Асептика. Микрофлора воды, воздушной среды и объектов производственных помещений аптек

Сравнительная характеристика антисептиков и дезинфектантов. Стерилизация аптечной тары, контроль стерильности. Определение пирогенности воды для инъекций. Обследования посуды, объектов внешней среды на патогенные бактерии. Порча растительного сырья.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 06.08.2014
Размер файла 57,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Непосредственно перед взятием смыва тампон увлажняют наклонением пробирки или опусканием тампона в жидкость. В процессе отбора смывов рекомендуется неоднократное смачивание тампонов.

Метод определения микроорганизмов рода Staphylococcus.

Клетки стафилококков сферические, 0,5 - 1,5 мкм в диаметре. В результате деления более чем в одной плоскости образуют гроздьевидные скопления. Неподвижные, грамположительные. Образуют внеклеточные ферменты и токсины. Температурный оптимум 35 - 40 град. C, пределы для роста 6,5 - 46 град. C. Оптимум pH 7,0 - 7,5, пределы pH для роста - 4,2 - 9,3. Стафилококки активно образуют пигмент (липохром) золотистый, эмалево-белый, лимонно-желтый, особенно при комнатной температуре (20 град. C) и при доступе воздуха. Колонии стафилококков на плотных средах имеют форму правильных дисков от 2 до 4 мм в диаметре. Края колонии ровные, поверхность слегка выпуклая, блестящая, непрозрачная, окрашена в цвет пигмента. В жидких средах дают сильное диффузное помутнение, образуя постепенно осадок. Согласно последней классификации (Берги, 1980) род Staphylococcus включает три вида: Staph. aureus, St. epidermidis, St. saprophyticus. Стафилококки, относящиеся ко всем трем видам, могут быть причиной различных заболеваний человека, а стафилококки, вырабатывающие энтеротоксины, при определенных условиях могут вызывать пищевые интоксикации. В настоящее время Sasph. aureus целесообразно использовать в качестве санитарно-показательного микроорганизма при исследовании пищевых продуктов, а также при обследовании объектов общественного питания, особенно пищеблоков в детских дошкольных и подростковых учреждениях, для оценки их санитарного содержания.

Методика количественного определения Staph. aureus.

Методика выделения St. aureus предусматривает его наличие его в смывах.

1 этап. Из исходной 10% взвеси продукта производят посев на элективные среды: желточно-солевой (ЖСА) или молочно-солевой (МСА) агары.

Посевы инкубируют при 37 град. C в течение 18 - 24 часов, чашки с плотными средами оставляют еще на сутки при комнатной

2 этап: а) Просматривают посевы на МСА или ЖСА, на ЖСА колонии стафилококков дают радужный венчик, на МСА - образуют пигмент: золотистый, кремовый, эмалево-белый и др. Изолированные колонии, подозрительные на стафилококк, изучают, микроскопируют с окраской по Граму и высевают на скошенный МПА или на сектора чашки с молочным агаром. Число колоний, взятых для идентификации, должно быть не менее 5 - 7.

б) Из сред обогащения производят высевы на сектора чашки с молочным агаром.

Все посевы инкубируют при 37 град. C в течение 18 - 24 часов.

3 этап. Выделенную чистую культуру с секторов на чашках с молочным или из пробирок со скошенным МПА подвергают микроскопии с окраской по Граму. При наличии мелких грамположительных кокков ставят реакцию плазмокоагуляции.

Постановка реакции плазмокоагуляции.

Наилучшим методом предварительной идентификации St. aureus в лабораторных условиях является коагулазная проба в пробирке, закрытой ватной пробкой, с кроличьей или человеческой плазмой. При чтении реакции плазмокоагуляции установлено 3 градации активности фермента коагулазы:

1) ++++ - сгусток плотный,

2) +++ - сгусток, имеющий небольшой отсек,

3) ++ - сгусток в виде взвешенного мешочка.

Эту реакцию следует читать очень осторожно, чтобы не повредить и не нарушить начало ее образования.

