Генетика и наследственность
Рассмотрение открытия ДНК и РНК. История доказательства, что ДНК - носитель генетической информации. Роль нуклеиновых кислот в биосинтезе белков. Понятие расшифровки генетической информации. Передача генетической информации от родителей к потомкам.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 23.04.2014 |
Размер файла | 147,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http:www.allbest.ru/
Введение
Нет на свете двух одинаковых людей. Это разнообразие описывается понятиями «вариативность», «дисперсия», «индивидуальные различия» и др.; в генетике принято, в частности, понятие изменчивость, которое говорит о свойстве живых организмов существовать в различных формах (вариантах). Изменчивость обусловлена как средовыми, так и наследственными механизмами.
Изучение наследования различных признаков и свойств человека весьма затруднительно. Во-первых, на людях невозможно проводить прямые генетические и психогенетические эксперименты; во-вторых, люди относятся к числу медленно размножающихся организмов, среди которых многоплодие встречается относительно редко. Однако, несмотря на эти непреодолимые ограничения, науке известно уже очень многое о наследственности человека, а наиболее существенно то, что все общие закономерности наследования, подробно изученные на животных, растениях и других организмах, от- носятся и к человеку -- они справедливы для всего живого.
Наследованием называется передача генетической информации от одного поколения организмов к другому. На основе этой информации происходит развитие признаков организма, поэтому говорят и о наследовании признаков, хотя наследуются, строго говоря, не признаки, а гены. В основе наследования лежат процессы удвоения, объединения и распределения генетического материала.
Для психогенетики, главным объектом исследования которой является природа индивидуальных различий, ознакомление со структурой и механизмами функционирования ДНК важно для понимания того, как гены влияют на человеческое поведение. Гены само поведение не кодируют. Они определяют последовательности аминокислот в белках, которые направляют и создают основу химических процессов клетки. Между геном и поведением лежат многочисленные биохимические события, открытие и понимание которых -- интереснейшая задача, решаемая разными науками. Вариативность гена, тот факт, что он существует во множественных формах (аллелях), создает основу для формирования индивидуальных различий -- соматических, физиологических, психологических. Именно в этом смысле говорят, что ДНК и есть материальная основа наследственности: вариативность генетическая создает, в контексте средовой вариативности, вариативность фенотипическую.
1. Открытие ДНК и РНК
Они были открыты и выделены из клеточных ядер ещё в 19 в., но их биологическая роль выяснена только во второй половине 20 в.
Пространственная структура полинуклеотидных цепей ДНК и РНК была определена методом рентгеноструктурного анализа. Одним из самых крупных открытий биохимии 20 века оказалась модель двуспиральной структуры ДНК, которую предложили в 1953 г. Дж. Уотсон и Ф. Крик.
Согласно этой модели, молекула ДНК представляет собой двойную спираль и состоит из двух полинуклеотидных цепей, закрученных в противоположные стороны вокруг общей оси. Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфата и дезоксирибозы - снаружи. Две спирали удерживаются вместе водородными связями между парами оснований. Важнейшее свойство ДНК - избирательность в образовании связей (комплементарность). Размеры оснований и двойной спирали подобраны в природе таким образом, что тимин образует водородные связи только с аденином, а цитозин - только с гуанином.
Таким образом, две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей однозначно определяет последовательность нуклеотидов в другой спирали.
В каждой паре оснований, связанных водородными связями, одно из оснований - пуриновое, другое - пиримидиновое. Отсюда следует, что общее число остатков пуриновых остатков в молекуле ДНК равно числу остатков пиримидиновых оснований.
В отличие от ДНК молекулы РНК состоят из одной полинуклеотидной цепи. Число нуклеотидов в цепи колеблется от 75 до нескольких тысяч, а молекулярная масса РНК может изменяться в пределах от 2500 до нескольких миллионов. Полинуклеотидная цепь РНК не имеет строго определённой структуры. генетический информация нуклеиновый кислота
2. История доказательства, что ДНК - носитель генетической информации
Это явление было открыто в опытах с пневмококками, то есть с бактериями, вызывающими воспаление легких.
