Лазеры в медицине

Физические основы применения лазерной техники в медицине. Принцип действия лазера, его основные типы. Характеристика лазерного излучения. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 18.12.2014
Размер файла 392,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лазеры в медицине

Введение

Свет использовался для лечения разнообразных болезней испокон веков. Древние греки и римляне часто «принимали солнце» в качестве лекарства. И список болезней, которые приписывалось лечить светом, был достаточно велик.

Настоящий рассвет фототерапии пришелся на 19 век - с изобретением электрических ламп появились новые возможности. В конце XIX столетия красным светом пытались лечить оспу и корь, помещая пациента в специальную камеру с красными излучателями. Также различные «цветовые ванны» (то есть свет различных цветов) успешно применялись для лечения психических заболеваний. Причём лидирующую позицию в области светолечения к началу двадцатого столетия занимала Российская Империя.

В начале шестидесятых годов появились первые лазерные медицинские устройства. Сегодня лазерные технологии применяются практически при любых заболеваниях.

лазерный технология излучение биоткань

1. Физические основы применения лазерной техники в медицине

1.1 Принцип действия лазера

Основой лазеров служит явление индуцированного излучения, существование которого было постулировано А. Эйнштейном в 1916 г. В квантовых системах, обладающих дискретными уровнями энергии, существуют три типа переходов между энергетическими состояниями: индуцированные переходы, спонтанные переходы и безызлучательные релаксационные переходы. Свойства индуцированного излучения определяют когерентность излучения и усиления в квантовой электронике. Спонтанное излучение обусловливает наличие шумов, служит затравочным толчком в процессе усиления и возбуждения колебаний и вместе с безызлучательными релаксационными переходами играет важную роль при получении и удержании термодинамически неравновесного излучающего состояния.

При индуцированных переходах квантовая система может переводиться из одного энергетического состояния в другое как с поглощением энергии электромагнитного поля (переход с нижнего энергетического уровня на верхний), так и с излучением электромагнитной энергии (переход с верхнего уровня на нижний). [1]

Свет распространяется в виде электромагнитной волны, в то время как энергия при испускании излучения и поглощении сконцентрирована в световых квантах, при этом при взаимодействии электромагнитного излучения с веществом, как было показано Эйнштейном в 1917 г., наряду с поглощением и спонтанным излучением возникает вынужденное (индуцированное) излучение, которое образует основу для разработки лазеров.

Усиление электромагнитных волн за счет вынужденного излучения или инициирование самовозбуждающихся колебаний электромагнитного излучения в диапазоне сантиметровых волн и тем самым создание прибора, названного мазером (microwave amplification by stimulated emission of radiation), было реализовано в 1954 г. По предложению (1958 г.) распространить этот принцип усиления на значительно более короткие световые волны в 1960 г. был разработан первый лазер (light amplification by stimulated emission of radiation). [2]

Лазер является источником света, с помощью которого может быть получено когерентное электромагнитное излучение, которое известно нам из радиотехники и техники сверхвысоких частот, а также в коротковолновой, в особенности инфракрасной и видимой, областях спектра.

1.2 Типы лазеров

Существующие типы лазеров можно классифицировать по нескольким признакам. Прежде всего по агрегатному состоянию активной среды: газовые, жидкостные, твердотельные. Каждый из этих больших классов разбивается на более мелкие: по характерным особенностям активной среды, типу накачки, способу создания инверсии и т.д. Например, из твердотельных довольно четко выделяется обширный класс полупроводниковых лазеров, в которых наиболее широко используется инжекционная накачка. Среди газовых выделяют атомарные, ионные и молекулярные лазеры. Особое место среди всех прочих лазеров занимает лазер на свободных электронах, в основе работы которого лежит классический эффект генерации света релятивистскими заряженными частицами в вакууме. [1]

1.3 Характеристики лазерного излучения

Излучение лазера отличается от излучения обычных источников света следующими характеристиками:

- высокой спектральной плотностью энергии;

- монохроматичностью;

- высокой временной и пространственной когерентностью;

- высокой стабильностью интенсивности лазерного излучения в стационарном режиме;

- возможностью генерации очень коротких световых импульсов.