Постановка реакции. В пробирку с 0,5 мл цитратной плазмы, разведенной изотоническим раствором натрия хлорида в соотношении 1:4, вносят петлю суточной культуры стафилококка и ставят в термостат при 37 град. C. Осторожно просматривают реакцию плазмокоагуляции через 30 минут, 1 час, 2 - 4 часа и оставляют до утра при комнатной температуре для окончательного учета. Ускорение реакции производят за счет использования 3 - 4 часовых бульонных культур, добавляя их в количестве 0,1 мл к 0,5 мл разведенной плазмы.

После полного подтверждения принадлежности выделенных штаммов к St. aureus производят подсчет колоний на плотной среде и устанавливают содержание стафилококков.

8. Возможные источники контаминации микроорганизмами растительного сырья. Факторы, способствующие порче растительного сырья

Растительное лекарственное сырье может обсеменяться микроорганизмами в процессе его получения: инфицирование происходит через воду, нестерильную аптечную посуду, воздух производственных помещений и руки персонала. Обсеменение происходит также за счет нормальной микрофлоры растений и фи-опатогенных микроорганизмов -- возбудителей заболеваний растений. Фитопатогенные микроорганизмы способны распространяться и заражать большое количество растений.

Микроорганизмы, развивающиеся в норме на поверхности растений, относятся к эпифитам (греч. epi -- над, phyton -- растение). Они не наносят вреда, являются антагонистами некоторых фитопатогенных микроорганизмов, растут за счет обычных выделений растений и органических загрязнений поверхности растений. Эпифитная микрофлора препятствует проникновению фитопатогенных микроорганизмов в растительные ткани, усиливая тем самым иммунитет растений. Наибольшее количество эпифитной микрофлоры составляют грамотрицательные бактерии Erwinia herbicola, образующие на мясопептонном агаре золотисто-желтые колонии. Эти бактерии являются антагонистами возбудителя мягкой гнили овощей. Обнаруживают в норме и другие бактерии -- Pseudomonas fluorescens, реже Bacillus mesentericus и небольшое количество грибов. Микроорганизмы находятся не только на листьях, стеблях, но и на семенах растений. Нарушение поверхности растений и их семян способствует накоплению на них большого количества пыли и микроорганизмов. Состав микрофлоры растений зависит от вида, возраста растений, типа почвы и температуры окружающей среды. При повышении влажности численность эпифитных микроорганизмов возрастает, при понижении влажности -- уменьшается.

В почве, около корней растений, находится значительное количество микроорганизмов. Эта зона называется ризосферой (от греч. rhiza -- корень, sphaira -- шар). В ризосфере часто присутствуют неспорообразующие бактерии (псевдомонады, мико-бактерии и др.), встречаются также актиномицеты, спорообразующие бактерии и грибы. Микроорганизмы ризосферы переводят различные субстраты в соединения, доступные для растений, синтезируют биологически активные соединения (витамины, антибиотики и др.), вступают в симбиотические взаимоотношения с растениями, обладают антагонистическими свойствами против фитопатогенных бактерий.

Микроорганизмы поверхности корня растений (микрофлора ризопланы) в большей степени, чем ризосфера, представлены псевдомонадами. Симбиоз мицелия грибов с корнями высших растений называют микоризой (т.е. грибокорнем) (от греч. mykes -- гриб, rhiza -- корень). Микориза улучшает рост растений.

Растения окультуренных почв в большей степени загрязнены микроорганизмами, чем растения лесов и лугов. Особенно много микроорганизмов содержится в нижней прикорневой части растений, что связано с попаданием микроорганизмов из почвы. В большом количестве обнаруживаются микроорганизмы на растениях, растущих на полях орошения, свалках, вблизи складирования навоза, в местах выпаса скота. При этом растения могут загрязняться патогенными микроорганизмами и при неправильной заготовке могут быть хорошей питательной средой для размножения микроорганизмов. Одним из способов, препятствующих их росту на растениях, является процесс высушивания растений.

