Мобильные ДНК и привлечение факторов вирулентности, или как безвредные бактерии становятся опасными
Роль мобильных ДНК в понимании функционирования патогенов, сущность их антибиотикорезистентности. Описание процесса латерального переноса генов - механизма, посредством которого ДНК приобретается из другой клетки. Характеристика бактерии E.coli.
Рубрика | Медицина |
Вид | статья |
Язык | русский |
Дата добавления | 27.03.2014 |
Размер файла | 193,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Мобильные ДНК и привлечение факторов вирулентности, или как безвредные бактерии становятся опасными
мобильные ДНК вирулентность
Одним из наиболее значительных достижений эры изучения генома стало открытие в геномах большинства бактерий ДНК, полученной с помощью латерального переноса генов (ЛПГ) -- механизма, посредством которого ДНК приобретается из другой клетки. Спустя длительный период времени ЛПГ может замещать 25 % и более ДНК данного вида, постоянно импортируя материал из других филогенетических групп [10]. ЛПГ обеспечивает бактерии многими преимуществами, поскольку дает им возможность быстро приобретать новые функции, что позволяет микроорганизмам занимать новые ниши в окружающей среде. Степень выраженности ЛПГ бросает вызов «представлению о видах» у бактерий [7], поскольку популяции, которые группируются как представители одних и тех же видов микроорганизмов, могут содержать в своих геномах большое количество не присущих данному виду участков и существенно отличаться фенотипически.
Мобильные ДНК чрезвычайно важны для понимания функционирования патогенов (возбудителей заболеваний). Например, род Vibrio -- повсеместный компонент окружающей водной среды, и даже V.cholerae, возбудителя холеры, можно выделить без особых затруднений, причем большинство штаммов являются доброкачественными. Вибрионы, однако, хорошо приспособились приобретать мобильные ДНК, зачастую у штаммов, содержащих сотни фрагментов чужеродных ДНК [11]. Именно в этих штаммоспецифических мобильных ДНК обнаруживаются многие потенциально патогенные факторы. Такие фрагменты зачастую связываются между собой в кластеры (так называемые островки патогенности), поскольку они обычно включают в себя гены, повышающие способность бактериальной клетки вызывать заболевания у животных [14].
Мобильные ДНК и антибиотикорезистентность
Многое из наших знаний о мобильных ДНК обусловлено попытками понять и разрешить проблему роста антибиотикорезистентности среди бактерий. Появление первой резистентной бактерии было расценено как спонтанная мутация, а проблема резистентности -- как разрешимая [3]. В то время как приобретение устойчивости (резистентности) посредством такого традиционного механизма действительно имеет место, вскоре стало понятно [13], что действуют и другие механизмы. Бактерии обладают способностью передавать гены резистентности другим микроорганизмам с помощью механизма, который одновременно является и инфекционным (все больше клеток в популяции приобретают конкретный ген), и неразборчивым (неспеци-фичным, когда гены передаются бактериям, принадлежащим ко многим неродственным видам). В настоящее время гены, кодирующие устойчивость к лекарствам, -- типичная особенность мобильного генома, включая островки патогенности, у микроорганизмов -- возбудителей инфекционных заболеваний, и они могут придавать бактериям как повышенную патогенность, так и повышенную резистентность. В качестве примера можно привести один из патогенных штаммов Acinetobacter baumanii, частого возбудителя нозокомиальных инфекций, у которого было обнаружено 45 различных генов резистентности [4]!
Как ДНК становится мобильной?
