Фармацевтические суспензии

Понятие суспензии в химии и фармакологии. Седиментационная и агрегативная устойчивость суспензий. Изготовление суспензий дисперсионным и конденсационным методами. Технология приготовления суспензий гидрофильных и гидрофобных веществ, оценка их качества.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 16.11.2015
Размер файла 36,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Суспензия (suspensium) -- жидкая лекарственная форма, представляющая собой дисперсную систему, в которой твердое вещество взвешено в жидкости. Суспензии состоят из дисперсионной среды (воды, растительных масел, глицерина и т.п.) и дисперсной фазы (частиц твердых лекарственных веществ, практически нерастворимых в данной жидкости). Суспензионные лекарственные формы в дисперсологической классификации лекарственных форм относят к свободнодисперсным системам с жидкой дисперсионной средой. Суспензии представляют собой микрогетерогенные дисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой. От коллоидных растворов суспензии отличаются большими размерами взвешенных частиц (более 0,1 мкм). Поперечник частиц дисперсной фазы в суспензии находится в пределах 0,1--100 мкм. В зависимости от величины частиц различают тонкие (0,1 -- 1 мкм) и грубые (более 1 мкм) суспензии. Суспензии образуются в следующих случаях:

а) прописаны лекарственные вещества, не растворимые в жидкой дисперсионной среде (воде), например сера, камфора, магния окись, цинка окись;

б) завышен предел растворимости веществ, например, в воде - кислота борная в концентрации более 5%, натрия гидрокарбонат - более 8%, гидрокортизон в концентрации выше 0,2 %;

в) назначены лекарственные вещества, порознь растворимые, но образующие при взаимодействии нерастворимые соединения, например при взаимодействии кальция хлорида с кислотой глицирризиновой в растворе эликсира грудного - в осадке образуется кальциевая соль глицирризиновой кислоты, при растворении бензилпенициллина раствором новокаина образуется нерастворимая новокаиновая соль бензилпенициллина;

Следует, однако, учитывать, что в осадке не могут находиться вещества списка «А», сильнодействующие и наркотические, находящиеся на ПКУ: если подобное происходит, то полученный лекарственный препарат нельзя отнести к лекарственной форме «Суспензии» - он будет представлять собой фармацевтическую несовместимость.

Назначают суспензии для внутреннего и наружного употребления; реже -- внутримышечно или в полости тела, т.е. в брюшную или грудную полости.

В фармацевтической практике в форме суспензий чаще всего назначают вещества для внутреннего употребления -- микстуры-суспензии. Взвешенные частицы часто являются компонентами примочек, микстур, составов для спринцеваний, полосканий, капель, линиментов и т.п. Пастообразные суспензии с вязкой дисперсионной средой (например, с вазелином) широко применяются в качестве мазей. Суспензия, введенная больному в виде инъекций, увеличивает период терапевтического действия лекарственного вещества. С точки зрения эффективности действия суспензии занимают промежуточное положение между растворами и тонкими порошками.

С точки зрения биофармации, суспензии как лекарственная форма, имеют преимущества по сравнению с другими лекарственными формами, вследствие реализации ряда фармацевтических факторов, таких как: физическое состояние лекарственного вещества, вспомогательные вещества и другие. Физическое состояние лекарственного вещества, в частности, степень его измельчения и вспомогательные вещества влияют на скорость растворения, биодоступность, метаболизм лекарственных веществ:

· Чем меньше размер дисперсной фазы в суспензии, тем более (при прочих равных условиях) выражено ее терапевтическое действие. Суспензии как лекарственные формы имеют преимущество перед порошками и таблетками, так как твердые частицы в них более тонко диспергированы, поэтому поверхность их контакта с тканями увеличивается. Отпуск лекарственных веществ в виде суспензии дает возможность получить пролонгированное действие. Так, суспензии лекарственных веществ в жирных маслах или суспензии, содержащие частицы лекарственного вещества, покрыты защитными оболочками, нерастворимыми в желудочном соке, и оказывают терапевтический эффект только при расщеплении в кишечнике. Это важно для такого, например, вещества, как цинк-инсулин. Суспензия цинк-инсулина оказывает действие в течение 24--36 ч в отличие от растворов, действие которых проявляется приблизительно в течение 6 ч.

· введение нерастворимых веществ в мелкодисперсном состоянии в жидкую дисперсионную среду дает возможность получить большую поверхность твердой фазы и обеспечить тем самым лучший терапевтический эффект. Например, сульфадиметоксин микронизированный (3-12 мкм), вводимый животным в виде 2% водной суспензии из расчета 500 мг/кг, всасывался в кровь значительно быстрее по сравнению с лекарственным веществом, отвечающем требованиям нормативно-технической документации. Его максимальная концентрация через 1-2 ч составляла 18,5-21,9 мг/л, в то время как в контрольной группе максимальный уровень сульфадиметоксина в крови достигался через 4 ч и составлял 5 мг/л.

· В некоторых случаях при назначении суспензий снижается отрицательное воздействие желудочного сока на лекарственные вещества, находящиеся в виде мелких частиц, по сравнению с истинными растворами, где лекарственные вещества находятся в форме ионов и молекул.