К фитопатогенным микроорганизмам относят бактерии, вирусы и грибы. Болезни, вызываемые бактериями, называют бактериозами. Среди возбудителей бактериозов встречаются псевдомонады, микобактерии, эрвинии, коринебактерии, агробактерии и др. К бактериозам относятся различные виды гнилей, некрозы тканей, увядание растений, развитие опухолей и др.

Различают общие и местные бактериозы. Общие бактериозы вызывают гибель всего растения или его отдельных частей. Они могут проявляться на корнях (корневые гнили) или в сосудистой системе растений. Местные бактериозы ограничиваются поражением отдельных участков растений, проявляясь на паренхимных тканях.

Род Erwinia включает виды, вызывающие болезни типа ожога, увядания, мокрой или водянистой гнили, например E.amylovora -- возбудитель ожога яблонь и груш, Е. carotovora -- возбудитель мокрой бактериальной гнили.

К роду Pseudomonas относят различные виды, в частности вызывающие бактериальную пятнистость (P. syringae и др.), при этом на листьях образуются пятна разной окраски и размеров в зависимости от видов растений.

Бактерии рода Xanthomonas поражают листья, вызывая пятнистость; проникая в сосудистую систему растения, закупоривая ее элементы, они вызывают гибель растения. Различают возбудителей сосудистого бактериоза -- X. campestris, туберкулеза -- X. beticola, черной бактериальной пятнистости -- X. vesicatoria и др.

Представители рода Corynebacterium вызывают сосудистые и паренхиматозные заболевания растений. Гликопептиды этих бактерий повреждают клеточные мембраны сосудов, в результате чего происходит закупорка сосудов и гибель растения. Они поражают растения из семейства разноцветных и бобовых (С. fascians), вызывают увядание растений семейства бобовых (С. insidiosum), бактериальный рак (С. michidanense).

Агробактерии способствуют развитию различных опухолей у растений. Образование опухолей вызывается онкогенной плазмидой, передающейся агробактериями в растительные клетки. Эти бактерии вызывают у растений образование корончатых галлов -- опухолей. После развития опухоли агробактерии в тканях обычно отсутствуют.

Передача возбудителей бактериозов происходит через зараженные семена, остатки больных растений, почву, воду, воздух, путем переноса насекомыми, моллюсками, нематодами. Бактерии проникают в растения через устьица, нектарники и другие части растений, а также даже через небольшие повреждения. При проникновении бактерий внутрь растений происходит повреждение растительных клеток, они мацерируются и отслаиваются друг от друга. Такой путь проникновения называется интрацеллюлярным и межклеточным, а заболевания -- паренхиматозными. В случаях распространения и размножения бактерий в сосудистых пучках происходит как бы закупоривание их просвета бактериальной массой. В результате этого процесса и действия бактериальных токсинов растения увядают.

Вирусы, вызывающие болезни растений, делят на возбудителей мозаики и желтухи. При мозаичной болезни растений появляется мозаичная (пятнистая) расцветка пораженных листьев и плодов, растения отстают в росте. Желтуха проявляется карликовостью растений, измененными многочисленными боковыми побегами, цветками и т.д.

Грибы, поражающие растения, могут в случае приготовления из пораженного зерна продуктов питания вызывать пищевые отравления -- микотоксикозы. Примером микотоксикоза является эрготизм -- заболевание, возникающее при употреблении продуктов, приготовленных из зерна, зараженного спорыньей (гриб Claviceps purpurea). Гриб поражает в поле колоски злаковых: образуются склероции гриба, называемые рожками.

В условиях повышенной влажности, низкой температуры на вегетирующих или скошенных растениях могут развиваться грибы родов Fusarium, Penicillium, Aspergillus и др., вызывающие у людей микотоксикозы.

