Физиология вкуса
Роль анализаторов при формировании приспособительных реакций. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек; центральные связи. Основные вкусовые ощущения, их интенсивность. Объективная физиология вкуса.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 08.06.2014 |
Размер файла | 21,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Кафедра Физиологии
Реферат
Тема:
Физиология вкуса
2014
Содержание
Введение
1. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек
2. Центральные связи
3. Основные вкусовые ощущения
4. Интенсивность ощущений
5. Объективная физиология вкуса
6. Первичный процесс
7. Роль вкусовой чувствительности
Литература
Введение
Человек и животное непрерывно получают информацию о бесконечном многообразии изменений, которые происходят во внешней и внутренней среде. Это осуществляется благодаря наличию у организма специализированных структур, которые получили название анализаторы (сенсорные системы).
Под анализаторами понимают совокупность образований, обеспечивающих восприятие энергии раздражителя, трансформацию ее в специфические процессы возбуждения, проведение этого возбуждения в структуры ЦНС и к клеткам коры, анализ и синтез специфическими зонами коры этого возбуждения с последующим формированием ощущения.
Понятие об анализаторах введено в физиологию И. П. Павловым в связи с учением о высшей нервной деятельности. Каждый анализатор состоит из трех отделов:
Периферический или рецепторный отдел, который осуществляет восприятие энергии раздражителя и трансформацию ее в специфический процесс возбуждения.
Проводниковый отдел, представленный афферентными нервами и подкорковыми центрами, он осуществляет передачу возникшего возбуждения в кору головного мозга.
Центральный или корковый отдел анализатора, представленный соответствующими зонами коры головного мозга, где осуществляется высший анализ и синтез возбуждений и формирование соответствующего ощущения.
Роль анализаторов при формировании приспособительных реакций чрезвычайно велика и многообразна. Согласно концепции функциональной системы П. К. Анохина формирование любой приспособительной реакции осуществляется в несколько этапов. Анализаторы принимают непосредственное участие в формировании всех этапов функциональной системы. Они являются поставщиками афферентных посылок определенной модальности и различного функционального назначения, причем, одна и та же афферентация может быть обстановочной, пусковой, обратной и ориентировочной в зависимости от этапа формирования приспособительной деятельности.
вкус физиология анализатор орган
1. Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек
Язык у человека покрыт слизистой оболочкой, складки которой во многих местах образуют маленькие выпуклости в форме колышков, называемые сосочками
Эти три типа распределены по-разному. Только грибовидные сосочки рассеяны по всей поверхности.Желобоватые сосочки, которых у человека всего 7-12, сверху имеют вид круглых образований 1-3 мм в диаметре; они находятся в ограниченной зоне поперек спинки языка у его корня. Третий тип, листовидныесосочки, образуют тесно расположенные складки вдоль задних краев языка. Они хорошо развиты у детей, но гораздо менее выражены и менее многочисленны у взрослых.
Нитевидные сосочки, занимающие остальную поверхность языка, не показаны на рис. 1, потому что в них нет вкусовых почек. Название «почка» говорит о форме этих органов (рис. 2). Положение их на сосочках варьирует; в случае желобоватых и листовидных сосочков много вкусовых почек заложено в боковых стенках, а на верхушке их нет. В грибовидных сосочках вкусовые почки ограничены поверхностью «шляпки гриба», которая может достигать 1 мм в диаметре.
Отдельная вкусовая почка имеет около 70 мкм в высоту и около 40 мкм в диаметре. Всего у человека около 2000 вкусовых почек, из них около половины-на желобоватых сосочках. Каждая вкусовая почка содержит 40-60 отдельных клеток.
В соединительную ткань под желобоватыми и листовидными сосочками погружены серозные железы, протоки которых открываются в углубления у основания сосочка, их секрет служит для смывания частиц пищи и микроорганизмов. Кроме того, он понижает концентрацию стимулирующего вещества вблизи вкусовых почек.
