Механизмы проведения синапсов

Синапс как место контакта между двумя нейронами и получающей сигнал эффекторной клеткой. Механизм передачи нервного возбуждения и особенности его строения. Передача возбуждения в нервно-мышечном синапсе. Суммарный результат ионного тока натрия и калия.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 03.06.2014
Размер файла 70,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

ГБОУ ВПО "Пензенский государственный университет"

Пензенский педагогический

Институт им. В.Г. Белинского

Факультет естественнонаучный

Кафедра биохимии

Реферат

"Механизмы проведения синапсов"

Выполнил: Ерофеева С.Н.

Руководитель: Соловьев В.Б.

Пенза, 2014 г.

Понятие о синапсах, их структура

Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10--50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

В химических синапсах взаимодействующие клетки разделены заполненной внеклеточной жидкостью синаптической щелью шириной 20-40 нм. Для того, чтобы передать сигнал, пресинаптический нейрон выделяет в эту щель медиатор, который диффундирует к постсинаптической клетке и присоединяется к специфическим рецепторам её мембраны. Соединение медиатора с рецептором приводит к открытию (но в некоторых случаях - к закрытию) хемозависимых ионных каналов. Через открывшиеся каналы проходят ионы, и этот ионный ток изменяет значение мембранного потенциала покоя постсинаптической клетки. Последовательность событий позволяет разделить синаптический перенос на два этапа: медиаторный и рецепторный. Передача информации через химические синапсы происходит гораздо медленней, чем проведение возбуждения по аксонам, и занимает от 0,3 до нескольких мс - в связи с этим получил распространение термин синаптическая задержка.

В электрических синапсах расстояние между взаимодействующими нейронами очень мало - приблизительно 3-4 нм. В них пресинаптический нейрон соединяется с постсинаптической клеткой особым видом ионных каналов, пересекающих синаптическую щель. По этим каналам локальный электрический ток может распространяться от одной клетки к другой.

Классификация синапсов

В зависимости от механизма передачи нервного импульса различают

-химические;

-электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

-смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам:

-периферические;

-нервно-мышечные;

-нейросекреторные (аксо-вазальные);

-рецепторно-нейрональные;

-центральные;

-аксо-дендритические - с дендритами, в т. ч.;

-аксо-шипиковые - с дендритными шипиками, выростами на дендритах;

-аксо-соматические - с телами нейронов;

-аксо-аксональные - между аксонами;

-дендро-дендритические - между дендритами;

В зависимости от медиатора синапсы разделяются на:

-аминергические, содержащие биогенные амины (например, серотонин, дофамин);

-в том числе адренергические, содержащие адреналин или норадреналин;

-холинергические, содержащие ацетилхолин;

-пуринергические, содержащие пурины;

-пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия: возбуждающие и тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор - глицин) и ГАМК-ергические синапсы (медиатор - гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) - синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение - электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические - симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. "Не-шипиковые" синапсы называются "сидячими". Например, сидячими являются все ГАМК-ергические синапсы.

Механизм синаптической передачи

Первым этапом является высвобождение медиатора. Согласно квантовой теории, при возбуждении нервного волокна (возникновении потенциала действия) происходит активация потенциалзависимых кальциевых каналов, кальций входит внутрь клетки. После его взаимодействия с синаптическим пузырьком он связывается с мембраной клетки и высвобождает медиатор в синаптическую щель (4 катиона кальция необходимы для освобождения 1кванта ацетилхолина).

Выброшенный медиатор диффундирует через синаптическую щель и взаимодействует с рецепторами постсинаптической мембраны. 1). Если синапс возбуждающий, то в результате активации рецепторуправляемых каналов увеличивается проницаемость мембраны для натрия и калия. Возникает ВПСП. Он существует локально только на постсинаптической мембране. Величина ВПСП определяется величиной порции медиатора, поэтому он не подчиняется правилу - Все или ничего. ВПСП электротонически распространяется на мембрану эфферентной клетки, деполяризует ее. Если величина деполяризации достигает критического уровня, то происходит активация потенциалзависимых каналов, возникает потенциал действия или импульсное возбуждение, которое распространяется на всю мембрану клетки.

После взаимодействия с рецептором медиатор разрушается специальным ферментом (ацетилхолин - холинэстераза, норадреналин моноаминоксидаза и т.д.) Выделение медиатора происходит непрерывно. Вне возбуждения на постсинаптической мембране регистрируют так называемые миниатюрные потенциалы концевой пластинки, представляющие собой волны деполяризации (1 квант в секунду). Интенсивность этого процесса резко увеличивается на фоне возбуждения (1 потенциал действия способствует выделению 200 квантов медиатора).