Для борьбы с фитопатогенными микроорганизмами проводят следующие мероприятия: возделывание выносливых растений, очистку и обработку семян, обеззараживание почвы, удаление пораженных растений, уничтожение переносчиков возбудителей болезней, обитающих на растениях.

9. Антимикробная активность лекарственного препарата: определение понятия, вещества, обеспечивающие данную активность, методика выявления данной активности и нейтрализация

Определение антимикробной активности антибиотиков основано на их способности угнетать рост микроорганизмов. Определение проводят методом диффузии в агар на плотной питательной среде путем сравнения размеров зон угнетения роста тест - микробов, образующихся при испытании растворов определенных концентраций Государственного стандартного образца и испытуемого препарата.

Антимикробная активность антибиотиков выражается в единицах действия - ЕД или "мгк". Для большинства антибиотиков 1 ЕД или "мкг" соответствуют 1 мкг активного вещества (кислоты или основания); для антибиотиков, имеющих иное количественное выражение единицы, соответствующие указания даются в частных статьях.

При определении антимикробной активности антибиотиков используют стандартные образцы, активность которых, как правило, устанавливают в соответствии с Международными биологическими стандартами. При отсутствии последних для указанных целей могут быть использованы международные химические стандарты, антимикробную активность которых рассчитывают на основании показателей качества, установленных физико - химическими методами. Антимикробную активность стандартных образцов антибиотиков, не имеющих аналогов в международной коллекции стандартов, рассчитывают также на основании показателей качества, установленных физико - химическими методами.

Метод определения. В чашки Петри (стеклянные или пластмассовые), установленные на столиках со строго горизонтальной поверхностью, разливают расплавленные питательные среды определенного состава в один или два слоя. Для нижнего слоя используют незасеянные среды, для верхнего или одного слоя - агаровую среду, предварительно засеянную соответствующим тест - микробом. Если культура представляет собой суспензию вегетативных клеток, то температура расплавленной среды, в которую вносят тест - микроб, должна быть (49 +/-1) град. С, при использовании суспензии спор - 65-70 град. С. К среде следует добавить такое количество суспензии вегетативных клеток или спор, которое обеспечивает оптимальный рост тест - микроба и четкость зон угнетения его роста.

Шесть стерильных цилиндров единого размера и массы, высотой (10,0 +/-0,1) мм и внутренним диаметром (6,0 +/-0,1) мм, из нержавеющей стали или алюминия расставляют на поверхности засеянной среды на равном расстоянии друг от друга и от края чашки. Вместо цилиндров могут быть использованы лунки диаметром от 6 до 8 мм, сделанные в толще агара с помощью стерильного сверла либо другого соответствующего приспособления.

В цилиндры или лунки каждой чашки вносят равные объемы рабочих растворов стандартного и испытуемого образцов. Основные растворы стандартных и испытуемых образцов готовят в стерильных растворителях с концентрацией 1 мг/мл. Затем из основных растворов в зависимости от применяемого варианта метода диффузии в агар (трехдозного или с построением стандартной кривой) готовят рабочие растворы трех или одной концентраций испытуемого образца и растворы трех или пяти концентраций стандартного образца.

Рабочие растворы испытуемых образцов готовят из основных растворов таким образом, чтобы их концентрации не имели существенных отличий от концентраций раствора стандартного образца.

Для уменьшения влияния колебаний во времени между закапыванием растворов, используемых в опыте, рекомендуется после их внесения выдерживать чашки при комнатной температуре в течение 1-2 ч. Затем чашки инкубируют при температуре (36 +/-1) град. С в течение 16-18 ч.

Диаметры зон угнетения роста тест - микроба при помощи соответствующих приборов измеряют с точностью до 0,1 мм.

Определение антимикробной активности антибиотиков с использованием трехдозного варианта метода диффузии в агар. Для проведения испытания готовят три раствора стандартного образца (C1, С2, С3) и три раствора испытуемого образца (И1, И2, И3). Концентрации растворов, содержащих малую, среднюю и большую дозы, должны находиться между собой в кратном соотношении (1:2:4). При необходимости это соотношение может быть изменено. Концентрация раствора С2 должна быть близка контрольной концентрации раствора стандартного образца, указанной в табл. .

