, кроме сочлененных поверхностей, покрыта надкостницей представляющей собой прочную соединительно-тканную пластинку, богатую кровеносными и лимфатическими сосудами, нервами. Надкостница прочно сращена с костью при помощи прободающих волокон, проникающих в глубь кости. Наружный слой надкостницы -- волокнистый, внутренний -- остеогенный (костеобразующий), прилежит непосредственно к костной ткани. В нем расположены тонкие веретенообразные «покоящиеся» остеогенные клетки, за счет которых происходит развитие, рост в толщину и регенерация костей после повреждения. Различают два основных типа костной ткани -- ретикулофиброзную (грубоволокнистую) и пластинчатую. Первая развивается непосредственно из мезенхимы, что характерно для покровных костей черепа. Одновременно с дифференцировкой клеток в остеоциты образуются межклеточное вещество и коллагеновые волокна. Располагающееся между волокнами и клетками основное вещество уплотняется, формируются костные балки (перекладины). Клетки на поверхности образующейся кости превращаются в остеобласты. Вторая, пластинчатая, наиболее распространена в организме, она образуется при перестройке грубоволокнистой костной ткани и врастании в кость сосудов. Представлена она костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов и тонковолокнистого костного межклеточного вещества. Соединительно-тканные волокна в толще каждой пластинки лежат параллельно друг другу и ориентированы в определенном направлении. В зависимости от расположения костных пластинок различают плотное (компактное) и губчатое костное вещество (трабекулярная кость). В компактном веществе костные пластинки располагаются в определенном порядке, образуя сложные системы -- остеоны. Остеон -- структурная единица, кости. Он состоит из 5--20 цилиндрических пластинок, вставленных одна в другую. В центре каждого остеона проходит центральный канал (Гаверсов) (рис. 19). Диаметр остеона 0,3--0,4 мм. Между остеонами залегают интер-стициальные {вставочные, промежуточные) пластинки, кнаружи от них находятся наружные окружающие {генеральные) пластинки, кнутри -- внутренние окружающие {генеральные) пластинки. Губчатое костное вещество состоит из тонких костных пластинок и перекладин (трабекул), перекрещивающихся между собой и образующих множество ячеек. Направление перекладин совпадает с кривыми сжатия и растяжения, образуя сводчатые конструкции . Такое расположение костных трабекул под углом друг к другу обеспечивает равномерную передачу давления или тяги мышц на кость. Трубчатое и арочное строение кости обеспечивает наибольшую прочность при меньшей массе и минимальной затрате костного материала (П. Ф. Лесгафт). Кости отличаются друг от друга, при этом их форма и выполняемая функция взаимосвязаны и взаимообусловлены. В трубчатой кости различают ее удлиненную среднюю часть -- тело кости, или диафиз, обычно цилиндрической или близкой к трехгранной формы, и утолщенные концы -- эпифизы. На них располагаются суставные поверхности, служащие для соединения с соседними костями, покрытые суставным хрящом. Участок кости, расположенный между диафизом и эпифизом, называется метафизом. Среди трубчатых костей выделяют длинные трубчатые кости (например, плечевая, бедренная, кости предплечья и голени) и короткие (кости пясти, плюсны, фаланги пальцев). Диафизы построены из компактной, эпифизы -- из губчатой кости, покрытой тонким слоем компактной. Губчатые кости состоят из губчатого вещества, покрытого тонким слоем компактного. К этим костям также следует отнести кости, развивающиеся в сухожилиях, -- сесамовидные (например, гороховидная, надколенник). Губчатые кости имеют форму неправильного куба или многогранника. Такие кости располагаются в местах, где большая нагрузка сочетается с большой подвижностью. Плоские кости участвуют в образовании полостей, поясов конечностей, выполняют функцию защиты (кости крыши черепа, грудина). К их поверхности прикрепляются мышцы. Смешанные кости имеют сложную форму. Они состоят из нескольких частей, имеющих различное строение, очертания и происхождение, например позвонки, кости основания черепа. Воздухоносные кости имеют в своём теле полость, выстланную слизистой оболочкой и заполненную воздухом. Например, некоторые кости черепа: лобная, клиновидная, решетчатая, верхняя челюсть. Внутри костей в костно-мозговых полостях и в ячейках губчатого вещества, выстланных эндостом (слоем плоских остеогенных клеток, лежащих на тонкой соединительно-тканной пластинке), находится костный мозг. Во внутриутробном периоде и у новорожденных во всех костных полостях находится красный костный мозг, он выполняет кроветворную и защитную функции. У взрослого человека красный костный мозг содержится только в ячейках губчатого вещества плоских костей (грудина, крылья подвздошных костей), в губчатых костях и эпифизах трубчатых костей. В диафизах в костно-мозговых полостях находится желтый костный мозг. Кость живого человека -- динамическая структура, в которой происходит постоянный обмен веществ, анаболические и катаболические процессы, разрушение старых и созидание новых костных трабекул и остеонов.