Эти особые свойства излучения лазера обеспечивают ему разнообразнейшие применения. Они определяются главным образом принципиально отличным от обычных источников света процессом генерации излучения за счет вынужденного излучения.

Основными характеристиками лазера являются: длина волны, мощность и режим работы, который бывает непрерывным либо импульсным.

Лазеры находят широкое применение в медицинской практике и прежде всего в хирургии, онкологии, офтальмологии, дерматологии, стоматологии и других областях. Механизм взаимодействия лазерного излучения с биологическим объектом ещё изучен не до конца, но можно отметить, что имеют место либо тепловые воздействия, либо резонансные взаимодействия с клетками тканей [2].

Лазерное лечение безопасно, оно очень актуально для людей с аллергией на медицинские препараты.

2. Механизм взаимодействия лазерного излучения с биотканями

2.1 Виды взаимодействия

Важное для хирургии свойство лазерного излучения - способность коагулировать кровенасыщенную (васкуляризованную) биоткань.

В основном, коагуляция происходит за счет поглощения кровью лазерного излучения, ее сильного нагрева до вскипания и образования тромбов. Таким образом, поглощающей мишенью при коагуляции могут быть гемоглобин или водная составляющая крови. Это означает, что хорошо коагулировать биоткань будет излучение лазеров в области оранжево-зеленого спектра (КТР-лазер, на парах меди) и инфракрасных лазеров (неодимовый, гольмиевый, эрбиевый в стекле, СО2-лазер).

Однако, при очень высоком поглощении в биоткани, как, например, у эрбиевого гранатового лазера с длиной волны 2,94 мкм, лазерное излучение поглощается на глубине 5 - 10 мкм и может вообще не достигнуть объекта воздействия - капилляра.

Хирургические лазеры делятся на две большие группы: абляционные (от лат. ablatio - «отнятие»; в медицине - хирургическое удаление, ампутация) и неабляционные лазеры. Абляционные лазеры ближе к скальпелю. Необляционные лазеры действуют по другому принципу: после обработки какого-то объекта, например, бородавки, папилломы или гемангиомы, таким лазером, этот объект остаётся на месте, но через какое-то время в нём проходит серия биологических эффектов и он отмирает. На практике это выглядит так: новообразование мумифицируется, засыхает и отпадает.

В хирургии применяются CO2-лазеры непрерывного действия. Принцип основан на тепловом воздействии. Преимущества лазерной хирургии состоят в том, что она является бесконтактной, практически бескровной, стерильной, локальной, даёт гладкое заживление рассечённой ткани, а отсюда хорошие косметические результаты.

В онкологии было замечено, что лазерный луч оказывает разрушающее действие на опухолевые клетки. Механизм разрушения основан на термическом эффекте, вследствие которого возникает разность температур между поверхностными и внутренними частями объекта, приводящая к сильным динамическим эффектам и разрушению опухолевых клеток.

Сегодня также очень перспективно такое направление, как фотодинамическая терапия. Появляется множество статей о клиническом применении данного метода. Суть его состоит в том, что в организм пациента вводят специальное вещество - фотосенсибилизатор. Это вещество избирательно накапливается раковой опухолью. После облучения опухоли специальным лазером происходит серия фотохимических реакций с выделением кислорода, который убивает раковые клетки.

Одним из способов воздействия лазерным излучением на организм является внутривенное лазерное облучение крови (ВЛОК), которое в настоящее время успешно используется в кардиологии, пульмонологии, эндокринологии, гастроэнтерологии, гинекологии, урологии, анестезиологии, дерматологии и других областях медицины. Глубокая научная проработка вопроса и прогнозируемость результатов способствуют применению ВЛОК как самостоятельно, так и в комплексе с другими методами лечения.

Для ВЛОК обычно используют лазерное излучение в красной области спектра (0,63 мкм) мощностью 1,5-2 мВт. Лечение проводят ежедневно или через день; на курс от 3 до 10 сеансов. Время воздействия при большинстве заболеваний 15-20 мин за сеанс для взрослых и 5-7 мин для детей. Внутривенная лазерная терапия может быть осуществлена практически в любом стационаре или поликлинике. Преимуществом амбулаторной лазеротерапии является уменьшение возможности развития внутрибольничной инфекции, создается хороший психоэмоциональный фон, позволяя больному на протяжении длительного времени сохранять работоспособность, проводя при этом процедуры и получая полноценное лечение.