Все растворы стандартного и испытуемого образцов вносят в цилиндры или лунки одной чашки Петри таким образом, чтобы растворы с большими концентрациями не соприкасались между собой. Предлагаемый вариант закапывания С1И3С2И1С3И2.

Число чашек, используемых в каждом опыте, должно быть достаточным для обеспечения статистической достоверности результатов, но не менее 6 чашек.

Последовательность внесения растворов стандартного и испытуемого образцов в цилиндры или лунки каждой чашки должна быть следующей: первым вносят раствор с малой концентрацией стандартного образца (C1) и соответствующий раствор испытуемого образца (И1). Затем растворы со средней концентрацией (С2 и И2), последними вносят растворы с большими концентрациями (С3 и И3).

Расчет активности и дисперсионный анализ при использовании трехдозного варианта метода диффузии в агар осуществляется в соответствии со статьей "Статистическая обработка результатов химического эксперимента и биологических испытаний" (ГФ XI, вып. 1, с. 199). В разделе II.5 данной статьи растворы определенных концентраций стандартного (С) и испытуемого (И) образцов S U обозначены D и D соответственно.

Определение антимикробной активности антибиотиков с использованием стандартной кривой. Постановка опыта. В день постановки анализа из основного раствора готовят пять рабочих растворов стандартного образца C1, С2, С3, С4, C5 с концентрациями, увеличивающимися в геометрической прогрессии (Z), обычно в соотношении 1:1,25. Средняя концентрация (С3) является контрольной и должна быть близка к концентрации, указанной в табл. : концентрация C1 - наименьшая, C5 - наибольшая. Для исследования растворов каждой концентрации (кроме контрольной) используют по три чашки. Раствор контрольной концентрации С3 закапывают в три цилиндра (или лунки) каждой из взятых в опыт чашек, в три другие цилиндра (лунки) закапывают раствор одной из концентраций стандартного образца, чередуя его с раствором контрольной концентрации. Таким образом, для построения стандартной кривой используют 12 чашек.

После инкубации в термостате измеряют диаметры зон угнетения роста тест - микробов. Далее вычисляют среднюю величину диаметров зон для раствора контрольной концентрации стандартного образца в каждой группе из трех чашек, затем среднюю величину диаметров зон для раствора контрольной концентрации стандартного образца из всех 12 чашек (общую среднюю из 36 зон). По разности между средней величиной зоны контрольной концентрации, установленной из 12 чашек, и средней величиной зоны контрольной концентрации, установленной из 3 чашек с каждой отдельной концентрацией, находят поправку к величине зоны данной концентрации. Найденную поправку прибавляют к средней величине диаметра зоны данной концентрации, если она положительная, и вычитают, если она отрицательная.

Во всех сомнительных случаях и при определении активности стандартных образцов должен использоваться только трехдозный вариант метода диффузии в агар.

Для определения содержания активного вещества во флаконе активность, найденную в 1 мг, умножают на массу содержимого флакона, выраженную в миллиграммах. При исследовании раствора, приготовленного из всего содержимого флакона или ампулы, активность, найденную в 1 мл этого раствора, умножают на его объем. В случае необходимости определения содержания активного вещества в 1 мг испытуемого образца следует величину, характеризующую содержание активного вещества во флаконе, разделить на массу содержимого флакона, выраженную в миллиграммах.

10. Исследование на стерильность иммунобиологических препаратов: основные принципы к необходимость проведения данного исследования

Иммунобиологические препараты - к ним относятся лечебные, диагностические и профилактические средства, включающие вакцины, лечебные сыворотки, анатоксины, иммуноглобулины, бактериофаги, интерфероны, препараты нормофлоры, аллергены.

К лекарственным формам для инъекций ГФ XI предъявляет следующие требования:

а)стерильность;

6) апирогенность;

в)стабильность;

г) отсутствие механических включений.