В 1928 году английский бактериолог Ф.Гриффитс заражал мышей смесью, состоящей из убитых нагреванием пневмококков А-формы(смертельны, вызывают воспаление лёгких) и живых пневмококков Б-формы (безвредны для мышей). Ученый предполагал, что мыши не заболеют. Но вопреки ожиданиям подопытные животные погибли. Ф. Гриффитсу удалось выделить из тканей погибших мышей пневмококки. Все они оказались капсулированными, то есть А-формы. Следовательно, убитая форма каким-то образом передавала свои свойства живым клеткам Б-формы. Но как? С помощью какого именно вещества: полисахарида, из которого состоит капсула, белка или ДНК?
От решения этого вопроса зависело многое, так как, установив вещество, передающее наследственный признак - образование капсулы, можно было получить нужный ответ. Однако сделать это не удавалось довольно долго. Лишь спустя 16 лет после опытов Ф. Гриффитса, в 1944 году, американский ученый А. Эвери с сотрудниками, поставив ряд четких экспериментов, сумел с полным обоснованием доказать, что полисахарид и белок не имеют никакого отношения к передаче наследственных свойств пневмококка А-формы.В процессе этих экспериментов с помощью специального фермента растворили полисахаридную капсулу убитых пневмококков А-формы и проверили, продолжают ли остатки клетки формы А передавать наследственную информацию клеткам формы Б. Оказалось, что продолжают. Стало ясно, что полисахарид как источник генетической информации отпадает. Далее ученые при помощи других ферментов удалили из остатков пневмококков А белки и снова проверили их действие. Передача наследственной информации от А к Б продолжалась. Следовательно, и белок ни при чем. Таким образом, методом исключения было установлено, что наследственную информацию в клетке хранит и передает молекула ДНК. И действительно, когда разрушили ДНК, образование капсульных форм А из бескапсульных Б прекратилась. Явление преобразования, то есть наследственного изменения свойств одной формы бактерий под воздействием веществ другой формы, было названо трансформацией. Вещество же, вызывающее трансформацию, получило название трансформирующего агента. Им, как было установлено, служит ДНК.
2.1 Нуклеиновые кислоты
Нуклеиновые кислоты - это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передачи наследственной информации в живых организмах. Строение нуклеиновых кислот можно установить, анализируя продукты их гидролиза. При полном гидролизе нуклеиновых кислот образуется смесь пиримидиновых и пуриновых оснований, моносахарид (в - рибоза или в - дезоксирибоза) и фосфорная кислота. Это означает, что нуклеиновые кислоты построены из фрагментов этих веществ. При частичном гидролизе нуклеиновых кислот образуется смесь нуклеотидов, молекулы которых построены из остатков фосфорной кислоты, моносахарида (рибозы или дезоксирибозы) и азотистого основания (пуринового или пиримидинового). Остаток фосфорной кислоты связан с 3-м или 5-м атомом углерода моносахарида, а остаток основания - с первым атомом углерода моносахарида. В зависимости от типа азотистого основания различают пуриновые и пиримидиновые нуклеотиды. Нуклеотид - основная структурная единица нуклеиновых кислот, их мономерное звено. Свойства ДНК и РНК определяются последовательностью оснований в полинуклеотидной цепи и пространственным строением цепи. Последовательность оснований содержит генетическую информацию, а остатки моносахаридов и фосфорной кислоты играют структурную роль (носители оснований).
В молекулах ДНК и РНК отдельные нуклеотиды связаны в единую полимерную цепь за счёт образования сложноэфирных связей между остатками фосфорной кислоты и гидроксильными группами при 3-м и 5-м атомах углерода моносахарида.
2.2 ДНК
Нуклеиновые кислоты, состоящие из дезоксирибонуклеотидов, называют дезоксирибонуклеиновыми кислотами (ДНК). Нуклеиновые кислоты, состоящие из дезоксирибонуклеотидов, называют дезоксирибонуклеиновыми кислотами (ДНК).
ДНК - главная молекула в живом организме. Она хранит генетическую информацию, которую передаёт от одного поколения к другому. В молекулах ДНК в закодированном виде записан состав всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, т. е. некоторая последовательность азотистых оснований. Таким образом, две спирали в молекуле ДНК комплементарны друг другу. Последовательность нуклеотидов в одной из спиралей однозначно определяет последовательность нуклеотидов в другой спирали.
В каждой паре оснований, связанных водородными связями, одно из оснований - пуриновое, другое - пиримидиновое. Отсюда следует, что общее число остатков пуриновых остатков в молекуле ДНК равно числу остатков пиримидиновы.