У суспензий, как и у других лекарственных форм, имеются свои преимущества и недостатки. К последним относится возможность гидролитического разложения лекарственного вещества при хранении суспензии в результате длительного взаимодействия с дисперсионной (в основном водной) средой. Преимуществами являются удобство приема, возможность исправления вкуса и запаха (корригирования), что имеет существенное значение в педиатрической практике, а также возможность отпуска в виде сухого полуфабриката, который впоследствии суспендируют добавлением воды непосредственно перед употреблением (это позволяет хранить действующие вещества достаточно длительное время). В зависимости от физико-химических свойств веществ, образующих дисперсную систему, различают суспензии из поверхностно-лиофильных нерастворимых веществ (белая глина, бентонитовых глин, магния окиси, цинка окись, висмута субнитрата и др.) и суспензии из поверхностно-лиофобных веществ (камфоры, серы, фенилсалицилат, ментола и др.). Приготовление суспензий из гидрофильных ненабухающих препаратов начинается с тщательного растирания твердой фазы в ступке сначала в сухом виде, а затем с небольшой порцией жидкости (растворителя). Согласно правилу Дерягина для эффективного диспергирования количество жидкости не должно превышать половины массы твердой фазы. Полученную массу разбавляют примерно в 10 раз в отпускном флаконе. Остаток на дне ступки снова растирают, разбавляют жидкостью и сливают верхний слой суспензии. Операцию повторяют до тех пор, пока весь препарат не будет полностью диспергирован и получен в виде тонкой взвеси. Этот способ особенно удобен для приготовления суспензий гидроокиси магния (с содержанием вещества 8--10 %), кальция карбоната, кальция глицерофосфата, висмута нитрата основного, крахмала, окиси цинка и других ненабухающих гидрофильных препаратов. Если диспергированный препарат набухает (теальбин), его растирают очень тщательно в сухом виде, так как добавление жидкости понижает хрупкость и затрудняет диспергирование. Характерным свойством суспензий является их оптическая неоднородность. Мутность является неотъемлемым внешним признаком суспензии и обусловливается наличием нерастворимых частиц, которые непроницаемы для световой волны. Степень мутности суспензий может быть весьма различной и в значительной мере определяется концентрацией взвешенной фазы и степенью ее дисперсности, т.е. размером частиц. Одной из важнейших особенностей суспензий является их седиментационная неустойчивость, которая определяет способы изготовления, отпуска, хранения и приема данных лекарственных форм. Седиментационная неустойчивость заключается в неизбежном оседании взвешенных частиц под воздействием силы тяжести и проявляется двумя способами. Во-первых, частицы могут оседать сами по себе, не слипаясь (в этом случае суспензия агрегативно устойчива, т.е. частицы ее устойчивы к слипанию -- агрегации). Если же частицы, оседая, слипаются под воздействием молекулярных сил и образуют агрегаты (хлопья), то такая суспензия агрегативно неустойчива.

В некоторых случаях при коагуляции суспензий образуются большие хлопья, плохо смачиваемые дисперсионной средой и всплывающие на поверхность (флокуляция). Седиментационная неустойчивость суспензий приводит к постепенному нарушению однородности состава лекарства вплоть до полного осаждения или всплывания дисперсной фазы. Поэтому в случае, когда суспензию дозируют, существует опасность нарушения точности дозировки лекарственных веществ при приеме. При надлежащем приготовлении суспензий отстаивание дисперсной фазы может быть существенно замедленным, а нарушения дозировки соответственно уменьшенными. Однако полностью устранить эти нарушения практически невозможно.

Требования ГФ предъявляемые к суспензиям

Различают суспензии для внутреннего, наружного и парентерального применения. Суспензии для парантерального применения вводят только внутримышечно. Они должны соответствовать статье «Инъекции», если нет других указаний в частных статьях.

Суспензии могут быть готовыми к применению, а также в виде порошков или гранул для суспензий, к которым перед применением прибавляют воду или другую подходящую жидкость; количество воды или другой жидкости должно быть указано в частных статьях.

В качестве вспомогательных используют вещества, увеличивающие вязкость дисперсионной среды, поверхностно-активные и буферные вещества, корригенты, консерванты, антиокислители, красители и другие, разрешенные к медицинскому применению. Перечень вспомогательных веществ должен быть указан в частных статьях. Не допускается изготовление суспензий, содержащих ядовитые вещества.

Отклонение в содержании действующих веществ в 1 г (мл) суспензии не должно превышать±10%.

Перед употреблением суспензии взбалтывают в течение 1--2 мин, при этом должно наблюдаться равномерное распределение частиц твердой фазы в жидкой дисперсионной среде. Время седиментационной устойчивости суспензии или размер частиц твердой фазы должны быть указаны в частных статьях.

Маркировка. Для суспензий, полученных из порошков или гранул, должны быть указаны условия и время хранения после прибавления воды. Все виды суспензий должны иметь указание: «Перед употреблением взбалтывать».

Хранение. В упаковке, обеспечивающей стабильность при хранении и транспортировании и, если необходимо, в прохладном месте

Устойчивость суспензий

Для обеспечения более точной дозировки лекарственных веществ необходимо, чтобы суспензии при хранении были устойчивыми.

Суспензии, как и другие гетерогенные системы, характеризуются кинетической (седиментационной) и агрегативной (конденсационной) неустойчивостью.