Внутри вкусовых почек различают три типа клеток: сенсорные, опорные и базальные (рис. 2). Растворимые в воде вещества, попадающие на поверхность языка, диффундируют через пору в наполненное жидкостью пространство над вкусовой почкой; здесь они соприкасаются с мембранами микровиллей, которые образуют наружные концы сенсорных клеток. Вкусовые рецепторы представляют собой вторичные сенсорные клетки без аксонов, которые проводят импульсы в центральном направлении. Их ответы передаются афферентными волокнами, которые образуют синапсы близ оснований сенсорных клеток. На рис. 2 показаны только два волокна, но в действительности в каждую вкусовую почку входят и разветвляются в ней около 50 волокон.
Продолжительность жизни сенсорных клеток во вкусовых почках невелика; происходит их непрерывная смена. В среднем одна сенсорная клетка замещается новой уже через 10 дней. За сменой клеток можно проследить, помечая их ядра 3Н-тимидином и определяя число меченых ядер, сохранившихся через некоторое время. Утраченные сенсорные клетки замещаются новыми, которые образуются из базальных клеток. При этой смене должны прерваться синапсы между афферентными волокнами и старыми клетками и возникнуть новые синапсы. В связи с такой перестройкой возникает много интересных вопросов, особенно если учесть тот факт, что сенсорные клетки различаются по своей чувствительности к разным стимулам. Так, смена сенсорных клеток может привести к изменению «вкусового профиля» - характерной формы ответов в афферентных волокнах, о чем пойдет речь в следующем разделе.
2. Центральные связи
Афферентные волокна, проводящие ответы от скоплений вкусовых луковиц, распределяются по двум черепномоз-говым нервам -лицевому (VII) и языкоглоточному (IX). Такое деление обычно соответствует областям языка, которые снабжаются этими волокнами. Так, волокна от желобоватых и листовидных сосочков идут преимущественно в составе языкоглоточного нерва, а волокна от грибовидных сосочков в передней части языка входят в барабанную струну (chorda tympani), ветвь лицевого нерва. У детей имеются добавочные вкусовые органы в эпителии мягкого нёба и задней стенки глотки до гортани; они иннервируются главным образом блуждающим нервом (X).
В головном мозгу вкусовые волокна на каждой стороне объединяются в солитарный тракт. Он оканчивается в продолговатом мозгу, в ядре солитарного тракта, где афферентные волокна образуют синапсы с нейронами второго порядка. Аксоны этих нейронов идут к вентральному таламусу в составе медиального лемниска. Третья совокупность нейронов связывает эту область с корой больших полушарий. Вкусовые зоны коры расположены в латеральной части постиентральной извилины.
3. Основные вкусовые ощущения
В обычных условиях, например при еде, слизистая ротовой полости подвергается действию сложных стимулов, включающих несколько модальностей. Благодаря тому, что ротовая полость сообщается с носовой, пахучие вещества могут достичь обонятельных рецепторов в носу и вызвать другие ощущения. Кроме того, в слизистой оболочке рта и языка имеются терморецепторы, механорецепторы и болевые волокна, которые тоже подвергаются стимуляции. То, что обычно называют «вкусом», в действительности является мультимодальным ощущением, в котором на собственно вкусовые ощущения накладываются ощущения запаха, тепла или холода, давления и, возможно, даже боли.
Существуют четыре четко различимых основных вкусовых ощущения: сладкое, кислое, соленое и горькое.