В офтальмологии лазеры применяют как для лечения, так и для диагностики. С помощью лазера производят приварку сетчатки глаза, сварку сосудов глазной сосудистой оболочки. Для микрохирургии по лечению глаукомы служат аргоновые лазеры, излучающие в сине-зелёной области спектра. Для коррекции зрения давно и успешно используются эксимерные лазеры.

В дерматологии с помощью лазерного излучения лечат многие тяжёлые и хронические заболевания кожи, а также выводят татуировки. При облучении лазером активируется регенеративный процесс, происходит активация обмена клеточных элементов [4].

Основной принцип применения лазеров в косметологии заключается в том, что свет воздействует только на тот объект или вещество, которое поглощает его. В коже свет поглощается особыми веществами - хромофорами. Каждый хромофор поглощает в определенном диапазоне длин волн, например, для оранжевого и зеленого спектра это гемоглобин крови, для красного спектра - меланин волос, а для инфракрасного спектра - клеточная вода.

При поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени. Таким образом, с помощью лазера можно селективно воздействовать, например, на корни волос, пигментные пятна и другие дефекты кожи.

Однако вследствие переноса тепла происходит нагревание и соседних областей, даже если они содержат мало светопоглощающих хромофоров. Процессы поглощения и переноса тепла зависят от физических свойств мишени, глубины залегания и ее размера. Поэтому в лазерной косметологии важно тщательно подбирать не только длину волны, но и энергию, и длительность лазерных импульсов.

В стоматологии лазерное излучение является наиболее эффективным физиотерапевтическим средством лечения пародонтоза и заболеваний слизистой оболочки полости рта.

Лазерный луч применяется вместо иглоукалывания. Преимущества применения лазерного луча состоит в том, что отсутствует контакт с биологическим объектом, а, следовательно, процесс протекает стерильно и безболезненно при большой эффективности.

Световодные инструменты и катетеры для лазерной хирургии предназначены для доставки мощного лазерного излучения к месту проведения оперативного вмешательства при открытых, эндоскопических и лапароскопических операциях в урологии, гинекологии, гастроэнтерологии, общей хирургии, артроскопии, дерматологии. Позволяют осуществлять резание, иссечение, абляцию, вапоризацию и коагуляцию тканей при проведении хирургических операций в контакте с биотканью или в бесконтактном режиме применения (при удалении торца волокна от биоткани). Вывод излучения может осуществляться как с торца волокна, так и через окошко на боковой поверхности волокна. Могут использоваться как в воздушной (газовой), так и водной (жидкой) среде. По отдельному заказу для удобства пользования катетеры комплектуются легкосъёмной ручкой - держателем световода.

В диагностике лазеры применяются для обнаружения различных неоднородностей (опухолей, гематом) и измерения параметров живого организма. Основы диагностических операций сводятся к пропусканию через тело пациента (либо один из его органов) лазерного луча и по спектру или амплитуде прошедшего или отражённого излучения выводят диагноз. Известны методы по обнаружению раковых опухолей в онкологии, гематом в травматологии, а также по измерению параметров крови (практически любых, от артериального давления до содержания сахара и кислорода).

2.2 Особенности лазерного взаимодействия при различных параметрах излучения

Для целей хирургии луч лазера должен быть достаточно мощным, чтобы нагревать биоткань выше 50 - 70 °С, что приводит к ее коагуляции, резанию или испарению. Поэтому в лазерной хирургии, говоря о мощности лазерного излучения того или иного аппарата, оперируют цифрами, обозначающими единицы, десятки и сотни Вт.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности.

1. Коагулирующие: 1 - 5 Вт.

2. Испаряющие и неглубоко режущие: 5 - 20 Вт.

3. Глубоко режущие: 20 - 100 Вт.

Каждый тип лазера в первую очередь характеризуется длиной волны излучения. Длина волны определяет степень поглощения лазерного излучения биотканью, а, значит, и глубину проникновения, и степень нагрева как области хирургического вмешательства, так и окружающей ткани.