Классификация соединений костей. Непрерывные соединения костей. Симфизы

Классификация соединений костей:

Название - Фиброзные соединения (синдесмозы)

Виды - 1)Непрерывные соединения 1. Связки 2. Мембраны 3. Швы (Зубчатый, Чешуйчатый, Плоский) 2) Вколачивание (зубоальвеолярное соединение)

Название - Хрящевые соединения (синхондрозы)

Виды - 1. Временные 2. Постоянные

Название - Костные соединения (синостозы)

Полусуставы

Название - Суставы (синовиальное соединение)

Обязательные элементы - суставные поверхности, покрытые хрящом; суст сумка; суст полость содержащая синовиальную жидкость;

Вспомогательные элементы суставов - Связки (1 - внутрисуставные, 2 внесуставные (внекапсульные, капсульные)), Сут диск, Суст мениск, Суст губа;

Виды суставов - Простой и сложный (по количеству костей); Комплексный (наличие диска в суставе); Комбинированный ( два сустава функционирующих совместно); По кол-ву осей и форме суст поверхностей (Одноосные (цилиндрический, блоковидный), Двуосный (эллипсовидный, мыщелковый, седловидный), Многоосные (шаровидный, чашевидный, плоский));

Все соединения костей делятся на три большие группы: непрерывные; полусуставы, или симфизы; и прерывные, или синовиальные (суставы).

Непрерывные -- это соединения костей с помощью различных видов соединительной ткани. Они делятся на фиброзные, хрящевые и костные. К фиброзным относятся синдесмозы, швы и «вколачивание». Синдесмозы -- это соединения костей с помощью связок и мембран (например, межкостные перепонки предплечья и голени, желтые связки, соединяющие дуги позвонков, связки, укрепляющие суставы. Швы -- соединения краев костей крыши черепа между собой тонкими прослойками волокнистой соединительной ткани. Различают зубчатые (например, между теменными костями), чешуйчатые (соединения чешуи височной кости с теменной) и плоские (между костями лицевого черепа) швы. Вколачивание (например, корень зуба как бы вколочен в зубную альвеолу) -- это тоже разновидность фиброзного соединения. К хрящевым относятся соединения с помощью хрящей (например, синхондрозы мечевидного отростка или рукоятки с телом грудины, клиновидно-затылочный синхондроз). Костные соединения появляются по мере окостенения синхондрозов или между отдельными костями основания черепа, костями, составляющими тазовую кость, и др.

Симфизы (от греч. symphysis -- срастание) также представляют собой хрящевые соединения, когда в толще хряща имеется небольшая щелевидная полость, лишенная синовиальной оболочки. Согласно PNA к ним относятся межпозвоночные симфизы, лобковый симфиз и симфиз рукоятки грудины.

Прерывные соединения костей (суставы). Строение сустава. Вспомогательные образования

Суставы, или синовиальные соединения, представляют собой прерывные соединения костей, отличающиеся обязательным наличием следующих анатомических элементов: суставных поверхностей костей, покрытых суставным хрящом, суставной капсулы, суставной полости, синовиальной жидкости. Суставные поверхности покрыты гиалиновым хрящом, лишь у височно-нижнечелюстного и грудинно-ключичного суставов он волокнистый. Толщина хряща колеблется в пределах от 0,2 до 6,0 мм и находится в прямой зависимости от функциональной нагрузки, испытываемой суставом -- чем больше нагрузка, тем толще хрящ. Суставной хрящ лишен кровеносных сосудов и надхрящницы. Он содержит 75--80% воды и 20--25% сухих веществ, из которых около половины -- это коллаген, соединенный с протеогликанами. Первый придает хрящу прочность, вторые -- упругость. Через межклеточное вещество путем диффузии из синовиальной жидкости в хрящ свободно проникают вода, питательные вещества и т. д., оно непроницаемо для крупных молекул белка. Непосредственно к кости прилежит слой хряща, пропитанного солями кальция, над ним в основном веществе располагаются изогенные группы клеток -- хондроцитов, залегающих в общей ячейке. Изогенные группы располагаются в виде колонок, перпендикулярных к поверхности хряща. Над слоем изогенных групп находится тонкий волокнистый слой, а над ним поверхностный слой. Со стороны суставной полости хрящ покрыт слоем аморфного вещества. Хондроциты секретируют гигантские молекулы, которые образуют межклеточное вещество.