Пороги обнаружения для разных качеств приходятся на разные концентрации. Пороговая концентрация сернокислого хинина (8 мкмоль/л, или 0,006 г/л) служит хорошим примером того, что вещества с горьким вкусом обнаруживаются при очень низких концентрациях. Порог обнаружения для сахарина составляет 23 мкмоль/л (0,0055 г/л), для виноградного сахара-0,08 моль/л, а для тростникового сахара-0,01 моль/л (соответственно 14,41 и 3,42 г/л). Эти данные характерны, и они показывают, что пороги для моно- и дисахаридов значительно выше, чем для синтетических сладостей. Пороги для уксусной кислоты (0,18 моль/л, или 0,108 г/л) и столовой соли (0,01 моль/л, или 0,585 г/л) служат иллюстрацией того общего правила, что пороги для кислого и соленогоприблизительно того же порядка, что и для указанных выше сахаридов. Пороги для кислот приблизительно отражают степень их диссоциации. Сравнение порогов для виноградного и тростникового Сахаров говорит о том, что раствор виноградного сахара должен быть более концентрированным, чем раствор тростникового сахара, для того чтобы они были одинаково сладкими. Экспериментальная проверка растворов разных надпороговых концентраций соответствует этому различию.
Но польза от таких точных пороговых данных ограничена, потому что для большинства веществ пороги подвержены значительной индивидуальной вариабельности. Разумнее было бы говорить о диапазоне пороговых значений
4. Интенсивность ощущений
Простое сравнение разных растворов показывает, что интенсивность вкусового ощущения зависит отконцентрации вещества. При определении порогов обнаружено, что эффект от разбавления раствора стимулирующего вещества может быть компенсирован стимуляцией большей поверхности языка, т.е. большего числа рецепторов Вероятно, это происходит благодаря пространственной суммации. В пороговой области существует входное соотношение между концентрацией и продолжительностью действия стимула. Кроме того, следует помнить, что чувство вкуса подвержено определенной адаптации -при длительном действии стимула интенсивность ощущения снижается. Еще одним фактором является секреция серозных желез, которая разжижает действующее у вкусовых луковиц вещество и тем самым влияет на интенсивность ощущения.
Испытание ряда разведений солевых растворов в околопороговой области во многих случаях показывает, что ощущение может менять свое качество в зависимости от концентрации. Растворы столовой соли 0,02-0,03 моль/л имеют сладкий вкус, а в концентрации 0,04 моль/л или больше -- соленый. Этот сдвиг качества, вероятно, можно понять, исходя из того, что вкусовые волокна обладают широким спектром чувствительности в пределах каждого качества.
Разные области языка у человека варьируют по чувствительности к четырем основным качествам. Кончик языка особенно чувствителен к сладким веществам, средние части краев отвечают лучше всего на кислые стимулы. Соленые стимулы всего эффективнее в области края языка, которая частично перекрывает первые две. Горькие вещества сильнее всего действуют на рецепторы близ корня языка, в области желобоватых сосочков. Поэтому повреждение языкоглоточного нерва понижает способность к обнаружению горечей, а после блокады проведения в лицевом нерве обнаруживаются только они одни.
5. Объективная физиология вкуса
Способность к различению вкусовых качеств зависит от специфичности рецепторных молекул в мембранах сенсорных клеток. Для регистрации активности как отдельных сенсорных клеток, так и афферентных волокон можно воспользоваться микроэлектродами. Такие записи показывают, что ни сами рецепторы, ни волокна, идущие к ЦНС, не дают качественно специфических ответов; как правило, эффективными оказываются стимулы более чем одной категории. Очевидно, что каждое волокно реагирует на стимулы нескольких категорий, но при рассмотрении разных градаций чувствительности выявляются различия. Иными словами, стимуляция раствором вещества в определенной концентрации активирует различные волокна в разной степени. Характер возбуждения, типичный для каждого отдельного волокна при ответах на ряд веществ, называется вкусовым профилем. Волокнами, наиболее близкими к качественной специфичности, являются те, которые реагируют на растворы Сахаров увеличением частоты разрядов. Сравнительные исследования показали, что такие относительно специфичные волокна особенно характерны для обезьян.