2.3 РНК
Нуклеиновые кислоты, состоящие из рибонуклеидов, называют рибонуклеиновыми кислотами (РНК). ). В состав молекул РНК входят нуклеотиды, содержащие основания аденин, гуанин, цитозин и урацил.
ДНК содержит всю генетическую информацию, но непосредственно в синтезе белков не участвует. Роль посредника между ДНК и местом синтеза белка выполняет РНК. Процесс синтеза белка на основе генетической информации схематично можно разбить на две основные стадии: считывание информации (транскрипция) и синтез белка (трансляция).
Клетки содержат три типа РНК, которые выполняют различные функции.
1. Информационная или матричная РНК (м-РНК) считывает и переносит генетическую информацию от ДНК, содержащейся в хромосомах, к рибосомам, где происходит синтез белка со строго определённой последовательностью аминокислот.
2. Транспортная РНК (т-РНК) переносит аминокислоты к рибосомам, где они соединяются с пептидной связью в определённой последовательности, которую задаёт м-РНК.
3. Рибосомная РНК (р-РНК) непосредственно участвует в синтезе белков в рибосомах. Рибосомы - сложные надмолекулярные структуры, которые состоят из четырёх р-РНК и нескольких десятков белков. Фактически рибосомы - это фабрики по производству белков.
Все виды РНК синтезируются на двойной спирали ДНК.
Последовательность оснований в м-РНК - это генетический код, управляющий последовательностью аминокислот в белках. Замечательная особенность генетического кода состоит в том, что он универсален для всех живых организмов. Одинаковым основаниям в разных РНК соответствуют одинаковые аминокислоты. Каждой аминокислоте соответствует своя последовательность из трёх оснований, называемая кодоном. Некоторые аминокислоты кодируются несколькими кодонами. Три кодона являются сигналами для прекращения синтеза полипептидной цепи и называются кодонами - терминаторами.
3. Роль нуклеиновых кислот в биосинтезе белков
Белки синтезируют все клетки, кроме безъядерных (например, взрослых эритроцитов млекопитающих). Структура белка определяется ядерной ДНК. Информация о последовательности аминокислот в одной полипептидной цепи находится в участке ДНК, который называется ген. Таким образом, в ДНК заложена информация о первичной структуре белка.
Синтез белка начинается с транскрипции, то есть синтеза и-РНК по матрице одной из цепей ДНК. Процесс идёт по принципу комплементарности с помощью фермента РНК-полимеразы и начинается с определённого участка ДНК. Синтезированная и-РНК поступает в цитоплазму на рибосомы, где и идёт синтез белка.
К рибосомам подходят аминокислоты в соединении с т-РНК; аминокислота прикрепляется к акцепторному участку т-РНК. Противоположный конец т-РНК называется антикодон, который несёт информацию о соответствующем триплете; т-РНК имеет структуру, похожую на лист клевера. Существует более 60 видов т-РНК.
Перенос информации с и-РНК на белок во время его синтеза называется трансляцией. Собранные в полисомы рибосомы двигаются по и-РНК; движение происходит последовательно, по триплетам. В месте контакта рибосомы с и-РНК работает фермент, собирающий белок из аминокислот, доставляемых к рибосомам т-РНК. При этом происходит сравнение кодона и-РНК с антикодоном т-РНК: если они комплементарны, фермент (синтетаза) «сшивает» аминокислоты, а рибосома продвигается на один кодон вперёд.
Таким образом, трансляция - это перевод последовательности нуклеотидов молекулы и-РНК в последовательность аминокислот синтезируемого белка.
Подсчитано, что все белки организма млекопитающего могут быть закодированы всего 2% ДНК, содержащимися в его клетках. А для чего же нужны остальные 98% ДНК? Оказывается, каждый ген устроен гораздо сложнее, чем считали раньше, и содержит не только тот участок, в котором закодирована структура какого - либо белка, но и специальные участки, способные «включать» и «выключать» работу каждого гена. Вот почему все клетки, имеющие одинаковый набор хромосом, способны синтезировать различные белки. Итак, в каждой клетке реализуется только часть генетической информации, содержащейся в её генах. Синтез белка требует участия большого числа ферментов. И для каждой отдельной реакции белкового синтеза требуются специализированные ферменты.