Учитывая, что вода содержится практически во всех типах биоткани, можно сказать, что для хирургии предпочтительно использовать такой тип лазера, излучение которого имеет коэффициент поглощения в воде более 10 см-1 или, что то же самое, глубина проникновения которого не превышает 1 мм.

Другие важные характеристики хирургических лазеров,
определяющие их применение в медицине:

мощность излучения;

непрерывный или импульсный режим работы;

способность коагулировать кровенасыщенную биоткань;

возможность передачи излучения по оптическому волокну.

При воздействии лазерного излучения на биоткань сначала происходит ее нагрев, а затем уже испарение. Для эффективного разрезания биоткани нужно быстрое испарение в месте разреза с одной стороны, и минимальный сопутствующий нагрев окружающих тканей с другой стороны.

При одинаковой средней мощности излучения короткий импульс нагревает ткань быстрее, чем непрерывное излучение, и при этом распространение тепла к окружающим тканям минимально. Но, если импульсы имеют низкую частоту повторения (менее 5 Гц), то непрерывный разрез провести сложно, это больше похоже на перфорацию. Следовательно, лазер предпочтительно должен иметь импульсный режим работы с частотой повторения импульсов более 10 Гц, а длительность импульса - минимально возможную для получения высокой пиковой мощности.

На практике оптимальная выходная мощность для хирургии находится в диапазоне от 15 до 60 Вт в зависимости от длины волны лазерного излучения и области применения.

3. Перспективные лазерные методы в медицине и биологии

Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика. Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

Растет интерес к немедикаментозным методам лечения, включая физиотерапию. Нередко возникают ситуации, когда необходимо проводить не одну физиопроцедуру, а несколько, и тогда пациенту приходиться переходить из одной кабины в другую, несколько раз одеваться и раздеваться, что создает дополнительные проблемы и потерю времени.

Многообразие методик терапевтического воздействия требует применения лазеров с различными параметрами излучения. Для этих целей служат различные излучающие головки, которые содержат один или несколько лазеров и электронное устройство сопряжения сигналов управления от базового блока с лазером.

Излучающие головки подразделяются на универсальные, позволяющие использовать их как наружно, (с использованием зеркальных и магнитных насадок), так и внутриполостно с использованием специальных оптических насадок; матричные, имеющие большую площадь излучения и применяющиеся поверхностно, а также специализированные. Различные оптические насадки позволяют доставлять излучение к требуемой зоне воздействия.

Блочный принцип позволяет применять широкий спектр лазерных и светодиодных головок, обладающих различными спектральными, пространственно-временными и энергетическими характеристиками, что, в свою очередь, поднимает на качественно новый уровень эффективность лечения за счет сочетанной реализации различных методик лазерной терапии. Эффективность лечения определяется прежде всего эффективными методиками и аппаратурой, которая обеспечивает их реализацию. Современные методики требуют возможность выбора различных параметров воздействия (режим излучения, длина волны, мощность) в широком диапазоне. Аппарат лазерной терапии (АЛТ) должен обеспечивать эти параметры, их достоверный контроль и отображение и вместе с тем быть простым и удобным в управлении.

4. Лазеры, применяемые в медицинской технике

4.1 CO2-лазеры

CO2-лазер, т.е. лазер, излучающей составляющей активной среды которого является углекислый газ CO2, занимает особое место среди всего многообразия существующих лазеров. Этот уникальный лазер отличается прежде всего тем, что для него характерны и большой энергосъем, и высокий КПД. В непрерывном режиме получены огромные мощности - в несколько десятков киловатт, импульсная мощность достигла уровня в несколько гигаватт, энергия импульса измеряется в килоджоулях. КПД CO2-лазера (порядка 30%) превосходит КПД всех лазеров. Частота следования в импульсно-периодическом режиме может составить несколько килогерц. Длины волн излучения CO2-лазера находятся в диапазоне 9-10 мкм (ИК-диапазон) и попадают в окно прозрачности атмосферы. Поэтому излучение CO2-лазера удобно для интенсивного воздействия на вещество. Кроме того, в диапазон длин излучения CO2-лазера попадают резонансные частоты поглощения многих молекул.

На рисунке 1 показаны нижние колебательные уровни основного электронного состояния вместе с условным представлением формы колебаний молекулы CO2.