Регистрация активности отдельных сенсорных клеток показала, что они обладают градуальной относительной специфичностью. Ответы волокон, идущих от этих клеток, в этом отношении отражают ответы клеток. Но афферентные волокна ветвятся во вкусовых луковицах, так что каждое волокно получает возбуждение от многих сенсорных клеток, которые, надо полагать, различаются по степени специфичности. Кроме того, обнаружено, что сенсорные клетки в разных сосочках образуют синапсы с коллатералями от одного афферентного волокна. Это значит, что вкусовые волокна получают входы от сенсорных клеток, распределенных по значительным участкам языка. Эти участки называются рецептивными полями. Ситуация с рецептивными полями усложняется тем, что отдельные сенсорные клетки могут получать иннервацию от нескольких различных волокон.
Градуальная относительная специфичность вкусовых волокон создается 1) градуальной относительной специфичностью сенсорных клеток и 2) ветвлением вкусовых волокон, создающим рецептивные поля. Частота импульсации в одиночном афферентном волокне поэтому меняется как от качества стимула, так и от его концентрации. Разумеется, важным фактором является также степень, в какой стимулируемая область покрывает рецептивное поле волокна. Очевидным выводом в отношении кодирования стимула является то, что активность одного волокна не может дать однозначную информацию о качестве или концентрации. Толькосравнение уровня возбуждения в нескольких волокнах может выявить характерные распределения (паттерны) активности, которые говорят что-то о качестве стимула. При условии, что качество известно, частота импульсации в каждом отдельном волокне может служить мерой концентрации стимулирующего вещества. Отличительные черты вещества, следовательно, кодируются таким образом, что сложный, но характерный паттерн возбуждения создается одновременными, но разными ответами множества нейронов.
6. Первичный процесс
Условием возбуждения вкусового рецептора является взаимодействие между молекулами стимулирующего вещества и специально дифференцированными точками в мембране сенсорной клетки, где лежатрецепторные молекулы. Это взаимодействие называется первичным процессом; как полагают, он начинается с адсорбции молекулы вещества-стимула. Предполагают, что, когда это происходит, рецепторная-вероятно белковая-молекула изменяет свою структуру. Такое конформационное изменение рецепторной молекулы приводит в свою очередь к локальному изменению проницаемости мембраны клетки. Этот клеточный «усилительный механизм» мог бы послужить причиной генерации рецепторного потенциала.
К свидетельствам существования специфических рецепторных молекул относится наблюдение, что некоторые растительные вещества и препараты, например кокаин и гимневая кислота (получаемая из индийского растения Gymnema sylvestre), избирательно блокируют некоторые вкусовые ощущения. Очевидно, эта кислота связывается с рецепторными молекулами для сладких веществ, поскольку ее нанесение делает такие вещества безвкусными. Первичный процесс в мембранах вкусовых сенсорных клеток еще по-настоящему не объяснен, но, согласно рабочей гипотезе, он сходен с процессом в холинергических синапсах, где особые молекулы меняют проницаемость в особых точках мембраны.
7. Роль вкусовой чувствительности
Вкусовые луковицы на языке реагируют на стимулы, локализованные во рту. Иными словами, вкусовая чувствительность у всех позвоночных участвует в ориентации на близком расстоянии. В то же время у рыб чувство вкуса может служить также ориентации на далеком расстоянии. В воде вкусовые вещества перемещаются благодаря диффузии и конвекции из очень далеких источников к вкусовым луковицам, которые могут быть рассеяны по всей поверхности тела рыбы.
Помимо своей роли в ориентации на близком расстоянии чувство вкуса у человека выполняет важную функцию, запуская ряд рефлексов. Например, отмывание языка секретом из серозных желез контролируется рефлексом, который находится под действием вкусовых луковиц. Секреция слюны тоже запускается рефлекторно соответствующей стимуляцией вкусовых рецепторов. Даже состав слюны варьирует в зависимости от характера стимулов, действующих на сенсорные клетки, и вкусовые стимулы влияют также на выделение желудочного сока. Наконец, доказано, что рвота вызывается при участии вкусовой чувствительности.