Практически, составы всех растворов для инъекций, а также способы обеспечения их стерильности и стабильности, регламентированы.

Требование стерильности предполагает отсутствие в препарате микроорганизмов на любой стадии их развития и существования.

Это ведущее требование должно обеспечиваться следующими приёмами:

а) соблюдение правил асептики при изготовлении раствора;

б) выбор правильного метода и режима стерилизации. Стерильные растворы аптечного изготовления делятся на 2 группы:

1) растворы, которые стерилизуются в конечной упаковке;

2) растворы, которые не подлежат стерилизации и готовятся в асептических условиях с использованием стерильных растворителей, посуды, вспомогательных материалов, мембранной фильтрации и т. д. на основе стерильной воды.

I. Определение стерильности

Определение стерильности препаратов проводят с применением тиогликолевой среды, которая выпускается отечественной промышленностью в виде сухого препарата по утвержденной НТД.

Контроль отсутствия специфической микрофлоры, которая в силу особенностей технологии производства может контаминировать некоторые препараты, должен осуществляться в соответствии с методиками, изложенными в НТД на конкретные препараты.

1. Требования к качеству тиогликолевой среды

Готовая к употреблению тиогликолевая среда должна отвечать следующим требованиям:

1.1. Стерильность - быть стерильной.

1.2. Ростовые свойства - не позднее 48 часов инкубации посевов

обеспечивать рост тест-штамма Alcaligenes faecalis 415 не ниже, чем из разведения культуры 10 и тест-штамма Clostridium novyi (oedematiens) 198 не ниже, чем из разведения 10 .

1.3. Нейтрализующие свойства - не позднее 5 суток инкубации посевов обеспечивать рост тест-штамма Alcaligenes faecalis 415 при посеве его с мертиолятом в концентрации 1:10000 не ниже, чем из разведения культуры 10 .

Контроль стерильности биологических препаратов, вакцин, сывороток, анатоксинов, аллергенов, иммуноглобулинов и т.д. проводят путем исследования образцов готового препарата в полуфабрикате и готовой серии препарата. Готовым препаратом в полуфабрикате считают препарат, находящийся в одной производственной емкости (или разлитый в бутылки из этой емкости), из которой производят розлив в ампулы или флаконы.

Правила отбора образцов препаратов для контроля стерильности

Отбор образцов готового препарата в полуфабрикате

Для контроля стерильности готового препарата в полуфабрикате берут выемку препарата в количестве не менее 6 мл. Предварительно содержимое бутылки или др. производственной емкости, в которой находится полуфабрикат, тщательно перемешивают. Взятая выемка полуфабриката должна быть посеяна в виде трех или более образцов (не менее 2 мл каждый) по схеме.

Отбор образцов препарата в процессе розлива

В процессе розлива препарата для контроля стерильности берут не менее, чем по одному образцу в начале, середине и в конце розлива. Для контроля могут быть взяты пробы, отобранные в процессе розлива в отдельные лабораторные емкости (пробирки, флаконы) или герметизированные емкости, в которые осуществляется розлив препарата.

Отбор образцов готового (разлитого, высушенного) препарата

При контроле стерильности готового (разлитого, высушенного) препарата количество контролируемых емкостей (ампул или флаконов) определяется с учетом общего количества емкостей в серии.

Принимая во внимание, что за образец для контроля принято количество препарата, необходимое для первичного посева на питательную среду (не менее 2 мл), число контролируемых емкостей и число засеваемых образцов может не совпадать. В случаях, когда объем препарата в каждой емкости равен или превышает 2 мл, число контролируемых емкостей и число засеваемых образцов будет одинаковым. При меньшем объеме розлива (менее 2 мл в емкости) число засеваемых образцов будет меньше, чем число контролируемых емкостей за счет объединения нескольких емкостей в один образец.