Таким образом, возможны два основных состояния синапса: на фоне возбуждения и вне возбуждения.

Вне возбуждения на постсинаптической мембране регистрируется МПКП (миниатюрный потенциал концевой пластинки).

На фоне возбуждения вероятность высвобождения медиатора резко возрастает, на постсинаптической мембране регистрируется ВПСП. Последовательность процессов проведения возбуждения через синапс следующая:

-Если синапс тормозной, то выделяющийся медиатор активирует калиевые каналы и каналы для хлора. Развивающаяся гиперполяризация (ТПСП) электротонически распространяется на мембрану эфферентной клетки, увеличивает порог возбуждения и снижает возбудимость.

Физиологические особенности химических синапсов:

- односторонняя проводимость;

- синаптическая задержка;

- быстрая утомляемость;

- синаптическое облегчение;

Передача возбуждения в нервно-мышечном синапсе

Из всех существующих в организме человека синапсов наиболее простым является нервно-мышечный. который был хорошо изучен ещё в 50-х годах ХХ века Бернардом Катцем и его коллегами (Katz B. - лауреат Нобелевской премии 1970 года). В образовании нервно-мышечного синапса участвуют тонкие, свободные от миелина разветвления аксона мотонейрона и иннервируемые этими окончаниями волокна скелетной мышцы. Каждая веточка аксона на конце утолщается: это утолщение называют концевой пуговкой или синаптической бляшкой. В ней содержатся синаптические пузырьки, заполненные медиатором: в нервно-мышечном синапсе им является ацетилхолин. Большая часть синаптических пузырьков расположена в активных зонах: так называются специализированные части пресинаптической мембраны, где медиатор может выделяться в синаптическую щель. В пресинаптической мембране есть каналы для ионов кальция, которые в покое закрыты и открываются лишь тогда, когда к окончанию аксона проводятся потенциалы действия.

Концентрация ионов кальция в синаптической щели намного выше, чем в цитоплазме пресинаптического окончания нейрона, и поэтому открытие кальциевых каналов приводит к вхождению кальция в окончание. Когда концентрация кальция в окончании нейрона повысится, синаптические пузырьки сливаются с активной зоной. Содержимое слившегося с мембраной пузырька опорожняется в синаптическую щель: такой механизм выделения называется экзоцитозом. В одном синаптическом пузырьке содержится около 10 000 молекул ацетилхолина, а при передаче информации через нервно-мышечный синапс он одновременно освобождается из многих пузырьков и диффундирует к концевой пластинке.

Концевой пластинкой называется часть мышечной мембраны, контактирующая с нервными окончаниями. У неё складчатая поверхность, причём складки находятся точно напротив активных зон пресинаптического окончания. На каждой складке, расположившись в форме решётки, сосредоточены холинорецепторы, их плотность около 10 000/ мкм 2. В глубине складок холинорецепторов нет - там только потенциалзависимые каналы для натрия, причём их плотность тоже высока.

Встречающаяся в нервно-мышечном синапсе разновидность постсинаптических рецепторов относится к типу никотинчувствительных или Н-холинорецепторов (в главе 6 будет описана другая разновидность - мускаринчувствительные или М-холинорецепторы). Это трансмембранные белки, являющиеся одновременно и рецепторами, и каналами. Они состоят из пяти субъединиц, сгруппированных вокруг центральной поры. Две субъединицы из пяти одинаковы, они имеют выступающие наружу концы аминокислотных цепей - это рецепторы, к которым присоединяется ацетилхолин. Когда рецепторы свяжут две молекулы ацетилхолина, конформация белковой молекулы изменяется и во всех субъединицах сдвигаются заряды гидрофобных участков канала: в результате появляется пора диаметром около 0,65 нм.

Через неё могут пройти ионы натрия, калия и даже двухвалентные катионы кальция, в то же время прохождению анионов мешают отрицательные заряды стенки канала. Канал бывает открыт в течение приблизительно 1 мс, но за это время через него в мышечное волокно входит около 17 000 ионов натрия, а несколько меньшее количество ионов калия - выходит. В нервно-мышечном синапсе почти синхронно открывается несколько сотен тысяч управляемых ацетилхолином каналов, поскольку выделившийся только из одного синаптического пузырька медиатор открывает около 2000 одиночных каналов.