ЛПГ -- это удивительный и сложный процесс переноса и внедрения ДНК в нового хозяина. Физически перемещение ДНК из клетки в клетку происходит одним из трех путей -- посредством конъюгации, трансформации или трансдукции [6]. Однако для обеспечения стабильного наследования перенесенная ДНК должна быть либо репликоном (то есть должна заключать в себе молекулу ДНК, способную к автономной репликации, как, например, плазмиды), либо интегрироваться в резидентный репликон (или в хромосому, или в ранее внедрившуюся плазмиду). Процесс интеграции запускается посредством одного из двух механизмов. Первый из них -- это транспозиция, процесс, посредством которого дискретные (отдельные) участки ДНК, часто содержащие гены резистентности, случайным образом внедряются в геном. Второй механизм -- сайт-специфическая рекомбинация. Как следует из названия, это процесс включения фрагментов ДНК в отдельный участок (сайт). Биохимически данный процесс отличается от транспозиции. Наилучшим примером сайт-специфической рекомбинации, имеющей отношение к проблеме антибиотикорезистентности, является интегрон/ген-кассетная система. Интергоны вносят наибольший вклад в распространение генов резистентности у грамотрицательных бактерий [2]. Одним из отличительных свойств систем ЛПГ является то, что они действуют скооперировано и могут быстро построить тесно связанные участки, в которых многие гены резистентности группируются в модули. Как показано на рис. 1, объединенные в кассеты гены резистентности часто обнаруживаются в интегронах, закрепленных в одном и более транспозонах, которые, в свою очередь, входят в структуру плазмиды. Как следствие, столь разные процессы, как конъюгация, транспозиция и сайт-специфическая рекомбинация, могут протекать совместно, влияя на мобилизацию и переформирование генов таким образом, который ранее нельзя было даже представить [12].
Esherichia coli и привнесение генов резистентности в бактерии-патогены
Одна из особенностей мобильного генома -- то, что многие гены резистентности и вирулентности были набраны из микроорганизмов и окружающей среды, весьма удаленных от клинического контекста. Та легкость, с которой гены могут перемещаться через микробные сообщества, означает, что вся микробная биосфера -- это потенциальное поле для привлечения генов, полезных для патогенов, даже если последние не покидали надолго своего обычного организма-хозяина. Для переноса «груза» мобильных ДНК, в частности, удачно приспособлена E.coli. Во-первых, E.coli -- распространенная бактерия-комменсал как у людей, так и у животных, своих естественных хозяев. На протяжении сравнительно длительного периода времени кишечные палочки могут существовать в естественных сообществах вне животных и способны самостоятельно вырабатывать патогенные свойства. Например, эти бактерии являются основными возбудителями инфекций мочевыводящих путей (ИМП) [14] и представляют собой тяжелое бремя для систем медицинского обслуживания как развитых, так и развивающихся стран [5]. В развивающихся странах проблема резистентности микроорганизмов особенно актуальна у детей: смертность от бактериемии, вызванной грамотрицательными бактериями, достигает 44 %, что в процентном выражении вдвое больше, чем от малярии [1]. В целом появляется все больше сообщений о вспышках антибиотикорезистентности, как и данных о повышении смертности во всех странах.
Будущее мобильных ДНК и антибиотикорезистентности
Неуклонный рост E.coli-опосредованных инфекций, причем не только ИМП, происходит вопреки увеличению расходов на решение этой задачи. Такое положение дел диктует необходимость рассмотрения проблемы резистентности с учетом новых перспектив. Одной из них может быть расширение применения молекулярно-эпидемиологических методов и признание факта, что мобильные ДНК -- ключевой фактор эволюции более патогенных бактерий -- представляют собой многогранную, глобальную проблему. Польза от традиционных клинических микробиологических подходов, рассматривающих отдельные гены резистентности или группы генов из определенных участков либо конкретные болезнетворные микроорганизмы, становится менее очевидной. Например, как объяснить, что один и тот же ген резистентности находят в разных участках ДНК у различных изолятов? Происходит ли это потому, что два гена закрепляются в структуре одной и той же мобильной ДНК или же в двух не связанных между собой структурах? Вне зависимости от того, являются ли они одним и тем же или суть разные феномены, откуда они появляются? Есть ли у них общий источ- ник -- географический или филогенетический? Ответы на вопросы, подобные этим, очень важны, но их можно получить путем более систематических наблюдений, выходящих за рамки непосредственной проблемы, -- самого по себе гена резистентности [8]. Кроме того, налицо реальная потребность в расширении сотрудничества между странами в области молекулярной эпидемиологии, возможно, наподобие модели, одобренной для международного надзора за вспышками резистентности.