Скольжение суставных поверхностей облегчается благодаря их увлажнению синовиальной жидкостью, продуцируемой синовиальными клетками синовиальной мембраны, представляющей собой внутренний слой суставной капсулы. Синовиальная мембрана имеет множество ворсинок и складок, увеличивающих ее поверхность. Она обильно кровоснабжается, капилляры лежат непосредственно под слоем эпителиальных клеток, выстилающих оболочку. Эти клетки, секреторные синовиоциты, вырабатывают синовиальную жидкость и ее главный компонент -- гиалуроновую кислоту. Фагоцитарные синовиоциты обладают свойствами макрофагов.

Плотный наружный слой суставной капсулы -- фиброзная мембрана, прикрепляется к костям вблизи краев суставных поверхностей и переходит в надкостницу. Суставная капсула биологически герметична. Она, как правило, укрепляется внекапсульными, а в ряде случаев внутрикапсульными (в толще капсулы) связками. Связки не только укрепляют сустав, но и направляют, а также ограничивают движения. Они чрезвычайно прочны, так, например, прочность на разрыв подвздошно-бедренной связки достигает 350 кг, а длинной связки подошвы -- 200 кг.

В норме у живого человека суставная полость представляет собой узкую щель, в которой содержится синовиальная жидкость. Даже в таких крупных суставах, как коленный или тазобедренный, ее количество не превышает 2--3 см3. Давление в полости сустава ниже атмосферного.

Суставные поверхности редко полностью соответствуют друг другу по форме. Для достижения конгруэнтности (от лат. соngruens -- согласный между собою, соответствующий) в суставах имеется ряд вспомогательных образований -- хрящевых дисков, менисков, губ. Так, например, в височно-нижне-челюстном суставе имеется хрящевой диск, сращенный с капсулой по наружному краю; в коленном -- полукольцевые медиальный и латеральный мениски, которые расположены между суставными поверхностями бедренной и большеберцовой костей; по краю полулунной суставной поверхности вертлужной впадины имеется вертлужная губа, благодаря которой суставная поверхность тазобедренного сустава углубляется и больше соответствует шаровидной головке бедренной кости. К вспомогательным образованиям относятся и синовиальные сумки, синовиальные влагалища -- небольшие полости, образованные синовиальной мембраной, располагающиеся в фиброзной мембране (оболочке) и заполненные синовиальной жидкостью. Они облегчают движение соприкасающихся поверхностей сухожилий, связок, костей.

Классификация суставов. Биомеханика суставов

В зависимости от количества суставных поверхностей, участвующих в образовании сустава и их взаимоотношений между собой, суставы делятся на простые (две суставные поверхности), сложные (более двух), комплексные и комбинированные. Если два или более анатомически самостоятельных сустава функционируют совместно, то они называются комбинированными (например, оба височно-нижнечелюстные суставы). Комплексные -- это суставы, в которых между сочленяющимися поверхностями имеются диск или мениски, разделяющие полость сустава на два отдела.

Форма сочленяющихся поверхностей обусловливает количество осей, вокруг которых может совершаться движение. В зависимости от этого суставы делятся на одно-, двух- и многоосные (рис. 42).

Для удобства форму суставной поверхности сравнивают с отрезком тела вращения. При этом каждая форма сустава допускает то или иное число осей движения. Так, цилиндрические и блоковид-ные суставы одноосные. При вращении прямой образующей линии вокруг параллельной ей прямой оси возникает цилиндрическое тело вращения. Цилиндрические суставы -- это срединный атлантоосе-вой, проксимальный луче-локтевой. Блок представляет собой цилиндр с бороздой или гребнем, расположенными перпендикулярно оси цилиндра, и наличием соответствующего углубления или выступа на другой суставной поверхности. Примерами блоковидных суставов являются межфаланговые суставы кисти. Разновидностью блоковидных суставов является винтообразный. Отличие винта от блока в том, что борозда расположена не перпендикулярно оси, а по спирали. Примером винтообразного сустава может служить плечелоктевой сустав.