Суммарный результат ионного тока натрия и калия через хемозависимые каналы определяется преобладанием тока натрия, что приводит к деполяризации концевой пластинки мышечной мембраны, на которой возникает потенциал концевой пластинки (ПКП). Его величина составляет как минимум 30 мВ, т.е. всегда превышает пороговое значение. Возникший в концевой пластинке деполяризующий ток направляется к соседним, внесинаптическим участкам мембраны мышечного волокна. Поскольку его величина всегда выше пороговой,. он активирует потенциалзависимые натриевые каналы, расположенные поблизости от концевой пластинки и в глубине её складок. Вследствие этого возникают потенциалы действия, которые распространяется вдоль мышечной мембраны. нейрон синапс нервный

Выполнившие свою задачу молекулы ацетилхолина быстро расщепляются находящимся на поверхности постсинаптической мембраны ферментом - ацетилхолинэстеразой. Её активность достаточно высока и за 20 мс она в состоянии все связанные с рецепторами молекулы ацетилхолина превратить в холин и ацетат. Благодаря этому холинорецепторы освобождаются для взаимодействия с новыми порциями медиатора, если он продолжает выделяться из пресинаптического окончания. Одновременно с этим ацетат и холин с помощью специальных механизмов транспорта поступают в пресинаптическое окончание и используются для синтеза новых молекул медиатора.

Таким образом, основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическом окончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к Н-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

Литература

1. Васильев В.Н. Физиология: учебное пособие / В.Н. Васильев, Л.В. Капилевич - Томск: Томск: Изд-во Томского политехнического университета, 2010. - 290 с.

2. Глебов Р.Н., Крыжановский Г.Н. Функциональная биохимия синапсов. М., 1978.

3. Назарова Е.Н., Жилов Ю.Д., Беляева А.В. Физиология человека: Учебное пособие по разделам дисциплины физиология человека: физиология центральной нервной системы; физиология высшей нервной деятельности и сенсорных систем; психофизиология; физиология систем, формирующих гомеостаз. - М.: САНВИТА, 2009. - 282 с.

4. Экклз Д.К. Физиология синапсов. М.: Мир, 1966, - 397 с.

Размещено на Allbest.ru


Подобные документы

  • Механизм передачи возбуждения в химическом синапсе, особенности его строения. Виды и свойства медиаторов. Электрические и тормозные синапсы, особенности передачи сигнала. Пути фармакологической регуляции возникновения синаптического возбуждения.

    презентация [2,1 M], добавлен 09.12.2014

  • Основные принципы функционирования центральной нервной системы. Два основных вида регуляции: гуморальный и нервный. Физиология нервной клетки. Виды связей нейронов. Строение синапса - места контакта между нейроном и получающей сигнал эффекторной клеткой.

    презентация [1,3 M], добавлен 22.04.2015

  • Пуринергические средства: понятие, структура, предъявляемые требования и область применения. Механизм нейрохимической передачи возбуждения в их синапсе. Классификация и типы препаратов, механизм их действия, краткая характеристика представителей.

    презентация [400,5 K], добавлен 02.10.2015

  • Пуринергические средства: общее понятие и область применения. Механизм нейрохимической передачи возбуждения в пуринергическом синапсе. Классификация пуринергических препаратов, механизм их действия и краткая характеристика некоторых представителей.

    презентация [1,6 M], добавлен 05.10.2015

  • Проблема синаптической связи между нервом и процессором протеза при имплантации различных искусственных органов. Строение и физиология различных синапсов. Механизм передачи нервного импульса. Структура электрического и химического видов синапса.

    реферат [4,1 M], добавлен 09.08.2015

  • Гистологические особенности строения мякотных нервных волокон. Понятие и физиологические свойства синапсов. Двустороннее проведение возбуждения по нервному волокну. Сущность и стадии парабиоза. Химические изменения в нервных волокнах при возбуждении.

    реферат [887,9 K], добавлен 23.06.2010

  • "Мышечные релаксанты", нарушающие проводимость в нервно-мышечном синапсе. Классифицикация миорелаксантов на деполяризующие и недеполяризующие. Механизм действия сукцинилхолина, показания к применению. Плазменная холинэстераза, дибукаиновое число.

    контрольная работа [18,5 K], добавлен 04.08.2009

  • Ранние теории общей анестезии и современное понимание ее механизмов. Основные теории наркоза. Реализация специфического действия анестетиков через синапсы. Механизм угнетения возбудимости нейронов и торможения синаптической передачи возбуждения.

    реферат [78,7 K], добавлен 12.02.2010

  • Нейрон как структурно-функциональная единица нервной системы, особенности строения данной клетки, ее функциональные возможности и специализация. Формирование миелиновой оболочки. Немиелиновое волокно. Принципы и обоснование проведения нервного импульса.

    презентация [2,3 M], добавлен 30.09.2013

  • Физиология нейрона и его строение. Дистантное, смежное и контактное их взаимодействие. Существо механизма передачи электрического импульса от одной нервной клетки к другой через химический синапс. Основные факторы, выполняющие медиаторную функцию.

    курсовая работа [170,6 K], добавлен 10.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.