Главный комплекс гистосовместимости, его основные биологические функции
Характеристика группы генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа. Общее описание классов набора высокополиморфных клеточных белков, их геномная организация.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 16.08.2014 |
Размер файла | 19,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФГБОУ ВПО «Московская государственная академия ветеринарной медицины и биотехнологии имени К.И. Скрябина»
Реферат
Кафедра Иммунологии
На тему: «Главный комплекс гистосовместимости, его основные биологические функции»
Выполнила:
Студентка 2 курса ФВМ 14 группы СО
Матвеева О.В.
Москва 2014г.
Содержание
Введение
1. Главный комплекс гистосовместимости (МНС)
2. МНС функции
3. МНС антигены, общая характеристика
4. МНС 1 класса
5. МНС 2 класса
6. МНС 3 класса
7. МНС иммунобиологические свойства комплекса
8. Геномная организация MHC: общая характеристика
Список использованной литературы
Введение
Развитие медицины на некотором этапе показало зависимость процессов, протекающих в организме от особенностей генетического строения. Как выяснилось, закономерность этих процессов заложена в структуре молекулы ДНК. Изучая такие закономерности, можно прогнозировать заболевания, определять риск и предрасположенность к данному заболеванию, разрабатывать профилактические мероприятия. Весьма распространенными заболеваниями являются инфекционные, поэтому их изучение имеет значительное практическое применение. В данной работе изучается зависимость наличия тех или иных совокупностей генов и ряда инфекционных заболеваний.
Открытие и исследование системы гистосовместимости человека HLA, МНС у животных, (Human Leukocyte Antigen - человеческий антиген лейкоцитов) является одним из важнейших достижений медицины и биологии ХХ века. Знания в этой области накапливаются чрезвычайно быстро. Так, первый антиген системы HLA-MAK - был открыт в 1954 г. Доссе, а в настоящее время уже установлено более 100 антигенов. Система HLA является одной из наиболее изученных среди сложных генетических систем человека, и МНС у животных. Столь быстрые темпы накопления знаний обусловлены значением изучения данной системы для решения таких важных проблем медицины, как трансплантация органов и тканей, борьба с онкологическими и аутоиммунными заболеваниями.
В последние годы было установлено, что система гистосовместимости принимает непосредственное участие в регуляции иммунного ответа, и сами гены иммунного ответа входят в состав этой системы или тесно связаны с нею. Сформировалось также представление о роли антигенов системы HLA в развитии кооперативного иммунного ответа и поддержании иммунологического гомеостаза в целом.
1. Главный комплекс гистосовместимости (МНС)
Главный комплекс гистосовместимости - это группа генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.
Открытие MHC произошло при исследовании вопросов внутривидовой пересадки тканей. Генетические локусы, ответственные за отторжение чужеродных тканей, образуют в хромосоме область, названную главным комплексом гистосовместимости (MHC)
Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродный антиген, а его комплекс с молекулами, контролируемыми генами главного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с ТКР.
MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса I способны связывать пептиды из 8-9 аминокислотных остатков, молекулы класса II - несколько более длинные.
Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК) экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.
Следует отметить, что хотя молекулы MHC и называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.
Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды, заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.
Существуют еще и молекулы MHC класса III, но молекулы MHC класса I и молекулы MHC класса II являются наиболее важными в иммунологическом смысле.
ген высокополиморфный иммунный клеточный
2. МНС функции
Молекулы MHC первоначально идентифицировали по их способности вызывать отторжение трансплантата, они выполняют в организме и другие биологически важные функции. Во-первых, они принимают непосредственное участие в инициации иммунного ответа, контролируя молекулы, представляющие антиген в иммуногенной форме для его распознавания цитотоксическими T-клетками и хелперными T-клетками. В этот процесс включены гены LMP и TAP как вспомогательные при образовании иммуногенного комплекса этих молекул с антигеном. Во-вторых, в МНС локализованы гены, контролирующие синтез иммунорегуляторных и эффекторных молекул - цитокинов ФНО-альфа, ФНО-бета, а также некоторых компонентов комплемента.
Следует отметить их роль в качестве поверхностных клеточных маркеров, распознаваемых цитотоксическими T- лимфоцитами и T-хелперами в комплексе с антигеном. Молекулы, кодируемые комплексом Tla (область части генов MHC), вовлечены в процессы дифференцировки, особенно у эмбриона, а возможно, и в плаценте. MHC принимает участие в самых разных неиммунологических процессах, многие из которых опосредованы гормонами, например, регуляция массы тела у мышей или яйценоскости кур. Молекулы MHC класса I могут входить в состав гормональных рецепторов. Так, связывание инсулина заметно снижается, если с поверхности клетки удалить антигены MHC класса I, но не класса II. Кроме того, описаны случаи ассоциации продуктов MHC с рецепторами глюкагона, эпидермального фактора роста и гамма-эндорфина.