Рисунок 20 - Нижние уровни молекулы CO2

Цикл лазерной накачки CO2-лазера в стационарных условиях выглядит следующим образом. Электроны плазмы тлеющего разряда возбуждают молекулы азота, которые передают энергию возбуждения несимметричному валентному колебанию молекул CO2, обладающему большим временем жизни и являющемуся верхним лазерным уровнем. Нижним лазерным уровнем обычно является первый возбужденный уровень симметричного валентного колебания, сильно связанный резонансом Ферми с деформационным колебанием и поэтому быстро релаксирующий вместе с этим колебанием в столкновениях с гелием. Очевидно, что тот же канал релаксации эффективен в том случае, когда нижним лазерным уровнем является второй возбужденный уровень деформационной моды. Таким образом, CO2-лазер - это лазер на смеси углекислого газа, азота и гелия, где CO2 обеспечивает излучение, N2 - накачку верхнего уровня, а He - опустошение нижнего уровня.

CO2-лазеры средней мощности (десятки - сотни ватт) конструируются отдельно в виде относительно длинных труб с продольным разрядом и продольной прокачкой газа. Типичная конструкция такого лазера показана на рисунке 2. Здесь 1 - разрядная трубка, 2 - кольцевые электроды, 3 - медленное обновление среды, 4 - разрядная плазма, 5 - внешняя трубка, 6 - охлаждающая проточная вода, 7,8 - резонатор.

Рисунок 20 - Схема CO2-лазера с диффузионным охлаждением

Продольная прокачка служит для удаления продуктов диссоциации газовой смеси в разряде. Охлаждение рабочего газа в таких системах происходит за счет диффузии на охлаждаемую снаружи стенку разрядной трубки. Существенной является теплопроводность материала стенки. С этой точки зрения целесообразно применение труб из корундовой (Al2O3) или бериллиевой (BeO) керамик.

Электроды делают кольцевыми, не загораживающими путь к излучению. Джоулево тепло выносится теплопроводностью к стенкам трубки, т.е. используется диффузионное охлаждение. Глухое зеркало делают металлическим, полупрозрачное - из NaCl, KCl, ZnSe, AsGa.

Альтернативой диффузионному служит конвекционное охлаждение. Рабочий газ с большой скоростью продувают через область разряда, и джоулево тепло выносится разрядом. Применение быстрой прокачки позволяет поднять плотности энерговыделения и энергосъема.

CO2-лазер в медицине применяется почти исключительно как «оптический скальпель» для резания и испарения во всех хирургических операциях. Режущее действие сфокусированного лазерного пучка основано на взрывном испарении внутри- и внеклеточной воды в области фокусировки, благодаря чему разрушается структура материала. Разрушение ткани приводит к характерной форме краев раны. В узко ограниченной области взаимодействия температура 100 °С превышается лишь тогда, когда достигнуто обезвоживание (испарительное охлаждение). Дальнейшее повышение температуры приводит к удалению материала путем обугливания или испарения ткани. Непосредственно в краевых зонах образуется из-за плохой в общем случае теплопроводности тонкое некротическое утолщение толщиной 3040 мкм. На расстоянии 300600 мкм уже не образуется повреждение ткани. В зоне коагуляции кровеносные сосуды диаметром до 0,51 мм спонтанно закрываются.

Хирургические устройства на основе CO2-лазера в настоящее время предлагаются в достаточно широком ассортименте. Наведение лазерного луча в большинстве случаев осуществляется с помощью системы шарнирно установленных зеркал (манипулятора), оканчивающейся инструментом со встроенной фокусирующей оптикой, которым хирург манипулирует в оперируемой области.

4.2 Гелий-неоновые лазеры

В гелий-неоновом лазере рабочим веществом являются нейтральные атомы неона. Возбуждение осуществляется электрическим разрядом. В чистом неоне создать инверсию в непрерывном режиме трудно. Эта трудность, носящая достаточно общий для многих случаев характер, обходится введением в разряд дополнительного газа - гелия, выполняющего функцию донора энергии возбуждения. Энергии двух первых возбужденных метастабильных уровней гелия (рисунок 3) довольно точно совпадают с энергиями уровней 3s и 2s неона. Поэтому хорошо реализуются условия резонансной передачи возбуждения по схеме

Рисунок 20 - Схема уровней He-Ne лазера

При правильно выбранных давлениях неона и гелия, удовлетворяющих условию

, (1)

можно добиться заселения одного или обоих уровней 3s и 2s неона, значительно превышающего таковое в случае чистого неона, и получить инверсию населенностей.