Литература
1. Батуев А.С., Куликов Г.Л. Введение в физиологию сенсорных систем. -- М.: Высшая школа, 1983. -263 с.
2. Лекции по физиологии центральной нервной системы: Учебное пособие. Биолого-химический факультет УдГУ, Проничев И.В. -- Powered by swift.engine.edu, 2003. - 162 с.
3. Шульговский В. В. Основы нейрофизиологии: Учебное пособие для студентов вузов. -- М.: Аспект Пресс, 2000. с. 277.
4. Шульговский В. В. Физиология высшей нервной деятельности с основами нейробиологии: Учебник для студ.биол. специальностей вузов.- М.: Издательский центр «Академия», 2003. - 464 с.
Размещено на Allbest.ru
Подобные документы
Неоднородная структура органа вкуса. Около 2000 вкусовых луковиц находится в ткани языка, неба, надгортанника и верхней части пищевода. Большинство из них размещены в слизистой мембране вкусовой луковицы. Нервные волокна и образование вкусовой почки.
реферат [18,5 K], добавлен 02.03.2009Общая физиология сенсорных систем. Соматосенсорный, вкусовой и обонятельный анализаторы. Определение точек прикосновения. Определение пространственных порогов тактильной рецепции и локализации болевых рецепторов. Определение вкусовых ощущений и порогов.
методичка [170,6 K], добавлен 07.02.2013Общая характеристика организма собаки, особенности его анатомии и физиологии, функции отдельных органов. Описание основных систем организма: системы костей, мышечной, кожной и нервной. Особенности органов зрения, вкуса, слуха осязания и обоняния.
реферат [17,2 K], добавлен 09.11.2010Анатомия и физиология сердечно–сосудистой системы. Вены, распределение и ток крови, регулирование кровообращения. Давление крови, кровеносные сосуды, артерии. Определение показателя состояния осанки и плоскостопия у учащихся. Орган вкуса, виды сосочков.
курсовая работа [2,2 M], добавлен 25.12.2014Изучение особенностей технологии разработки, видов (сироп, инъекции, ингаляции, гранулы, мазь, гель) и состава лекарственных форм для детей. Характеристика методов определения вкуса лекарств, числовых индексов и органолептической оценки корригенов.
реферат [319,5 K], добавлен 27.01.2010Преддверно-улитковый орган (орган слуха и равновесия): структура и взаимодействие элементов, функции в жизнедеятельности организма человека. Распространение звука в органе слуха. Расположение органа обоняния и вкуса, закономерности их функционирования.
презентация [1,1 M], добавлен 27.08.2013Строение и физиология сердца, его основные функции. Характеристика схемы и механизма кровообращения. Фазы сердечного цикла, электрическая активность клеток миокарда и параметры центральной гемодинамики. Понятие и особенности процесса иннервации сердца.
презентация [983,0 K], добавлен 12.01.2014Нормальная физиология. Патологическая физиология. Хронологическая таблица. Классификация по группам и подгруппам. Химическое строение, механизм действия. Источники происхождения и др. Механизм биологической активности препаратов данной группы.
курсовая работа [74,6 K], добавлен 03.07.2008Изучение анатомии и физиологии ЛОР-органов как дистантных анализаторов. Анатомия уха, носа, глотки, гортани. Физиология носа и придаточных пазух, слухового и вестибулярного анализатора. Дыхательная, защитная и голосообразовательная функции гортани.
реферат [28,1 K], добавлен 29.01.2010Рассмотрено строение пульпы зуба, ее функция и физиология. Сосуды и нервы пульпы. Особенности полости зуба во временных зубах. Корневые каналы временных и несформированных постоянных зубов. Функциональные признаки развития пульпы после прорезывания зуба.
презентация [1,2 M], добавлен 17.06.2019