Кинетическая (седиментационная) устойчивость это способность дисперсной системы сохранять равномерное распределение частиц по всему объему дисперсной фазы. Суспензии являются кинетически неустойчивыми системами. Частицы суспензий по сравнению с истинными и коллоидными растворами имеют довольно крупные размеры, которые под воздействием силы тяжести обладают способностью к седиментации, т.е. опускаются на дно или всплывают, в зависимости от относительной плотности дисперсной фазы и дисперсионной среды. Кинетическая устойчивость в дисперсных системах характеризуется законом Стокса: скорость осаждения частиц прямо пропорциональна квадрату их радиуса, разности плотностей дисперсной фазы и дисперсионной среды, ускорению силы тяжести и обратно пропорциональна вязкости дисперсионной среды. Закон выражается формулой:

v = 2 х r2 х (d1 -- d2) х g / 9 х h, где

v -- скорость, оседания частиц, м/с;

r -- радиус частиц, м;

d1 -- плотность фазы, г/м3;

d2 -- плотность среды, г/м3;

h -- вязкость среды;

g -- ускорение свободного падения в м/с2.

Таким образом, стойкость суспензионной взвеси будет тем больше, чем меньше будет размер частиц, чем ближе будут значения плотностей дисперсной фазы и дисперсионной среды и чем больше будет величина вязкости дисперсионной среды. Следует учитывать, что закон Стокса применим для монодисперсных систем, в которых частицы имеют сферическую форму. В суспензиях, где частицы не имеют сферической формы и процесс седиментации более сложен, закон Стокса описывает процесс седиментации лишь в приближенном виде. Закон Стокса также неприменим при величине частиц меньше 0,5 мкм, так как в этом случае броуновское движение препятствует их слипанию. Кроме того, закон Стокса для фармацевтических суспензий не является абсолютно точным, так как в нем не отражены факторы, от которых также зависит стойкость взвеси (гидрофильность или гидрофобность нерастворимых частиц, т.е. смачиваются или не смачиваются дисперсные частицы дисперсионной средой). Следовательно, для уменьшения скорости седиментации, т.е. для повышения седиментационной устойчивости суспензии можно использовать следующие методы:

· выбор дисперсионной среды с плотностью, равной или близкой к плотности лекарственного вещества;

· уменьшение размеров частиц за счет более тонкого измельчения лекарственного вещества;

· выбор дисперсионной среды с высокой вязкостью.

Малый размер частиц лекарственного вещества обусловливает их большую удельную поверхность, что приводит к увеличению свободной поверхностной энергии. Измельчение частиц до бесконечно малых размеров невозможно (2-ой закон термодинамики). Из следствия этого закона, свободная поверхностная энергия частицы стремится к минимуму. Уменьшение свободной поверхностной энергии может происходить за счет агрегации (слипания, объединения) частиц.

Агрегативная (конденсационная) устойчивость это способность частиц дисперсной фазы противостоять агрегации (слипанию). Агрегационная устойчивость частиц обеспечивается наличием на их поверхности электрического заряда (вследствие диссоциации, адсорбции ионов и пр.).

Необходимое измельчение гидрофобных веществ достигается растиранием их в ступке с прибавлением небольшого количества смачивающей жидкости.

Последнее обстоятельство связано с тем, что смачивающая жидкость проникает в поверхностные микротрещины твердых частиц и оказывают расклинивающее действие (эффект Ребиндера). Чем выше энергия смачивания, тем сильнее выражен расклинивающий эффект и тем легче происходит процесс измельчения. Гидрофильные вещества (например, белая глина, магния окись, цинка окись и др.), легче измельчаются в присутствии воды, а лиофобные -- в присутствии неполярной жидкости (спирта). Лиофильные вещества, адсорбируя на своей поверхности частицы дисперсионной среды, образуют оболочку, которая препятствует слипанию твердых частиц и превращению их в быстро оседающие хлопья. Лиофобные вещества, напротив, не способны адсорбировать частицы дисперсионной среды, поэтому быстро слипаются и осаждаются. Таким образом, устойчивые суспензии веществ, обладающих относительной смачиваемостью водой (сульфадимезин, сульгин, фталазол, терпингидрат), в водной среде получить невозможно. Для их приготовления необходимо добавлять большое количество сахарного сиропа (около 30 % от массы лекарства) или вводить вспомогательные вещества (стабилизаторы), которые обеспечивают им свойства смачиваемости. В качестве стабилизаторов в фармацевтической практике наиболее часто используют камеди (аравийскую, абрикосовую, трагакант); слизи (пектин, кислоту альгиновую, натрия альгинат, крахмал, желатин и желатозу), производные целлюлозы (метилцеллюлозу, натрийкарбоксиметилцеллюлозу), неорганические соединения (бентонит, аэросил, вигум). Кроме того, для повышения устойчивости суспензий часто применяют комбинированные стабилизаторы, обладающие высокой поверхностной активностью и вязкостью. Так, для стабилизации 3%-ной суспензии норсульфазола используют 3%-ный гель натриевой формы бентонита, модифицированный МЦ (5 %).