Эллипсовидные, мыщелковые и седловидные суставы являются двухосными. При вращении половины эллипса вокруг его диаметра образуется тело вращения -- эллипс. Лучезапястный сустав является эллипсовидным. Мыщелковый сустав по форме близок к блоковидному и эллипсовидному, его суставная головка -- подобие эллипса, однако в отличие от первого суставная поверхность располагается на мыщелке. Например, коленный и атлантозатылочный суставы являются мыщелковыми (первый является также комплексным, второй -- комбинированным).

Суставные поверхности седловидного сустава представляют собой два «седла» с пересекающимися под прямым углом осями. Седловидным является запястно-пястный сустав большого пальца, который характерен только для человека и обусловливает противопоставление большого пальца кисти остальным. У неандертальца этот сустав был уплощенным. Преобразование сустава в типично седловидный связано с трудовой деятельностью.

Шаровидные и плоские суставы -- многоосные. При вращении половины окружности круга вокруг его диаметра образуется шар. Кроме движения по трем осям, в них еще совершается и круговое движение. Например, плечевой и тазобедренный суставы. Последний считают чашеобразным благодаря значительной глубине суставной ямки.

Плоские суставы относятся к многоосным. Движения в них хотя и могут производиться вокруг трех осей, отличаются малым объемом. Объем движения в любом суставе зависит от его строения, разности угловых размеров суставных поверхностей, а в плоских суставах величина дуги движения незначительна. К плоским относятся, например, межзапястные, предплюсне-плюсневые суставы.

В суставах вокруг фронтальной оси производится сгибание (flexio) и разгибание (extensio); вокруг сагиттальной -- приведение (adductio) и отведение (abdiictio); вокруг продольной -- вращение (rotatio). При комбинированном движении вокруг всех описанных осей выполняется круговое движение, при этом свободный конец описывает окружность.

В раннем детском возрасте суставы развиваются интенсивно, окончательное формирование всех элементов суставов заканчивается в возрасте 13--16 лет. Подвижность суставов больше у детей и молодых людей, у женщин она больше, чем у мужчин. С возрастом подвижность уменьшается, это связано со склерозированием фиброзной мембраны и связок, ослаблением мышечной активности. Лучшее средство для достижения высокой подвижности суставов и профилактики возрастных изменений -- это постоянные физические упражнения.

Мышцы, сухожилия, вспомогательный аппарат мышц. Классификация мышц

Мышцы (muscus) -- активная часть двигательного аппарата человека. Кости, связки, фасции образуют его пассивную часть.

Все скелетные мышцы нашего тела: мышцы головы, туловища и конечностей, состоят из исчерченной мышечной ткани. Сокращение таких мышц происходит произвольно.

Сократимая часть мышцы, образованная мышечными волокнами, с обоих концов переходит в сухожилие. С помощью сухожилий мышцы прикрепляются к костям скелета. В некоторых случаях (мимические мышцы лица) сухожилия вплетаются в кожу. Сухожилия мало растяжимы, построены из оформленной плотной волокнистой соединительной ткани, они очень прочны. Например, пяточное (ахиллово) сухожилие, принадлежащее трехглавой мышце голени, выдерживает нагрузку в 400 кг, а сухожилие четырехглавой мышцы бедра -- более полутонны (600 кг). Широкие мышцы туловища имеют плоские сухожильные растяжения -- апоневрозы. Сухожилия состоят из параллельных пучков коллагеновых волокон, между которыми расположены фиброциты и небольшое количество фибробластов. Это пучки первого порядка. Рыхлая волокнистая неоформленная соединительная ткань (эндотендиний) окутывает несколько пучков первого порядка, образуя пучки второго порядка. Сухожилие снаружи покрыто перитендинием -- футляром из плотной волокнистой соединительной ткани. В соединительно-тканных прослойках проходят сосуды и нервы.

Скелетные мышцы взрослого человека составляют 40% от всей массы его тела. У новорожденных и детей на мышцы приходится не более 20--25% массы тела, а в старости отмечается постепенное уменьшение массы мускулатуры до 25--30% от массы тела. Всего в теле человека около 600 скелетных мышц.