Опустошение нижних лазерных уровней происходит в столкновительных процессах, в том числе и в соударениях со стенками газоразрядной трубки.

Возбуждение атомов гелия (и неона) происходит в слаботочном тлеющем разряде (рисунок 4). В лазерах непрерывного действия на нейтральных атомах или молекулах для создания активной среды чаще всего используется слабоионизированная плазма положительного столба тлеющего разряда. Плотность тока тлеющего разряда составляет 100-200 мА/см2. Напряженность продольного электрического поля такова, что число возникающих на единичном отрезке разрядного промежутка электронов и ионов компенсирует потери заряженных частиц при их диффузии к стенкам газоразрядной трубки. Тогда положительных столб разряда стационарен и однороден. Электронная температура определяется произведением давления газа на внутренний диаметр трубки . При малых электронная температура велика, при больших - низка. Постоянство величины определяет условия подобия разрядов. При постоянной плотности числа электронов условия и параметры разрядов будут неизменны, если неизменно произведение . Плотность числа электронов в слабоионизированной плазме положительного столба пропорциональна плотности тока.

Для гелий-неонового лазера оптимальные значения , равно как и парциальный состав газовой смеси, несколько отличны для различных спектральных областей генерации.

В области 0,63 мкм самой интенсивной из линий серии - линии (0,63282 мкм) соответствует оптимальное Тор·мм.

Рисунок 20 - Конструктивная диаграмма He-Ne лазера

Характерными значениями мощности излучения гелий-неоновых лазеров следует считать десятки милливатт в областях 0,63 и 1,15 мкм и сотни в области 3,39 мкм. Срок службы лазеров ограничивается процессами в разряде и исчисляется годами. С течением времени в разряде происходит нарушение состава газа. Из-за сорбции атомов в стенках и электродах происходит процесс «жестчения», падает давление, меняется отношение парциальных давлений He и Ne.

Наибольшая кратковременная стабильность, простота и надежность конструкции гелий-неонового лазера достигаются при установке зеркал резонатора внутрь разрядной трубки. Однако при таком расположении зеркала сравнительно быстро выходят из строя за счет бомбардировки заряженными частицами плазмы разряда. Поэтому наибольшее распространение получила конструкция, в которой газоразрядная трубка помещается внутрь резонатора (рисунок 5), а ее торцы снабжаются окнами, расположенными под углом Брюстера к оптической оси, обеспечивая тем самым линейную поляризацию излучения. Такое расположение имеет целый ряд преимуществ - упрощается юстировка зеркал резонатора, увеличивается срок службы газоразрядной трубки и зеркал, облегчается их смена, появляется возможность управления резонатором и применения дисперсионного резонатора, выделения мод и т.п.

Рисунок 20 - Резонатор He-Ne лазера

Переключение между полосами генерации (рисунок 6) в перестраиваемом гелий-неоновом лазере обычно обеспечивается за счет введения призмы, а для тонкой перестройкой линии генерации обычно используется дифракционная решетка.

Рисунок 20 - Использование призмы Литроу

4.3 ИАГ-лазеры

Трехвалентный ион неодима легко активирует многие матрицы. Из них самыми перспективными оказались кристаллы иттрий-алюминиевого граната Y3Al5O12 (ИАГ) и стекла. Накачка переводит ионы Nd3+ из основного состояния 4I9/2 в несколько относительно узких полос, играющих роль верхнего уровня. Эти полосы образованы рядом перекрывающихся возбужденных состояний, их положения и ширины несколько меняются от матрицы к матрице. Из полос накачки быстрая передача энергии возбуждения на метастабильный уровень 4F3/2 (рисунок 7).

Рисунок 20 - Энергетические уровни трехвалентных редкоземельных ионов

Чем ближе к уровню 4F3/2 расположены полосы поглощения, тем выше КПД генерации. Достоинством кристаллов ИАГ является наличие интенсивной красной линии поглощения.