С помощью 1%-ных растворов метилцеллюлозы и твина-60 можно получить достаточно устойчивые 3%-ные суспензии сульфадимезина и фталазола. Устойчивую 2%-ную суспензию сульфадиметоксина можно приготовить с использованием в качестве дисперсионной среды 2%-ного раствора спирта поливинилового с 0,2%-ным твином-80. Перечисленные стабилизаторы суспензий позволяют значительно повысить качество и эффективность этой лекарственной формы. Количество стабилизирующих веществ зависит от их природы, свойств дисперсной фазы, степени ее измельчения и количества. При приготовлении суспензий из препаратов с нерезко выраженными гидрофобными свойствами (терпингидрата, бензонафтола, фенилсалицилата) на 1 г препарата берут 0,25 г камеди абрикосовой, 0,5 г камеди аравийской или желатозы. Для препаратов с резко выраженными гидрофобными свойствами (ментола, камфоры) количество стабилизирующих веществ увеличивают, т.е. на 1 г препарата берут 0,5 г камеди абрикосовой, 1 г камеди аравийской или желатозы. Действующее вещество тщательно растирают в ступке со стабилизатором, добавляют небольшое количество воды (примерно 1/2 часть общего количества препарата и стабилизатора). В процессе растирания постепенно добавляют остальное количество воды или прописанного раствора.

Затем смесь переносят в отпускной флакон, укупоривают, оформляют.

Технология изготовления суспензий

Существует два метода получения суспензий: дисперсионный и конденсационный. Дисперсионный способ получения суспензий основан на измельчении частиц лекарственного вещества механическими способами, с помощью ультразвука и другими. Конденсационный способ получения суспензий основан на замене растворителя; при этом к дисперсионной среде, в которой лекарственное вещество нерастворимо, добавляют раствор лекарственного вещества в растворителе, который смешивается с дисперсионной средой.

При расчетах следует учитывать, что водные суспензии изготавливают в массообъемной концентрации и контролируют по объему при содержании твердой фазы менее 3 %. В этом случае могут быть использованы концентрированные растворы других лекарственных веществ. При содержании твердой фазы 3 % и более водные суспензии, суспензии в вязких и летучих дисперсных средах изготавливают и контролируют по массе.

Технология изготовления суспензий дисперсионным методом

При получении суспензии дисперсионным методом учитывают степень гидрофильности или гидрофобности лекарственного вещества, вводимого в состав суспензии.

Различают вещества:

· Гидрофильные (краевой угол смачивания меньше 45о) - хорошо смачиваются водой: при полном смачивании капля жидкости полностью растекается в тонкую пленку по поверхности вещества. К гидрофильным веществам относятся висмута нитрат основной, крахмал, цинка оксид, магния оксид и карбонат, кальция карбонат и глицерофосфат, глина белая

· Не резко гидрофобные (краевой угол смачивания от 45 до 90о) - тальк, сера, сульфамоно- и сульфодиметоксин, терпингидрат, фенилсалицилат, этазол, фталазол, стрептоцид, сульфадимезин и др. растворимые сульфаниламиды

· Гидрофобные (краевой угол смачивания от 90 до 180о) - ментол, тимол, камфора, парафин

При изготовлении суспензий дисперсионным методом наиболее пристальное внимание относят к измельчению лекарственного вещества, так как именно этот фактор в наибольшей степени влияет на устойчивость образующейся суспензии. При изготовлении суспензии этим методом лекарственное вещество (твердая фаза) предварительно измельчают до мелкодисперсного состояния. Для «сухих» суспензий, представляющих собой смесь лекарственного и вспомогательных веществ, образующих суспензию после добавления воды (в аптечных или домашних условиях), каждый ингредиент измельчают отдельно и просеивают через тонкое сито. После смешения ингредиентов во избежание расслоения смесь вновь просеивают.

Технологические стадии изготовления суспензий дисперсионным методом

Как правило, в состав суспензий, помимо лекарственного вещества, нерастворимого в дисперсионной среде, входят также вещества, в ней растворимые. Поэтому для стадий технологического процесса, характерных для технологии суспензий, следует учитывать стадии изготовления водных и неводных растворов растворение и процеживание. На основании инструкций по использованию массо-объемных методов при изготовлении суспензий, содержащих лекарственные вещества в концентрации более 4%, их готовят по массе. Общая технология суспензий, изготовляемых дисперсионным методом, включает следующие стадии: взвешивание, измельчение, смешивание, упаковка .

Эффект Ребиндера

Ребиндера эффект, эффект адсорбционного понижения прочности твёрдых тел, облегчение деформации и разрушения твёрдых тел вследствие обратимого физико-химического воздействия среды. Открыт П. А. Ребиндером (1928) при изучении механических свойств кристаллов кальцита и каменной соли. Возможен при контакте твёрдого тела, находящегося в напряжённом состоянии, с жидкой (или газовой) адсорбционно-активной средой. Эффект Ребиндера весьма универсален -- наблюдается в твёрдых металлах, ионных, ковалентных и молекулярных моно- и поликристаллических телах, стеклах и полимерах, частично закристаллизованных и аморфных, пористых и сплошных. Основное условие проявления Ребиндера эффекта -- родственный характер контактирующих фаз (твёрдого тела и среды) по химическому составу и строению. Форма и степень проявления Ребиндера эффект зависят от интенсивности межатомных (межмолекулярных) взаимодействий соприкасающихся фаз, величины и типа напряжений (необходимы растягивающие напряжения), скорости деформации, температуры. Существенную роль играет реальная структура тела -- наличие дислокаций, трещин, посторонних включений и др. Характерная форма проявления Ребиндера эффект -- многократное падение прочности, повышение хрупкости твёрдого тела, снижение его долговечности. Так, смоченная ртутью цинковая пластина под нагрузкой не гнётся, а хрупко разрушается. Другая форма проявления Ребиндера эффект -- пластифицирующее действие среды на твёрдые материалы, например воды на гипс, органических поверхностно-активных веществ на металлы.