3. МНС антигены, общая характеристика
Антигены главного комплекса гистосовместимости (MHC) - это группа поверхностных белков различных клеток организма, играющих ключевую роль в опосредованных клетками иммунных реакциях. Антигены MHC кодируются комплексом генов, обозначаемым HLA у человека и H-2 у мыши.
Первоначально молекулы MHC (антигены MHC) идентифицировали по их способности вызывать сильные трансплантационные реакции. Выяснилось, что у каждого вида позвоночных существует одна группа тесно сцепленных генетических локусов, имеющая решающее значение при трансплантации ткани от одной особи другой особи внутри одного и того же вида (аллотрансплантация). Хотя антигенам MHC принадлежит ведущая роль в отторжении трансплантатов в случае несовпадения донора и реципиента по этим антигенам, данный феномен является лишь частным случаем проявления их биологической функции, и название MHC связано с тем, что именно при трансплантации исследователи впервые столкнулись с проявлением функции генов и антигенов гистосовместимости.
Поверхностные рецепторы T-лимфоцитов узнают антиген лишь в том случае, если он находится на поверхности клетки в комплексе с антигенами MHC, этот процесс носит название " представление антигена ". Аналогичную роль молекулы MHC выполняют и в B-клеточном ответе.
Таким образом, помимо того, что эта группа сцепленных генетических локусов (MHC) контролирует иммунный ответ на аллотрансплантаты, данная группа локусов играет важнейшую роль в контроле клеточных взаимодействий, лежащих в основе физиологических иммунных реакций: молекулы, кодируемые MHC, связываются с пептидными антигенами, вследствие чего эти антигены узнаются специфичными рецепторами T- и B-лимфоцитов.
Многие свойства, связанные с MHC, не являются генетически неделимыми и локализованы в разных участках генетической карты. MHC содержит три класса генов. Поэтому принято подразделять продукты MHC на антигены класса I, II и III. Многие черты MHC свойственны в большей степени одному или другому классу, хотя очевидно, что в той или иной мере некоторые качества характерны для обоих классов. Различия функций, определяемых антигенами класса I и II, отражаются в структурных различиях основных субъединиц антигенов.
Обнаружено две группы антигенов MHC (антигенов MHC класса I и антигенов MHC класса II), участвующих в регуляции иммунного ответа. Эти группы антигенов по-разному экспрессируются на клетках организма и, хотя они выполняют однотипную функцию, между ними имеется "распределение обязанностей".
Антигены MHC класса I представляют собой антигены, синтезируемые самой клеткой (вирусные, опухолевые, собственные мутированные), в то время как антигены MHC класса II - это экзогенные (пришедшие извне) антигены.
Иммунный ответ против антигенов, которые представляются антигенпрезентирующими клетками Т-хелперам, в результате феномена генетической рестрикции развивается только при наличии у антигенпрезентирующих клеток антигенов гистосовместимости класса II собственного генотипа.
Цитотоксические T-лимфоциты (Т-киллеры) распознают клетки-мишени лишь при наличии на их поверхности антигенов MHC класса I собственного генотипа.
В том случае, когда взаимодействующие в иммунном ответе клетки несут различные аллели MHC, иммунный ответ развивается не против представляемого чужеродного антигена (например, вирусного или бактериального), а против отличающихся антигенов MHC. Данный феномен лежит в основе того, что антигены MHC обеспечивают распознавание в организме "своего" и "чужого".
Таким образом, благодаря указанным функциям антигенов MHC осуществляется выявление и удаление из организма как экзогенных антигенов, так и собственных трансформированных клеток.
4. МНС 1 класса
Молекулы MHC класса 1 экспрессируются на клеточной поверхности и представляют собой гетеродимер, состоящий из одной тяжелой альфа-цепи, нековалентно связанной с однодоменным бета2-микроглобулином, который встречается также в свободной форме в сыворотке крови их называют классическими трансплатационными антигенами.
Тяжелая цепь состоит из внеклеточной части (образующей три домена : альфа1-, альфа2- и альфа3-домены), трансмембранного сегмента и цитоплазматического хвостового домена. Каждый внеклеточный домен содержит примерно 90 аминокислотных остатков, и все их вместе можно отделить от клеточной поверхности путем обработки папаином.