Техника проведения контроля стерильности

Лица, проводящие контроль стерильности, непосредственно перед работой в боксе моют руки с мылом при помощи щетки. В предбокснике обувь меняют на специальную боксовую, надевают стерильный халат, колпак или косынку и 4-х слойную марлевую повязку (маску), которая должна закрывать нос и рот. При работе в боксе движения, разговоры, перемещения должны быть максимально ограничены.

Перед внесением в бокс ампулы (флаконы) с препаратами должны быть проверены на герметичность путем тщательного просмотра, а препараты, высушенные под вакуумом, должны быть проверены на вакуум. После этого ампулы (флаконы) обрабатывают 3% раствором перекиси водорода.

Перед началом работы в боксе руки должны быть обработаны спиртом.

Перед вскрытием ампул или флаконов оттянутый конец ампулы или горлышко флакона протирают спиртом и обжигают в пламени горелки.

Исследуемый препарат набирают стерильной пастеровской пипеткой при помощи ножной или ручной груши. Перед посевом пипетка проводится через пламя горелки, но не прокаливается. Посев каждого образца препарата производят отдельной стерильной пипеткой в толщу питательной среды без выдувания. Использованные пипетки, ампулы и флаконы от препаратов помещают в 3% раствор перекиси водорода и оставляют на 24 часа, после чего производится их дальнейшая обработка.

Перед посевом жидких препаратов содержимое ампул или флаконов необходимо встряхивать (т.к. микробы - контаминанты могут осесть на дно).

Образцы сухих препаратов предварительно растворяют стерильным растворителем (изотонический раствор хлорида натрия, дистиллированная вода и т.д.) в объеме, предусмотренном соответствующей технической документацией и после растворения засевают на питательную среду. Стерильность используемого растворителя проверяют путем его посева (по одному мл) на две пробирки, содержащие по 20,0 мл тиогликолевой среды, пробирки выдерживают при температуре 35-37 град. С и 20-22 град. С соответственно в течение 14 суток одновременно с опытными пробирками. Посев растворителя для контроля стерильности производят до начала работы и после ее окончания. Если при посеве сухих препаратов используют несколько флаконов растворителя, стерильность каждого флакона должна быть проверена аналогичным способом.

Схема контроля стерильности

Контролируемый на стерильность образец засевают пастеровской пипеткой приблизительно по 1 мл на две пробирки, содержащие по 20,0 мл тиогликолевой среды, одну из которых инкубируют при температуре +35-37 град. С для выявления аэробных и анаэробных микроорганизмов, а другую - при температуре +20-22 град. С для выявления грибов.

Для препаратов, не вызывающих помутнения питательной среды (иммуноглобулины, инфекционные и неинфекционные аллергены, различные сыворотки и растворители и т.п.) пробирки выдерживают в течение 14 суток при указанных выше температурах.

Для препаратов, вызывающих помутнение питательной среды (препараты, содержащие сорбенты, микробную массу, мозговую ткань и т.п.) посев производят по указанной выше схеме, но через 5-7 суток из каждой пробирки производят пересев приблизительно по 0,5 мл на две пробирки, содержащие по 10,0 мл тиогликолевой среды, выдерживают после пересева при 35-37 град. С и 20-22 град. С соответственно. Эти пробирки инкубируют в течение 7-9 суток, в зависимости от срока пересева с таким расчетом, чтобы общий период инкубации первичного посева и пересева составлял 14 суток.

Учет результатов контроля стерильности

Окончательный учет результатов контроля стерильности производят путем макроскопического, а в случаях пророста и микроскопического исследования всех посевов через 14 суток после первичного посева на тиогликолевую среду.

Серия считается стерильной, если ни в одной из засеянных пробирок не наблюдается роста.