Литература
1. Bhutta Z.A. // BMJ. -- 2008. -- 336. -- 948-9.
2. Boucher Y., Labbate M., Koenig J.E. et al. // Trends Microbiol. -- 2007. -- 15. -- 301-9.
3. Demerec M. // J. Bacteriol. -- 1948. -- 56. -- 63-74.
4. Fournier P.E., Vallenet D., Barbe V. et al. // PLoS Genet. -- 2006. -- 2. -- e7.
5. Foxman B. // Dis. Mon. --2003. -- 49. -- 53-70.
6. Juhas M., van der Meer J.R., Gaillard M. et al. // FEMS Microbiol Rev. -- 2009. -- 33. -- 376-93.
7. Lawrence J.G. // Theor. Popul. Biol. -- 61. -- 449-60.
8. Magee J.T., Heginbothom M.L., Mason B.W. // J. Antimicrob. Chemother. -- 2005. -- 55. -- 628-33.
9. Marques C., Labbate M., Raymondo C. et al. // J. Clin. Microbiol. --2008. -- 46. -- 3417-25.
10. Ochman H., Lawrence J.G., Groisman E.A. // Nature. -- 2000. -- 405. -- 299-304.
11. Rowe-Magnus D.A., Guerout A.M., Biskri L. et al. // Genome Res. -- 2003. -- 13. -- 428-42.
12. Walsh T.R. // Curr. Opin. Microbiol. -- 2006. -- 9. -- 476-82.
13. Watanable T., Fukasawa T. // J. Bacteriol. -- 1961. -- 81. -- 669-78.
14. Yamamoto S. // Infect. Chemoter. -- 2007. -- 13. -- 68-73.
Размещено на Allbest.ru
Подобные документы
Грамположительные и грамотрицательные кокки. Факторы вирулентности Staphylococcus aureus и Neisseria gonorrhoeae. Клинические проявления стафилококковых болезней, их лабораторная и микробиологическая диагностика. Бактерии рода Streptococcus, вейлонеллы.
презентация [671,5 K], добавлен 23.02.2014Пептическая язва, гастрит, рак желудка. Бактерии спиралевидной формы. Факторы вирулентности, позволяющие Нр заселять и персистировать в организме хозяина. Проведение гастроскопии с биопсией желудка. Лечение хронического хеликобактерного гастрита.
презентация [1,7 M], добавлен 08.05.2013Роль наследственных факторов в возникновении и развитии туберкулеза. Молекулярные механизмы патогенеза туберкулеза у человека. Физиологические функции белковых продуктов генов-кандидатов. Молекулярно–генетические методы анализа полиморфизма генов.
дипломная работа [851,1 K], добавлен 11.08.2010В-гемолитический стрептококк серогруппы А как распространенный возбудитель бактериальных инфекций человека. Эпидемиология и общая характеристика. Схематическое изображение строения клетки возбудителя, поверхностных и секретируемых факторов вирулентности.
презентация [1,6 M], добавлен 22.12.2015Эндокринология как наука о строении, функциях и заболеваниях желез внутренней секреции. Причины и механизмы возникновения инфекционных болезней. Роль бактерий в функционировании организма, классификация, размножение, экологические и биосферные функции.
реферат [20,9 K], добавлен 07.06.2010Виды и методы нетрадиционной медицины. Характеристика и описание механизма воздействия аромотерапии, арт-терапии, апитерапии. Применение иглотерапии, анималотерапии, роль климатических факторов в комплексной реабилитации организма, роль закаливания.
реферат [51,2 K], добавлен 27.01.2012Анаэробные бактерии (микрофлора в бескислородной среде) как причина возникновения анаэробной инфекции. Классификация анаэробных инфекций по этиологии, характеру микрофлоры и источнику инфекции. Характеристика симптомов и клинической картины заболевания.
презентация [9,6 M], добавлен 02.07.2013Основное отличие деления здоровой и опухолевой клетки. Механизмы активации онкогена и инактивация генов-супрессоров. Опухолевый рост: определение, причины увеличения количества злокачественных заболеваний. Основная особенность малигнизированной клетки.
реферат [14,1 K], добавлен 13.04.2009Понятие канцерогенеза как механизма реализации внешних и внутренних факторов, служащих причиной трансформации нормальной клетки в раковую. Классификация канцерогенных факторов, влияющих на организм человека. Канцерогенные вещества в пищевых продуктах.
курсовая работа [807,0 K], добавлен 15.12.2013Распространение кишечной палочки, ее негативное влияние на пищеварительный тракт. Морфологические свойства, характеристика жизнестойкости патологической бактерии. Питание кишечной палочки, ее размножение и оптимальные условия для жизнедеятельности.
реферат [19,4 K], добавлен 17.12.2014