Мышцы снабжены вспомогательными аппаратами. К ним относятся фасции, фиброзные и синовиальные влагалища сухожилий, синовиальные сумки, блоки. Фасция -- это соединительно-тканная оболочка мышцы, которая образует ее чехол. Фасции отграничивают мышцы друг от друга, выполняют механическую функцию, создавая опору для брюшка при сокращении ослабляют трение мышц. Мышцы с фасциями соединены, как правило, с помощью рыхлой неоформленной соединительной ткани. Однако некоторые мышцы начинаются от фасции и прочно с ними сращены (на голени, предплечье). Различают фасции собственные и поверхностные. Поверхностная фасция располагается под кожей и целиком окутывает все мышцы какой-либо области (например, плечо, предплечье), собственные фасции расположены глубже и окружают отдельные мышцы и группы мышц. Межмышечные перегородки разделяют группы мышц, выполняющих различную функцию. Фасциалъные узлы, утолщения фасций расположены в участках соединения фасций друг с другом. Они укрепляют фасциальные влагалища сосудов и нервов. Строение фасций зависит от функции мышц, от силы, которую фасция испытывает при сокращении мышцы. Там, где мышцы развиты хорошо, фасции более плотные, имеют сухожильное строение (например, широкая фасция бедра, фасция голени), и наоборот, мышцы, выполняющие небольшую нагрузку, окружены рыхлой фасцией. В местах, где сухожилия перекидываются через костные выступы, фасции утолщаются в виде сухожильных дуг. В области голеностопного, лучезапястного суставов утолщенные фасции прикрепляются к костным выступам, образуя удерживатели сухожилий и мышц. В расположенных под ними пространствах в костно-фиброзных или фиброзных влагалищах проходят сухожилия. В ряде случаев фиброзные влагалища нескольких сухожилий общие, в других каждое сухожилие имеет самостоятельное влагалище. Удерживатели предотвращают боковые смещения сухожилий при сокращении мышц.

Синовиальное влагалище отделяет движущееся сухожилие от неподвижных стенок фиброзного влагалища и устраняет трение их друг от друга. Синовиальное влагалище представляет собой заполненную небольшим количеством жидкости замкнутую щелевидную полость, ограниченную висцеральным и париетальным листками. Удвоенный листок влагалища, соединяющий внутренний и наружный листки, называется брыжейкой сухожилия (мезотендиний). В нем проходят кровеносные сосуды, нервы, снабжающие сухожилие.

В зонах расположения суставов, где сухожилие или мышца перекидывается через кость или через соседнюю мышцу, имеются синовиальные сумки, которые, подобно описанным влагалищам, устраняют трение. Синовиальная сумка представляет собой плоский двустенный мешочек, выстланный синовиальной оболочкой и содержащий небольшое количество синовиальной жидкости. Наружная поверхность стенок сращена с движущимися органами (мышца, надкостница). Размеры сумок варьируют от нескольких мм до нескольких см. Чаще сумки находятся вблизи суставов у мест прикрепления. Часть из них сообщается с полостью сустава.

Классификация мышц

По форме - Веретенообразная (Головка, Брюшко, Хвост), Квадратная, Треугольная, Лентовидная, Круговая.

По количеству головок - Двуглавая, Трехглавая, Четырехглавая.

По количеству брюшек - Двубрюшная.

По направлению мышечных пучков - Одноперистая, Двуперистая, Многоперистая.

По функции - Сгибатель, Разгибатель, Вращатель (Кнаружи (пронатор), Кнутри (супинатор)), Подниматель, Сжиматель (сфинктер), Отводящая (абдуктор), Приводящая (аддуктор), Напрягатель.

По расположению - Поверхностная, Глубокая, Медиальная, Латеральная.

Мышечная ткань. Работа мышц

Мышечная ткань. Работа мышц.

Имеются два типа мышечной ткани: гладкая (неисчерченная) и поперечно-полосатая (исчерченная).