схема молекулы РНК
3.1 Расшифровка генетической информации
Полимерные цепи белков состоят из мономерных звеньев - аминокислот и последовательность расположения их в белковой молекуле строго специфична. В связи с этим очевидно, Что в ДНК должна храниться информация не только о качественном и количественном составе аминокислот в молекуле данного белка, но и о последовательности их расположения. Соответственно каким-то образом должны быть закодированы в полинуклеотидной цепи ДНК каждая аминокислота и белок в целом.Зная, что аминокислот всего 20, а нуклеотидов - 4, легко представить себе, что 4 нуклеотидов явно недостаточно для кодирования 20 аминокислот. Недостаточно также и кода из двух нуклеотидов на каждую кислоту (4 = 16). Для кодирования 20 аминокислот необходимы группы по меньшей мере из трех нуклеотидов (4 = 64). Подобная группа, несущая информацию об одной аминокислоте в молекуле белка, называется кодоном. Весь же участок ДНК, ответственный за синтез одной молекулы белка, в целом как раз и есть ген. Значит, в гене столько кодонов, сколько аминокислот входит в состав данного синтезируемого белка. Синтез белков происходит на рибосомах. ДНК же локализована в ядре, в его хромосомах. Возникает вопрос: каким образом генетическая информация из ядра переносится в цитоплазму на рибосому? Предположить, что ДНК сама поступает через поры ядерной мембраны, нельзя: Ведь ДНК ядер обладает огромной молекулярной массой и в связи с этим просто не может проникнуть через крошечные поры ядерной мембраны. Поэтому должны быть какие-то более мелкие молекулы - посредники, передающие генетическую информацию от ДНК к белкам. А.Н. Белозерский и А.Г. Спирин выдвинули соображение, что эту роль играют молекулы РНК.В частности, из-за сходства азотистых оснований информация с ДНК на РНК может переноситься по принципу комплиментарности, согласно которому образовывать пары могут не только нуклеотиды в системе ДНК-ДНК, но и нуклеотиды в системе ДНК-РНК. Поскольку РНК так же, как и ДНК, содержит пуриновые и пиримидиновые основания, на участках одной их цепей ДНК при помощи фермента РНК - полимеразы строятся комплиментарные короткие цепи РНК. Этот процесс синтеза РНК на матрице ДНК, происходящий с помощью ферментов, носит название транскрипции. В результате процесса транскрипции закодированная в ДНК последовательность нуклеотидов, которая и представляет собой определенную генетическую информацию, передается на РНК. Транскрипция происходит на отдельных участках ДНК - генах, каждый из которых содержит набор кодонов, программирующих последовательности аминокислот в данной молекуле белка. Рибонуклеиновая кислота, на которой сделана копия ДНК, состоит из одной цепи нуклеотидов, у которых дезоксирибоза заменена на рибозу., а тимин (Т) заменен на урацил (У) .
Таким образом, в каждом кодоне ДНК транскрибируется в комплиментарный кодон РНК. В результате получается как бы негатив РНК с позитива - ДНК. Эта РНК, снимающая информацию с ДНК, называется информационной РНК (и-РНК).К настоящему времени ученым удалось расшифровать кодоны для всех аминокислот. Оказалось, что одной аминокислоте зачастую соответствует несколько кодонов. Такой код называется вырожденным. Наряду с этим обнаружилось, что некоторые кодоны не кодируют ни одну аминокислоту. Их называют бессмысленными. Бессмысленные кодоны имеют очень важное значение, так как определяют границы начала и конца транскрипции, то есть границы генов в данной молекуле ДНК. Если у прокариот гены по своей записи непрерывны, то у эукариот это далеко не так. Информация необходимая для синтеза белка, оказывается записанной с пропусками, прерывисто: гены составлены из кодирующих участков (экзонов), разделенных некодирующими последовательностями (интронами). При транскрипции таких генов интроны копируются вместе с экзонами в общую молекулу пре-мРНК. Последняя подвергается в ядре серии реакций, в ходе которых интроны вырезаются, а экзоны соединяются друг с другом своими краями. Получившаяся молекула м-РНК покидает ядро и оказывается уже во власти системы трансляции, дешифрующей нуклеотидную последовательность. Соединение аминокислот с образованием белка происходит в цитоплазме на особых частицах-рибосомах. Все это можно сравнить с фабрикой (клетка), в которой чертежи (гены) хранятся в библиотеке (ядро), а для выпуска продукции (белки) используются не сами чертежи (ДНК), а их фотокопия (мРНК). Копировальная машина (РНК-полимераза) выпускает или по одной страничке фотокопии (ген), или сразу целую главу (оперон). Изготовленные копии выдаются через специальные окошки (поры ядерной мембраны). Их затем используют на монтажных линиях (рибосомы) с дешифратором (генетический код) для получения из заготовок (аминокислот) окончательной продукции (белки).