Технология роста кристаллов основана на методе Чохральского, когда ИАГ и присадка плавятся в иридиевом тигле при температуре около 2000 °С с последующим выделением части расплава из тигля с помощью затравки. Температура затравки несколько ниже температуры расплава, и при вытягивании расплав постепенно кристаллизуется на поверхности затравки. Кристаллографическая ориентировка закристаллизовавшегося расплава воспроизводит ориентировку затравки. Выращивание кристалла осуществляется в инертной среде (аргон или азот) при нормальном давлении с малой добавкой кислорода (1-2%). Как только кристалл достигает нужной длины его медленно остужают для предотвращения разрушения из-за термических напряжений. Процесс роста занимает от 4 до 6 недель и проходит под компьютерным управлением.

Неодимовые лазеры работают в широком диапазоне режимов генерации, от непрерывного до существенно импульсного с длительностью, достигающей фемтосекунд. Последняя достигается методом синхронизации мод в широкой линии усиления, характерной для лазерных стекол.

При создании неодимовых, как, впрочем, и рубиновых, лазеров реализованы все характерные методы управления параметрами лазерного излучения, разработанные квантовой электроникой. В дополнение к так называемой свободной генерации, продолжающейся в течение практически всего времени существования импульса накачки, широкое распространение получили режимы включаемой (модулированной) добротности и синхронизации (самосинхронизации) мод.

В режиме свободной генерации длительность импульсов излучения составляет 0,1…10 мс, энергия излучения в схемах усиления мощности составляет около 10 пс при использовании для модуляции добротности электрооптических устройств. Дальнейшее укорочение импульсов генерации достигается применением просветляющихся фильтров как для модуляции добротности (0,1…10 пс), так и для синхронизации мод (1…10 пс).

При воздействии интенсивного излучения Nd-ИАГ-лазера на биологическую ткань образуются достаточно глубокие некрозы (коагуляционный очаг). Эффект удаления ткани и тем самым режущее действие, незначительны по сравнению с действием CO2-лазера. Поэтому Nd-ИАГ-лазер применяется преимущественно для коагуляции кровотечения и для некротизирования патологически измененных областей ткани почти во всех областях хирургии. Поскольку к тому же передача излучения возможна через гибкие оптические кабели, то открываются перспективы применения Nd-ИАГ-лазера в полостях тела.

4.4 Полупроводниковые лазеры

Полупроводниковые лазеры испускают в УФ-, видимом или ИК-диапазонах (0,32…32 мкм) когерентное излучение; в качестве активной среды применяются полупроводниковые кристаллы.

В настоящее время известно свыше 40 пригодных для лазеров различных полупроводниковых материалов. Накачка активной среды может осуществляться электронными пучками или оптическим излучением (0,32…16 мкм), в pn-переходе полупроводникового материала электрическим током от приложенного внешнего напряжения (инжекция носителей заряда, 0,57…32 мкм).

Инжекционные лазеры отличаются от всех других типов лазеров следующими характеристиками:

- высоким КПД по мощности (выше 10%);

- простотой возбуждения (непосредственное преобразование электрической энергии в когерентное излучение - как в непрерывном, так и в импульсном режимах работы);

- возможностью прямой модуляции электрическим током до 1010 Гц;

- крайне незначительными размерами (длина менее 0,5 мм; ширина не более 0,4 мм; высота не более 0,1 мм);

- низким напряжением накачки;

- механической надежностью;

- большим сроком службы (до 107 ч).

4.5 Эксимерные лазеры

Эксимерные лазеры, представляющие собой новый класс лазерных систем, открывают для квантовой электроники УФ диапазон. Принцип действия эксимерных лазеров удобно пояснить на примере лазера на ксеноне ( нм). Основное состояние молекулы Xe2 неустойчиво. Невозбужденный газ состоит в основном из атомов. Заселение верхнего лазерного состояния, т.е. создание возбужденной устойчивости молекулы происходит под действием пучка быстрых электронов в сложной последовательности столкновительных процессов. Среди этих процессов существенную роль играют ионизация и возбуждение ксенона электронами.