Термодинамический Ребиндера эффект обусловлен уменьшением работы образования новой поверхности при деформации в результате понижения свободной поверхностной энергии твёрдого тела под влиянием окружающей среды. Молекулярная природа Ребиндера эффект состоит в облегчении разрыва и перестройки межмолекулярных (межатомных, ионных) связей в твёрдом теле в присутствии адсорбционно-активных и вместе с тем достаточно подвижных инородных молекул (атомов, ионов). Важнейшие области технического приложения Ребиндера эффект -- облегчение и улучшение механической обработки различных (особенно высокотвёрдых и труднообрабатываемых) материалов, регулирование процессов трения и износа с применением смазок, эффективное получение измельченных (порошкообразных) материалов, получение твёрдых тел и материалов с заданной дисперсной структурой и требуемым сочетанием механических и др. свойств путём дезагригирования и последующего уплотнения без внутренних напряжений.

Технология суспензий гидрофильных веществ

Изготовление суспензий гидрофильных веществ не требует введения стабилизатора, так как на поверхности частиц, имеющих сродство к дисперсионной среде, образуется сольватный слой, обеспечивающий устойчивость системы. Для получения тонко измельченного лекарственного вещества при его диспергировании рекомендуется добавлять растворитель в половинном количестве от массы измельчаемого лекарственного вещества (правило Б.В. Дерягина). Частицы лекарственного вещества имеют трещины (щели Гриффитса), в которые проникает жидкость. Жидкость оказывает расклинивающее давление на частицу, которое превосходит стягивающие силы, что и способствует измельчению. Если измельчаемое вещество является набухающим, то его тщательно измельчают в сухом виде и лишь потом добавляют жидкость. После измельчения лекарственного вещества используют прием взмучивания с целью фракционирования частиц. Взмучивание состоит в том, что при смешивании твердого вещества с жидкостью, в 10-20 раз по объему превосходящей его массу, мелкие частицы находятся во взвешенном состоянии, а крупные оседают на дно. Этот эффект объясняется разной скоростью седиментации частиц разных размеров (закон Стокса). Взвесь наиболее измельченных частиц сливают, а осадок повторно измельчают и взмучивают с новой порцией жидкости до тех пор, пока весь осадок не перейдет в тонкую взвесь.

Rp.: Amyli

Bismuthi subnitratis ana 3,0

Aquae purificatae 200 ml

M. D. S. Протирать кожу лица

ППК:

Aquae purificatae 200 ml

Amyli 3,0

Bismuthi subnitratis 3,0

V= 200 мл

Приготовил:

Проверил:

Отпустил:

Технология:

1) В подставку отмеривают 200 мл воды дистиллированной.

2) В ступке измельчают 3,0 г крахмала и 3,0 г висмута нитрата основного с 3 мл воды (правило Б. В. Дерягина), добавляют 60--90 мл воды, смесь взмучивают и оставляют в покое на 2--3 мин.

3) Тонкую взвесь осторожно сливают с осадка во флакон. Влажный осадок дополнительно растирают пестиком, смешивают с новой порцией воды, сливают. Измельчение и взмучивание повторяют, пока все крупные частицы не превратятся в тонкую взвесь.

4) Готовую взвесь не фильтруют. Поскольку суспензии являются агрегативно и кинетически неустойчивыми системами, они снабжаются дополнительной надписью «Перед употреблением взбалтывать».

Технология суспензий гидрофобных веществ с резко и нерезко выраженными свойствами

Для получения устойчивых суспензий гидрофобных веществ необходимо введение вспомогательных веществ (стабилизаторов). В качестве стабилизаторов используются ВМС и ПАВ твин-80, поливинол, аэросил, эфиры целлюлозы, бентониты, детергенты. Выбор конкретного стабилизатора и его количество обусловлен свойствами стабилизирующего вещества, степенью его гидрофобности. Для стабилизации лекарственных веществ с резко выраженными гидрофобными свойствами обычно в аптечной практике используют желатозу в соотношении 1 : 1, а с нерезко выраженными свойствами - 1 : 0,5. В настоящее время разработаны составы и технология 2% суспензий сульфамоно- и сульфадиметоксина - лекарственных веществ с нерезко выраженными гидрофобными свойствами. В качестве стабилизатора использованы твин-80 и поливинол. На 2,0 г сульфади- и сульфамонометоксина их брали соответственно 0,2; 2,0 и 0,05 г; 1,0 г в 100 мл суспензии. Срок хранения - 3 месяца.

Особого подхода требует изготовление суспензии серы. Применение для стабилизации серы общепринятых стабилизаторов нецелесообразно, так как они уменьшают фармакологическую активность серы. В качестве стабилизатора суспензии серы для наружного применения рекомендуют использовать мыло медицинское в количестве 0,1 - 0,2 г на 1,0 г серы. С медицинской точки зрения добавление мыла целесообразно, так как оно разрыхляет поры кожи, являясь ПАВ, и способствует глубокому проникновению серы, которую используют при лечении чесотки и других кожных заболеваний. Следует иметь в виду, что мыло в качестве стабилизатора серы рекомендуется применять только по указанию врача. Провизор-технолог обязан дать рекомендации врачу о необходимости стабилизации суспензии серы с целью повышения устойчивости и фармакологического действия.