Как же происходит сам процесс синтеза белка?
Первый его этап связан с функционированием транспортной РНК (т-РНК). Число разновидностей этих молекул РНК равно числу основных аминокислот, то есть их 20 видов. Каждой аминокислоте соответствует определенная т-РНК и определенный фермент.
В цитоплазме клетки всегда в достаточном количестве имеются разные аминокислоты. Из них молекула т-РНК отбирает соответствующую аминокислоту. Каждая аминокислота, прежде чем вступить в белковую цепь, с помощью специального фермента соединяется с АТФ и запасается энергией. «Подзарядившись» таким образом аминокислота связывается с т-РНК, которая переносит ее к рибосомам. Характерной чертой молекул т-РНК является наличие в их структурах антикодонов. Эта особенность обеспечивается расположением соответствующих аминокислот в той последовательности кодонов, которая зашифрована в молекуле и-РНК. Между рядом расположенными аминокислотами возникают пептидные связи и синтезируется молекула белка.Таким образом, генетическая информация, заключенная в ДНК, реализуется разными видами РНК в молекулах соответствующих белков.Процесс передачи программы, принесенной с собою молекулами и-РНК, получил название трансляции.
3.2 Передача генетической информации от родителей к потомкам
Как известно, особенности, характеризующие потомков, передаются им от родителей через половые клетки: мужскую - сперматозоид и женскую - яйцеклетку. Слияние их при оплодотворении приводит к образованию единой клетки зиготы, из которой развивается зародыш человека. Очевидно, что именно в этих двух половых клетках и в образовавшейся при их слиянии зиготе хранится наследственная информация о физических, биохимических и физиологических свойствах, с которыми появляется новый человек. Материальной основой наследственности служат нуклеиновые кислоты, а именно ДНК. Но каким же образом генетическая информация передается от родителей к потомству? Новые клетки появляются в результате деления исходных материнских. Для большинства клеток характерно физиологически полноценное клеточное деление, состоящее из ряда фаз, во время которых ядро претерпевает закономерные изменения, в результате чего образуются два ядра, совершенно идентичные исходному. Цитоплазма при этом делится на две полвины. Такое сложное деление получило название митоза, и характерно оно для клеток тела, то есть соматических клеток. Однако, в организмах растений, животных и человека, помимо соматических, имеются и половые клетки. Их образование происходит в результате особого деления. Преобразование же, которое вызывается этим делением, получило название мейоза.
Во время и митоза, и мейоза ядро теряет округлые очертания и в нем отчетливо вырисовываются его структурные компоненты, хромосомы. Хромосомы имеют самые различные формы: палочек, коротких стерженьков, капель и т.д.
Заключение
Изучение генетики человека, несмотря на всю сложность, важно не только с точки зрения науки. Трудно переоценить и прикладное значение проводимых исследований.
Достижения в этой области оказывают заметное влияние на другие отрасли наук о человеке - медицину, психиатрию, психологию, педагогику.
В частности, велика роль развивающейся генетики человека в решении проблем наследственных болезней. Современные данные свидетельствуют, что человеком наследуются многие болезни, такие, как несвертываемость крови, ряд психических заболеваний. Кроме того, генетика человека призвана решать и другие вопросы.
Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая каждый миг нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, предрасположенности к тем или иным инфекционным заболеваниям, старости и даже смерти.
Если выделить из ядра одной клетки человека все генетические молекулы ДНК и расположить их в линию одна за другой, то общая длина этой линии составит семь с половиной сантиметров. Такова биохимическая рабочая поверхность хромосом. Это сконцентрированное в молекулярной записи наследие веков прошедшей эволюции.