Большой интерес представляют эксимеры галоидов инертных газов (моногалогенидов благородных газов), главным образом потому, что в отличие от случая димеров благородных газов соответствующие лазеры работают не только при электронно-пучковом, но и при газоразрядном возбуждении. Механизм образования верхних термов лазерных переходов в этих эксимерах во многом неясен. Качественные соображения свидетельствуют о большей легкости их образования по сравнению со случаем димеров благородных газов. Существует глубокая аналогия между возбужденными молекулами, составленными из атомов щелочного материала и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла и галогена. Атом инертного газа в возбужденном электронном состоянии похож на атом щелочного металла, следующий за ним в таблице Менделеева. Этот атом легко ионизуется, так как энергия связи возбужденного электрона мала. В силу высокого сродства к электрону галогена этот электрон легко отрывается и при столкновении соответствующих атомов охотно перепрыгивает на новую орбиту, объединяющую атомы, осуществляя тем самым так называемую гарпунную реакцию.

Наиболее распространены следующие типы эксимерных лазеров: Ar2 (126,5 нм), Kr2 (145,4 нм), Xe2 (172,5 нм), ArF (192 нм), KrCl (222,0 нм), KrF (249,0 нм), XeCl (308,0 нм), XeF (352,0 нм).

4.6 Лазеры на красителях

Отличительной особенностью лазеров на красителях является возможность работы в широком длин волн от ближнего ИК до ближнего УФ, плавная перестройка длины волны генерации в диапазоне шириной в несколько десятков нанометров с монохроматичностью, достигающей 11,5

Размещено на Allbest.ru


Подобные документы

  • Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат [8,0 M], добавлен 30.08.2009

  • Основные направления и цели медико-биологического использования лазеров. Меры защиты от лазерного излучения. Проникновение лазерного излучения в биологические ткани, их патогенетические механизмы взаимодействия. Механизм лазерной биостимуляции.

    реферат [693,2 K], добавлен 24.01.2011

  • Общее понятие о квантовой электронике. История развития и принцип устройства лазера, свойства лазерного излучения. Низкоинтенсивные и высокоинтенсивные лазеры: свойства, действие на биологические ткани. Применение лазерных технологий в медицине.

    реферат [37,7 K], добавлен 28.05.2015

  • Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

    реферат [7,1 M], добавлен 17.01.2009

  • Понятие лазерного излучения. Механизм действия лазера на ткани. Его применение в хирургии для рассечения тканей, остановки кровотечения, удаления патологий и сваривания биотканей; стоматологии, дерматологии, косметологии, лечении заболеваний сетчатки.

    презентация [233,0 K], добавлен 04.10.2015

  • Применение ионизирующего излучения в медицине. Технология лечебных процедур. Установки для дистанционной лучевой терапии. Применение изотопов в медицине. Средства защиты от ионизирующего излучения. Процесс получения и использования радионуклидов.

    презентация [1016,4 K], добавлен 21.02.2016

  • Лечение бронхиальной астмы инфракрасным излучением. Искусственные источники ультрафиолетового (УФ) излучения в медицине. Озонные и безозонные бактерицидные лампы. Дезинфекция питьевой воды с помощью УФ-излучения. Рентгенодиагностика, устройство аппарата.

    реферат [25,4 K], добавлен 27.08.2009

  • Понятие и назначение лазера, принцип действия и структура лазерного луча, характер его взаимодействия с тканью. Особенности практического использования лазера в стоматологии, оценка основных преимуществ и недостатков данного метода лечения зубов.

    реферат [20,7 K], добавлен 14.05.2011

  • Изменение кровенаполнения сосудистой оболочки, функционального состояния сетчатки и цветовой чувствительности при действии лазерного излучения различных длин волн и режимов. Схема лазерного воздействия на глаза. Обработка результатов аномалоскопии.

    курсовая работа [740,9 K], добавлен 31.10.2013

  • Основы квантовой теории. Понятие и виды флуоресценции, квантовый выход. Совмещение флуорохромов и задача колокализации. Подбор пар для FRET-микроскопии, ее механизм и физические показатели. FRET-исследования в области клеточной биологии и медицине.

    курсовая работа [3,3 M], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.