В альфа2- и альфа3-доменах имеется по одной внутрицепочечной дисульфидной связи, замыкающей в петлю 63 и 68 аминокислотных остатков, соответственно.
Домен альфа3 гомологичен по аминокислотной последовательности C-доменам иммуноглобулинов, и конформация альфа3-домена напоминает складчатую структуру доменов иммуноглобулинов.
Бета2-микроглобулин (бета2-m) необходим для экспрессии всех молекул MHC класса I и имеет неизменную последовательность, но у мыши встречается в двух формах, различающихся заменой одной аминокислоты в позиции 85. По структуре этот белок соответствует C-домену иммуноглобулинов. Бета2-микроглобулин способен также нековалентно взаимодействовать с неклассическими молекулами класса I, например, с продуктами генов CD1.
В зависимости от вида и гаплотипа внеклеточная часть тяжелых цепей MHC класса I в разной степени гликозилирована.
Трансмембранный сегмент MHC I класса состоит из 25 преимущественно гидрофобных аминокислотных остатков и пронизывает липидный бислой, вероятнее всего, в альфа-спиральной конформации.
Основное свойство молекул I класса - связывание пептидов (антигенов) и представление их в иммуногенной форме для Т-клеток - зависит от доменов альфа1 и альфа2. Эти домены имеют значительные альфа- спиральные участки, которые при взаимодействии между собой образуют удлиненную полость (щель), служащую местом связывания процессированного антигена. Образовавшийся комплекс антигена с альфа1- и альфа2-доменами и определяет его иммуногенность и возможность взаимодействовать с антигенраспознающими рецепторами Т-клеток.
К классу I относятся антигены A, антигены AB и антигены AC.
Антигены класса I присутствуют на поверхности всех ядросодержащих клеток и тромбоцитов.
5. МНС 2 класса
Молекулы MHC класса II являются гетеродимерами, построенными из нековалентно сцепленных тяжелой альфа- и легкой бета-цепей.
Ряд фактов указывает на близкое сходство альфа- и бета-цепей по общему строению. Внеклеточная часть каждой из цепей свернута в два домена (альфа1, альфа2 и бета1, бета2, соответственно) и соединена коротким пептидом с трансмембранным сегментом (длиной примерно 30 аминокислотных остатков). Трансмембранный сегмент переходит в цитоплазматический домен, содержащий примерно 10-15 остатков.
Антигенсвязывающая область молекул MHC класса II формируется альфа-спиральными участками взаимодействующих цепей подобно молекулам I класса, но при одном существенном отличии: антигенсвязывающая полость молекул MHC класса II формируется не двумя доменами одной альфа-цепи, а двумя доменами разных цепей - доменами альфа1 и бета1.
Общее структурное сходство между двумя классами молекул MHC очевидно. Это - однотипность пространственной организации всей молекулы, количество доменов (четыре), конформационное строение антигенсвязывающего участка, близкие мол. веса.
В структуре молекул II класса антигенсвязывающая полость открыта больше, чем у молекул I класса, поэтому в ней могут поместиться более длинные пептиды.
Важнейшая функция антигенов MHC (HLA) класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами, соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.
Антигены класса II присутствуют на поверхности В-лимфоцитов, активированных Т-лимфоцитов, моноцитов, макрофагов и дендритных клеток.
6. МНС 3 класса
Гены MHC класса III, расположенные в пределах группы генов MHC или тесно сцепленные с ней, контролируют некоторые компоненты комплемента C4 и C2, а также фактор B, находящиеся в плазме крови, и на поверхности некоторых клеток. И в отличие от молекул MHC классаI и класса II не не участвуют в контроле иммунного ответа.
7. МНС иммунобиологические свойства комплекса
Изучение экспрессии молекул I и II классов MHC на различных типах клеток выявило более широкое тканевое распространение молекул I класса в сравнении с молекулами II класса. Если молекулы I класса экспрессируются практически на всех изученных клетках, то молекулы II класса экспрессируются, в основном, на иммунокомпетентных клетках или клетках, принимающих относительно неспецифическое участие в формировании иммунного ответа, таких, как клетки эпителия.
Представительство молекул I класса почти на всех типах клеток коррелирует с доминирующей ролью этих молекул в отторжении аллогенного трансплантата. Молекулы II класса менее активны в процессе тканевого отторжения. Сравнительные данные о степени участия молекул I и II классов MHC в некоторых иммунных реакциях демонстрируют, что некоторые свойства МНС в большей степени связаны с одним из классов, тогда как другие являются характерной особенностью обоих классов.