В случаях роста хотя бы в одной из засеянных пробирок контроль стерильности повторяют на том же количестве образцов, проверяя каждый образец в соответствии с представленной выше схемой. В случае роста должна быть проведена микроскопия выросших микробов. Мазки должны быть окрашены по Грамму. В документации отмечают температуру, при которой произошел пророст, морфологию и окраску микробов по Граму. При отсутствии роста при повторном контроле препарат считают стерильным. При наличии роста при повторном контроле хотя бы в одной пробирке и идентичности микрофлоры при первичном и повторном посевах препарат бракуют, как нестерильный. Если при первичном и повторном посевах выявлена различная микрофлора, а также и в том и в другом случае отмечался пророст лишь в отдельных пробирках, в порядке исключения, допускается посев образцов в третий раз. При отсутствии роста препарат признают стерильным. Если в этом случае обнаруживают рост хотя бы в одной пробирке, независимо от характера микрофлоры, препарат признают нестерильным и бракуют.

Результаты контроля исследуемых препаратов регистрируют в специальных производственных журналах.

Размещено на Allbest.ru


Подобные документы

  • Механизмы устойчивости микроорганизмов к химиотерапевтическим веществам. Иммунопрепараты: производство и контроль качества. Генетический аппарат вирусов. Санитарно-микробиологические исследования воды. Микробная порча лекарственного растительного сырья.

    контрольная работа [26,8 K], добавлен 01.04.2015

  • Основные возбудители внутрибольничных инфекций. Выделение микроорганизмов из воздуха и объектов внешней среды. Идентификация возбудителей. Бактериологический контроль качества стерилизации шовного и перевязочного материала, хирургического инструментария.

    дипломная работа [568,0 K], добавлен 13.10.2015

  • Требования нормативной документации к получению, хранению и распределению воды очищенной и воды для инъекций. Контроль качества и методы получения. Сбор и подача воды очищенной на рабочее место фармацевта и провизора-технолога, обработка трубопровода.

    контрольная работа [33,8 K], добавлен 14.11.2013

  • Принципы асептики. Источники и пути инфицирования операционной раны. Мероприятия по уменьшению бактериальной обсемененности воздуха. Методы и этапы стерилизации. Обработка рук хирурга. Способы контроля стерильности. Правила обработки операционного поля.

    презентация [82,0 K], добавлен 09.11.2014

  • Морфология риккетсий и хламидий, их характеристика. Размножение бактерий на жидкой и плотной питательной среде. Микрофлора воздушной среды: количественный и качественный состав, методы исследования. Антибиотики животного и синтетического происхождения.

    контрольная работа [2,0 M], добавлен 10.02.2015

  • Классификация аптек, структура аптечной сети. Характеристика хозрасчетных и лечебно-профилактических учреждений. Организационные требования к деятельности аптек, их основные задачи. Назначение помещений, их оснащение и сущноcть требований к персоналу.

    реферат [51,7 K], добавлен 01.12.2012

  • Сравнительный анализ требований отечественной и зарубежной фармакопеи. Категории качества воды, используемые на фармацевтических предприятиях, методы очистки. Нормативные документы, регламентирующие производство и контроль качества воды в РФ и за рубежом.

    курсовая работа [61,1 K], добавлен 17.10.2014

  • Влияние физических и химических факторов на жизнедеятельность микроорганизмов. Понятие асептики и антисептики. Стерилизация и предстерилизационная обработка стоматологических инструментов. Способы дезинфекции посуды, шовного и перевязочного материала.

    лекция [295,5 K], добавлен 07.07.2014

  • Лекарственные формы для инфузий. Требования, предъявляемые к производству инфузионных растворов. Общая технологическая схема производства. Получение воды для инъекций. Модуль фильтрации жидких лекарственных средств. Автоматическая моечная установка.

    курсовая работа [925,6 K], добавлен 22.11.2013

  • Понятия асептики и антисептики. Дезинфекция: виды, способы. Деконтаминация предметов окружающей среды. Стерилизация: виды, режимы. Этапы обработки инструментов. Профилактика передачи вирусов гепатита В и ВИЧ-инфекции в лечебно-профилактическом учреждении.

    презентация [319,3 K], добавлен 11.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.