Гладкие мышцы осуществляют движения стенок внутренних органов, кровеносных и лимфатических сосудов. В стенках внутренних органов они, как правило, располагаются в виде двух слоев: внутреннего кольцевого и наружного продольного. В стенках артерий они формируют спиралевидные структуры. Структурная единица гладкой мышечной ткани -- миоцит. Функциональная единица -- группа миоцитов, окруженных соединительной тканью и иннервируемых нервным волокном, где нервный импульс передается с одной клетки на другую по межклеточным контактам. Однако в некоторых гладких мышцах (например, сфинктер зрачка) иннервируется каждая клетка. В миоците имеются тонкие актиновые (толщиной 7 нм), толстые миозиновые (толщиной 17 нм) и промежуточные (толщиной 10--12 нм) филаменты. Одной из важных особенностей строения миоцита является наличие в нем плотных телец, содержащих а -актинин, прикрепляющихся к плазматической мембране и находящихся в большом количестве в цитоплазме. Незернистая эндоплазматическая сеть (саркоплазматический ретикулум) представлена узкими трубочками и прилежащими к ним пузырьками-кавеолами, которые являются впячиваниями плазматической мембраны. Считают, что они проводят нервные импульсы. Гладкие мышцы совершают длительные тонические сокращения (например, сфинктеры полых органов, гладкие мышцы кровеносных сосудов) и относительно медленные движения, которые зачастую ритмичны (например, маятникообразные и перистальтические движения кишечника). Гладкие мышцы отличаются высокой пластичностью -- после растяжения они долго сохраняют длину, которую получили в связи с растяжением.


Подобные документы

  • Классификация отделов нервной системы человека, ее структурно-функциональные единицы. Общая анатомия спинного мозга: сегментарное строение, оболочки, серое и белое вещество. Строение, синусы (пазухи) и система кровоснабжения головного мозга и мозжечка.

    шпаргалка [88,6 K], добавлен 07.02.2013

  • Строение сердца человека - центрального органа кровеносной системы, понятие автоматии сердечной мышцы. Характерные анатомические и физиологические особенности иннервации сердца. Компоненты и функции проводящей системы сердца. Сердечный цикл, его фазы.

    реферат [9,9 M], добавлен 25.07.2010

  • Строение, типы и развитие нейронов. Взаимодействие глиальных клеток и нейронов. Схема межнейронного синапса. Механизм передачи возбуждения. Строение и функции спинного мозга. Отделы головного мозга, их функциональное значение. Лимбическая система.

    курсовая работа [2,6 M], добавлен 16.01.2012

  • Общая характеристика нервной системы. Форма и размеры нейронов, передача возбуждения. Строение нейроглиальных клеток, выполняемые функции. Условные и безусловные рефлексы. Процессы, происходящие в центральной нервной системе во время физической нагрузки.

    реферат [22,5 K], добавлен 12.12.2009

  • Строение и типы нейронов. Нервная система: центральная и периферическая, ее функциональное деление на соматическую и вегетативную, симпатическую и парасимпатическую. Рефлекс и его виды. Рефлекторная дуга. Строение и функции спинного и головного мозга.

    презентация [1,2 M], добавлен 28.05.2017

  • Сердце: топография и внешнее строение. Мускулатура предсердий и желудочков. Особенности эластических, мышечных и смешанных артерий. Строение большого и малого круга кровообращения. Закономерности распределения кровеносных сосудов в теле человека.

    реферат [2,9 M], добавлен 19.08.2015

  • Клеточное строение мезенхимных, эпидермальных и нейральных групп гладких мышечных тканей. Особенности возбудимости, проводимости и сократимости гладких мышц. Механизмы сокращения и расслабления гладкой мышцы. Возбуждающие и тормозящие медиаторы.

    реферат [147,3 K], добавлен 22.12.2014

  • Анатомия и физиология стопы и пальцев ног. Кости стопы, ее связки, сухожилия и суставы. Сводчатое строение стопы. Мышцы стопы, плоскостопие (уплощение поперечного свода стопы). Виды плоскостопия и его профилактика. Профессиональная нагрузка на стопу.

    реферат [2,7 M], добавлен 16.09.2010

  • Влияние условий жизни, труда, физических упражнений и занятий спортом на форму, строение, подвижность позвоночного столба и грудной клетки. Общая характеристика и классификация мышечных тканей. Особенности сосудистой системы мозга, сердца, печени, почек.

    контрольная работа [47,2 K], добавлен 09.07.2015

  • Опорно-двигательный аппарат: понятие, активная и пассивная часть. Главные функции скелета человека. Неровности на поверхности кости. "Живая" и "мертвая" кость. Хрящевая и костная ткань. Строение остеона, надкостница. Ребра и грудина, кисть, череп.

    презентация [801,5 K], добавлен 27.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.