8. Геномная организация MHC: общая характеристика
Главный комплекс гистосовместимости расположен у человека на 6-й, а у мышей - на 17-й хромосоме и занимает значительный участок ДНК, включающий до 4*106 пар оснований или около 50 генов. Основной особенностью комплекса является значительная полигенность (наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции) и ярковыраженный полиморфизм - присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу.
Полигенность и полиморфизм (структурная вариабельность) определяют антигенную индивидуальность особей данного вида.
Все гены MHC делятся на три группы. Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC (I, II и III). Между молекулами первых двух классов имеются выраженные структурные различия, но при этом по общему плану строения все они однотипны. В то же время между продуктами генов класса III, с одной стороны, и классов I и II, с другой стороны, не найдено никакого функционального или структурного сходства. Группа из более чем 20 генов класса III вообще функционально обособлена - некоторые из этих генов кодируют, например, белки системы комплемента (C4, C2, фактор B) или молекулы, участвующие в процессинге антигена.
Область локализации генов, кодирующих комплекс молекул MHC мыши, обозначается как H-2, для человека - HLA.
Список использованной литературы
1.Воронин Е.С., Петров А.М., Серых М.М., Девришов Д.А. Иммунология - М.: Колос-Пресс. 2002г. 408л.
2. Сочнев А.М., Алексеев Л.П., Тананов А.Т. Антигены системы HLA при различных заболеваниях и трансплантации. - Рига, 1987.
3. Зарецкая Ю. М., Клиническая иммуногенетика. - М.: Медицина. 1983. - 208 с.
4.Ярилин А.А, Основы иммунологии - Медицина, 1999г. 305с.
5. Иммунология. В. Г. Галактионов Издательство: МГУ, 1998г.- 480с.
6. Иммунология. А. Ройт, Дж. Бростофф, Д. Мейл Издательство: Мир 2001г. 592.
Размещено на Allbest.ru
Подобные документы
История открытия витамина К, его основные формы, физико-химические свойства, источники и метаболизм. Обмен витамина К в организме, участие в свертывании крови. Профилактическое и лечебное применение витамина К при болезнях печени, желудка и кишечника.
реферат [1,6 M], добавлен 22.05.2013Механизмы регуляции иммунного ответа и нейроиммунное взаимодействие. Глюкокортикоидные гормоны и иммунологические процессы. Нейропептиды и регуляция иммунного ответа. Регуляция иммунного ответа адренокортикотропным гормоном, тиротропином, соматотропином.
презентация [1,4 M], добавлен 20.04.2015Изучение особенностей центральной модуляции функций иммунной системы посредством центрально обусловленных изменений уровня различных гормонов в крови. Описание путей и механизмов регуляции иммунного ответа. Гормональная регуляция иммунного ответа.
презентация [355,5 K], добавлен 17.05.2015Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.
презентация [405,1 K], добавлен 20.05.2015Основные структуры мозга, регулирующие интенсивность иммунного ответа: заднее и переднее гипоталамическое поле, гиппокамп, ретикулярная формация среднего мозга, ядра шва и миндалины. Регуляция иммунного ответа аргинин-вазопрессином и окситоцином.
презентация [370,7 K], добавлен 06.04.2015Пути и механизмы регуляции иммунного ответа. Нейроиммунное взаимодействие, его направления и принципы. Регуляция иммунного ответа адренокортикотропным гормоном, тиротропином, соматотропином. Глюкокортикоидные гормоны и иммунологические процессы.
презентация [1,1 M], добавлен 11.03.2015Особенности и биохимическая основа патогенеза атеросклероза. Взаимоотношение воспаления и атеросклероза, его роль в развитии болезни. Действие на процессы клеточной адаптации вирусов и токсинов, изменение функции генов, деструкция клеточных мембран.
доклад [7,0 M], добавлен 02.12.2010Понятие иммунного ответа организма, регулирование его интенсивности нейрогуморальным способом. Особенности осуществления модуляции функций иммунной системы. Нервная и гуморальная регуляция иммунного ответа. Механизм нейроиммунного взаимодействия.
презентация [405,1 K], добавлен 13.04.2015Пути и механизмы регуляции иммунного ответа: доиммунные (проникновение антигена в ткани и сорбция антигена в лимфоидной ткани) и иммунные. Нейропептиды, симпатический и парасимпатический отделы вегетативной нервной системы и регуляция иммунного ответа.
презентация [536,9 K], добавлен 23.12.2014Первичные и врожденные нарушения нормального иммунного статуса, обусловленные дефектом одного или нескольких механизмов иммунного ответа. Факторы, определяющие неспецифическую резистентность. Действие гормонов, нейромедиаторов и пептидов на клетки.
презентация [502,4 K], добавлен 05.02.2017