Мыло медицинское несовместимо с кислотами, с солями щелочноземельных и тяжелых металлов, так как в результате реакции образуются нерастворимые соли. Для обеспечения устойчивости и эффективности суспензии серы с перечусленными выше веществами количество мыла увеличивают до 0,3 - 0,4 г на 1,0 г серы.

Суспензии веществ с нерезко выраженными гидрофобными свойствами

Rp.: Sulfiris praecipitati 4,0

Glycerini 10,0

Aquae purificatae 200 ml

M.D.S. Наносить на кожу головы

ППК

Saponis medicinalis 0,4

Aquae purificatae 2 ml

Sulfuris praecipitati 4,0

Glycerini 2,1

Glycerini 7,9

Aquae purificatae 198 ml

V=208

Приготовил:

Проверил:

Отпустил:

Технология:

1) Серу растирают с небольшим количеством глицерина, равным полусумме массы серы и стабилизатора (мыла)

2) Отмеривают воду очищенную для приготовления суспензионной пульпы в количестве, равном полусумме массы серы и стабилизатора.

3) Смешивают до получения тонкой пульпы

4) Добавляют глицерин

5) Смывают пульпу в отпускной флакон в несколько приемов

Суспензии гидрофобных веществ

Rp.: Solutionis Natrii bromidi 0,5% 120 ml

Сamphorae 1,0

Coffeini natrii benzoatis 0,5

M. D. S. По одной столовой ложке 3 раза в день

ППК:

Aquae purificatae 112 ml

Solutionis Coffeini-natrii benzoatis (1:10) 5 ml

Solutionis Natrii bromidi (1:5) 3 ml

Camphorae 1,0

Gelatosae 1,0

V=120 мл

Приготовил:

Проверил:

Отпустил:

Технология:

1) В подставку отмеривают 112 мл воды дистиллированной, 5 мл раствора кофеина-натрия бензоата (1:10) и 3 мл раствора натрия бромида (1:5).

2) В ступке растирают до растворения 1,0 г камфоры с 1 мл 90% этанола, добавляют 1,0 г желатозы и 1 мл приготовленного раствора лекарственных веществ, смешивают до получения тонкой пульпы.

3) Смывают пульпу в отпускной флакон раствором кофеина-натрия бензоата и натрия бромида, добавляя по по частям. Оформляют флакон.

Камфора относится к группе гидрофобных лекарственных веществ с резко выраженными гидрофобными свойствами. Поэтому для стабилизации суспензии необходимо использовать равное по массе ментола количество стабилизатора - желатозы.

Технология изготовления суспензий конденсационным методом

Получение суспензий конденсационным методом происходит при разбавлении спиртовых растворов водой или водных растворов спиртом, при смешивании растворов веществ, взаимно ухудшающих растворимость вследствие взаимодействия растворенных веществ.

При изготовлении суспензий этим способом должны быть использованы технологические приемы, обеспечивающие получение взвешенных веществ с минимальным размером частиц.

Типичным примером суспензии, изготавливаемой конденсационным методом, может служить суспензия цинк-инсулина кристаллического (для инъекций). При изготовлении этой суспензии к раствору инсулина добавляют раствор хлорида цинка, с которым инсулин образует малорастворимый комплекс. При соответствующей температуре и рН среды образующийся комплекс имеет стабильную кристаллическую структуру.

Rp.: Calcii chloridi 5,0

Natrii hydrocarbonatis 2,0

Aq. destill. 100,0

MDS. По 1 столовой ложке 3 раза в день

Независимо от метода приготовления в результате взаимодействия между кальция хлоридом и натрия гидрокарбонатом образуется не растворимый в воде кальция карбонат:

СаCl2 + 2NaHCO3 > CaCO3 v + H2O + 2NaCl

Наиболее тонкая суспензия получается при смешивании растворов указанных солей.

Во флакон для отпуска отмеривают 35 мл дистиллированной воды, 25 мл 20 % раствора кальция хлорида и 40 мл 5 % раствора натрия гидрокарбоната.

Rp.: Natrii benzoatis

Calcii chloridi аа 4,0 Aq. destill. 100,0

MDS. По 1 столовой ложке 3 раза в день

В результате взаимодействия между натрия бензоатом и кальция хлоридом выделяется в осадок кальция бензоат, растворимость которого равна 1:40:

2+ CaCl2>(C6H5COO)2Cav+2NaCl

Для получения более тонкой суспензии следует смешать растворы указанных солей. Во флакон для отпуска отмеривают 40 мл дистиллированной воды, 20 мл 20% раствора кальция хлорида и 40 мл 10% раствора натрия бензоата.

Очевидно, что при меньшем содержании кальция хлорида и натрия бензоата (по 2 г в 100 мл микстуры) осадок не образуется. Суспензии могут образоваться при добавлении к водным растворам настоек, нашатырно-анисовых капель.

При приготовлении лекарств по таким прописям следует проводить разбавление способами, ведущими к образованию очень тонкой суспензии.