Исследования последних лет доказали, что любая живая клетка, в том числе и клетка человеческого организма, представляет собой целостную систему, все составные элементы которой обнаруживают тесное взаимодействие между собой и окружающей средой, оказывающей на гены огромное влияние.
Закономерности генетики в большинстве случаев носят универсальный характер. Они одинаково важны для растений, для животных. Велико их значение и для человека.
Список используемой литературы
1. «Генетика и наследственность» Сборник статей Г.34 Перевод с французского М.:Мир 1987
2. Алихонян С.И. «Общая генетика» М.: Высшая школа 1985
3. Васильев А.Е. «Ботаника: Морфология и анатомия растений» М.: Просвещение 1988
4. Дубинин Н.П. «Генетика вчера, сегодня и завтра» М.: Советская Россия. 1981
5. Биологический энциклопедический словарь
6. Рузавин Г.И. «Концепции современного естествознания: Учебник» М.: ТК Велби, Проспект, 2004
7. Дубнищева Т.Я. «Современное естествознание» М.: Маркетинг, 2000
Содержание
Введение
1. Открытие ДНК и РНК
2. История доказательства, что ДНК - носитель генетической информации 2.1Нуклеиновые кислоты
2.2 ДНК
2.3 РНК
3. Роль нуклеиновых кислот в биосинтезе белков
3.1 Расшифровка генетической информации
3.2 Передача генетической информации от родителей к потомкам
Заключение
Список используемой литературы
Подобные документы
Поддержание генетической однородности организма. Фиксация антител на чужеродных антигенных детерминантах бактерий. Распознавание измененной генетической информации в клетках-мутантах и запуск иммунологических реакций направленных на их уничтожение.
презентация [209,9 K], добавлен 16.03.2014История становления генетики. Открытия, сделанные в области молекулярной биологии и молекулярной генетике. Открытие генетической роли нуклеиновых кислот. Становление неоевгеники как науки. Неоевгеника и генная инженерия (клонирование). Стволовые клетки.
реферат [45,3 K], добавлен 13.10.2008Демографическая генетика - отрасль генетики человека, изучающая генетические процессы в популяциях. Источники демографо-генетической информации. Воспроизводство народонаселения. Миграция и расселение людей. Генетический хронометр истории народов.
реферат [26,6 K], добавлен 25.04.2010Понятие генетики, ее сущность и особенности, история зарождения и развития генетической науки. Этапы развития медицинской генетики, выдающиеся деятели и их открытия. Роль генетики в диагностике и профилактике различных наследственных заболеваний.
реферат [15,9 K], добавлен 18.02.2009Специфика этических проблем медицинской генетики. Вопрос конфиденциальности генетической информации. Этика и политика клонирования человека. Нравственный и юридический статус эмбриона. Различие во взглядах на использовании эмбриональных стволовых клеток.
эссе [26,1 K], добавлен 17.06.2015Иммунитет — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям, а также воздействию чужеродной генетической информации. Укрепление иммунитета: закаливание, прогулки, физические нагрузки, рациональное питание; позитивный настрой, сон.
презентация [1,1 M], добавлен 05.03.2013Понятие вакцины и их классификация. Рассмотрение принципа действия препаратов, предназначенных для создания иммунитета к инфекционным болезням. Метод получения генно-инженерных вакцин с помощью биотехнологии, которая сводится к генетической рекомбинации.
презентация [2,8 M], добавлен 09.10.2014Рассмотрение близнецового и клинико-генеалогического методов исследования генетической обусловленности патологических нарушений речи. Характеристика алалии, ринолалии, заикания, дислалии и тахилалии как специфических проявлений задержки развития речи.
реферат [53,1 K], добавлен 29.03.2010Болезни щитовидной железы. Роль генетической предрасположенности в развитии диффузного токсического зоба. Злокачественный экзофтальм. Тяжелая степень тиреотоксикоза. Лабораторные и инструментальные методы диагностики заболевания. Выбор метода лечения.
презентация [936,1 K], добавлен 07.11.2014Биохимическая генетика ее общая характеристика и сущность. Основные понятия о молекулярной биохимической генетике. Понятие нуклеиновых кислот их структура и описание свойств. Сущность белкового синтеза и его особенности. Генетический код и его значение.
реферат [28,1 K], добавлен 17.01.2009