Настойки добавляют к суспензиям в последнюю очередь и малыми порциями. Если в составе микстуры прописаны настойки, приготовленные на спирте разной крепости, то их добавляют к микстуре в порядке нарастания крепости спирта, т. е. вначале добавляют настойки, изготовленные на более слабом спирте, а затем -- на более крепком.

При таком введении спиртовых вытяжек происходит их постепенное разбавление, и взвесь получается более тонкой.

Rp.: Plumbi acetici

Zinci sulfurici aa 1,5

Aquae destillatae 200,0

Misce. Da. Signa. Для спринцевания.

В результате взаимодействия цинка сульфата и свинца ацетата, которые растворимы в воде, образуется свинца сульфат, выпадающий в осадок, и цинка ацетат, остающийся, в растворе:

Pb(CH3COO) 2 + ZnSO4 > PbSO4 v + Zn(CH3COO) 2

Приготовлять данную суспензию путем раздельного растворения солей и последующего соединения растворов не следует. По данным А. С. Прозоровского, в результате, происходящего взаимодействия солей иногда выделяются X-образные кристаллы свинца сульфата с острыми концами, которые при применении суспензии для спринцевания могут поранить слизистую оболочку и вызвать воспалительный процесс. Готовят ее следующим методом: цинка сульфат и свинца ацетат тщательно растирают в фарфоровой ступке с добавлением небольшого количества процеженной дистиллированной воды в тончайшую пульпу. Затем, пульпу путем взмучивания с процеженной дистиллированной водой переносят в склянку для отпуска.

Recipe: Natrii benzoatis 3,0

Liquoris Ammonii anosati 2 ml

Sirupi Althaeae 30 ml

Aquae purificatae 180 ml

M.D.S. По 1 столовой ложке 3 раза в день

При смешивании нашатырно-анисовых капель с водой выделяются пластинчатые кристаллы анетола, содержащегося в эфирном масле аниса, который является гидрофобным веществом и нуждается в стабилизаторе, которыми в свою очередь, могут стать слизистые вещества, содержащиеся в алтейном сиропе: нашатырно-анисовые капли тщательно смешивают в отдельной подставке с сиропом алтейного корня и эту смесь частями при перемешивании вводят во флакон с раствором бензоата натрия.

Оценка качества суспензий

Оценка качества суспензий проводится так же, как и всех жидких лекарственных форм. Оценку качества суспензий проводят на основании материалов ГФ XI, ФС, ВФС по следующим показателям: содержание действующих веществ, однородность частиц дисперсной фазы, время отстаивания, ресуспендируемость, сухой остаток, рН среды.

Однородность частиц дисперсной фазы определяют при микроскопировании. В суспензиях не должно быть неоднородных, крупных частиц дисперсной фазы. Размер частиц не должен превышать показателей, указанных в частных статьях на суспензии отдельных лекарственных веществ. Обычно размер частиц не превышает 50 мкм.

Время отстаивания характеризует кинетическую устойчивость суспензии. Об устойчивости суспензии судят по величине отстоявшегося слоя (чем она меньше, тем устойчивость суспензии больше).

Ресуспендируемость характеризует способность суспензии восстанавливать свои свойства как гетерогенной системы при взбалтывании. При нарушении агрегативной устойчивости суспензий они должны восстанавливать равномерное распределение частиц по всему объему после 24 ч хранения при взбалтывании в течение 15-20 с, а после 3 суток хранения в течение 40-60с.

Сухой остаток проверяют с целью проверки точности дозирования суспензий. Для этого отмеривают необходимое количество суспензии, высушивают и устанавливают массу сухого остатка

Заключение

Суспензии являются широко используемыми в настоящее время препаратами, особенно в педиатрии. Широкое распространение суспензий объясняется рядом преимуществ по сравнению с другими лекарственными формами:

а) суспензия способствует более быстрому созданию необходимой концентрации препарата в крови и наступлению клинического эффекта;

б) более выраженный фармакологический эффект по сравнению с порошками и таблетками;

в) пролонгированное действие суспензий для парентерального введения при сравнении с растворами для инъекций;

г) возможность маскировки неприятного вкуса лекарственного вещества, что удобно для применения в детской практике и ряд других, не менее важных свойств.

Однако, несмотря на множество преимуществ суспензий, они имеют и ряд недостатков, в частности:

а) неустойчивость суспензий при хранении и вследствие этого низкий срок годности;

б) высокая зависимость степени фармакологического эффекта от технологии изготовления и др.

Основной задачей в совершенствовании технологии суспензий в настоящее время является повышение уровня степени дисперсности суспензий и, как следствие, повышение фармакологического эффекта, а также повышение устойчивости получаемых суспензий.

Применение ультразвука дает возможность получать монодисперсные системы с очень малым размером частиц дисперсной фазы (0,1-1,0 мкм). Кроме того, ультразвук обладает бактерицидным действием, поэтому суспензии, изготовленные с применением ультразвукового диспергирования, практически стерильны.

Перспективным в развитии лекарственной формы суспензии является приготовление «сухих суспензий», которые представляют собой смесь лекарственного вещества со вспомогательными веществами (стабилизаторы, консерванты и др.), чаще в виде гранул. По мере необходимости к сухим суспензиям добавляют дистиллированную воду в нужном количестве (в условиях аптеки) и получают фармакопейный препарат. Сухие суспензии удобны для транспортировки, хранятся практически неограниченное время.

В последние годы стало появляться много новейших противовирусных и противоопухолевых препаратов. Для многих из них суспензия является наиболее оптимальной лекарственной формой (суспензия зидовудина).

суспензия фармакология дисперсионный конденсационный

Библиография

1. Макарова В.Г., Узбекова Д.Г., Якушева Е.Н. и др. Рецептура. Учебное пособие. - Рязань, 2002. - 155с.

2. Синев Д.Н., Марченко Л.Г., Синева Т.Д. Справочное пособие по аптечной технологии лекарств. Изд. 2-е, перераб. и доп. - СПб: Издательство СПХФА, Невский Диалект, 2001. - 316с.

3. Физическая и коллоидная химия: Учеб. пособие для хим. вузов/ И. Н. Годнев, К. С. Краснов, Н. К. Воробьев и др.;Под ред. К. С. Краснова. - М.: Высш. школа, 1998. - 750 с. ИСБН.

4. Справочник фармацевта. Под ред. Тенцовой А.И. - М.: Медицина, 1995. - 610с.

5. Бобылев Р.В., Грядунова Г.П., Иванова Л.А. и др. Технология лекарственных форм. - М.: «Медицина», 1991, т. 2, с. 491-503

6. Государственная фармакопея СССР. - 11-е изд. - М., 1987. Вып.1 - 336с., М., 1990. - Вып.2 - 397с.

7. Николаев Л.А. Лекарствоведение: учебное 2-е изд., испр. и под. - Минск: Высшая школа, 1988. - гл.3. - С.144.

8. Муравьев И.А. Технология лекарств. Изд. 3-е, перераб. и доп. Т.1. - М.: Медицина, 1980. - 391с.

Приложение

Таблица количества стабилизатора на 1,0 г гидрофобного вещества

Количество стабилизатора, г

На 1,0 вещества

С резко выраженными гидрофобными свойствами (камфора, ментол)

С нерезко выраженными гидрофобными свойствами (терпингидрат, фенилсалицилат)

Абрикосовая камедь

0,5

0,25

Желатоза

1,0

0,5

5 % р-р метилцеллюлозы

2,0

1,0

Твин-80

0,2

0,1

Размещено на Allbest.ru


Подобные документы

  • Требования ГФ предъявляемые к суспензиям. Устойчивость суспензионных препаратов при хранении. Технология производства суспензий. Технология изготовления суспензий дисперсионным методом. Технология изготовления суспензий конденсационным методом.

    курсовая работа [27,8 K], добавлен 16.01.2007

  • Промышленное назначение суспензий. Суспензии как дисперсная система и лекарственная форма. Суспензии для внутреннего и наружного применения. Частная технология суспензий в условиях аптеки. Изготовление суспензий в промышленных условиях, оценка качества.

    курсовая работа [125,1 K], добавлен 21.10.2015

  • Характеристика суспензии как лекарственной формы. Исследование факторов, влияющих на устойчивость гетерогенных систем. Изучение особенностей агрегативной и седиментационной устойчивости суспензий. Закон Стокса. Анализ способов выписывания суспензии.

    презентация [226,1 K], добавлен 30.03.2015

  • Сущность и свойства суспензий как жидкой лекарственной формы, оценка их качества. Дисперсионный и конденсационный методы изготовления суспензий в аптеке, способы их стабилизации. Особенности изготовления суспензионных мазей, линиментов и суппозиториев.

    курсовая работа [110,0 K], добавлен 06.12.2013

  • Изучение внутреннего распорядка и оборудования аптеки, устройство и обслуживание аквадистиллятора. Правила приготовления лекарственных порошков, водных и неводных растворов, суспензий и эмульсий. Изготовление водных извлечений (настоев и отваров).

    отчет по практике [42,6 K], добавлен 01.06.2010

  • Фармацевтическая технология и классификация лекарственных форм; совершенствование их составов и способов изготовления. Контроль качества глазных капель и примочек растворов для инъекций, суспензий и эмульсий для внутреннего и наружного применения.

    курсовая работа [58,8 K], добавлен 26.10.2011

  • Приготовление суппозиториев на гидрофобных и гидрофильных основах. Стадии технологического процесса выливания: подготовка лекарственных веществ и основы, получение суппозиторной массы, ее дозирование и формирование. Оценка качества лекарственных форм.

    презентация [403,2 K], добавлен 21.06.2015

  • Изучение возможных методов стабилизации лекарственных форм экстемпорального изготовления (суспензий, эмульсий), правил и целесообразности их применения в условиях аптеки. Стабилизация инъекционных растворов. Требования, предъявляемые к консервантам.

    курсовая работа [50,1 K], добавлен 14.11.2013

  • Особенности фармакологии лекарственных средств в детском возрасте. Требования к разрабатываемым лекарственным формам для детей, технология их приготовления. Методы оценки корригирующих веществ. Современное состояние и перспективы рынка детских лекарств.

    курсовая работа [1,3 M], добавлен 21.08.2011

  • Определение токсикологии. Отличия адаптивных и компенсаторных реакций организма. Особенности трансмембранного транспорта гидрофобных и гидрофильных токсикантов. Факторы, влияющие на поступление ядов в организм, на их метаболизм и на развитие интоксикации.

    шпаргалка [78,4 K], добавлен 15.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.