Способы проведения общего анализа крови
Венозная кровь как материал для клинического исследования. Высокотехнологические гематологические анализаторы для оценки ее свойств. Технология автоматического подсчета клеток. Спектральная кривая поглощения - оптимальная область фотометрирования.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 10.01.2014 |
Размер файла | 20,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Содержание
Введение
1. Материал для проведения общего клинического анализа крови
2. Автоматизированное исследование клеток крови
3. Кондуктометрические гематологические анализаторы
4. Подсчет эритроцитов и тромбоцитов, расчет величины гематокрита, эритроцитарных и тромбоцитарных индексов
5. Подсчет и дифференцировка лейкоцитов
6. Высокотехнологические гематологические анализаторы
7. Определение гемоглобина
8. Качество результатов исследования крови на гематологическом анализаторе
9. Основные параметры автоматизированного анализа крови и факторы, влияющие на их значения
Заключение
Список литературы
Введение
Общий анализ крови (ОАК) предоставляет клиницистам важнейшую информацию, так как характеризует физиологическое состояние организма, изменяющееся под воздействием различных внешних и внутренних факторов, и является неотъемлемой частью диагностического процесса и последующего мониторинга на фоне проводимой терапии.
С тех пор, как в 1895 году швейцарский врач Сали впервые предложил колориметрический метод определения концентрации гемоглобина в крови, прошло более 100 лет, однако до сих пор общий анализ крови не потерял значимости и актуальности. Развитие прикладных медицинских наук усовершенствовало подход к этому исследованию, но не изменило его сути. По-прежнему врачей интересует концентрация гемоглобина, количество эритроцитов, лейкоцитов и тромбоцитов в единице объема крови, скорость оседания эритроцитов (СОЭ) и лейкоцитарная формула. Однако на смену рутинному подсчету клеток в счетной камере и визуальному определению гемоглобина в гемометре Сали пришли новые технологии, реализованные в гематологических анализаторах. Помимо общеизвестных показателей, использование анализаторов позволило пополнить ОАК новыми диагностически значимыми параметрами, которые расширили понимание процессов, происходящих в крови в норме и при той или иной патологии, стало реальным предоставлять значительно больше клинической информации о состоянии кроветворной системы и реагировании ее на различные внешние и внутренние факторы.
1. Материал для проведения общего клинического анализа крови
Венозная кровь считается оптимальным материалом для клинического исследования. Это обусловлено тем, что при известной стандартизации процессов забора, хранения, транспортировки крови удается добиться минимальной травматизации и активации клеток, примеси других веществ (тканевой жидкости), при этом всегда имеется возможность повторить и/или расширить анализ.
Пункция кожи с целью получения капиллярной крови является процедурой выбора в тех ситуациях, когда получение венозной крови невозможно (у новорожденных, ожоговых больных, при выраженном ожирении, спавшихся венах). Однако следует помнить, что при прохождении капиллярной крови через поврежденную ткань активируются процессы свертывания крови, а с тканевой жидкостью в образец попадает большое количество тромбопластина, что влечет за собой образование в пробирке микросгустков.
Что касается нормальных значений основных показателей крови, то в литературе нет указаний на какие-либо достоверные различия в клеточном составе венозной и капиллярной крови, а также в концентрации гемоглобина и СОЭ.
2. Автоматизированное исследование клеток крови
Высокотехнологические гематологические анализаторы способны измерять более 32 параметров крови, осуществлять полный дифференцированный подсчет лейкоцитов по 5-ти основным популяциям: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, что делает возможным в случае отсутствия от референсных значений этих показателей не проводить ручной подсчет лейкоцитарной формулы.
Аналитические возможности гематологических анализаторов:
- высокая производительность (до 100-120 проб в час),
- небольшой объем крови для анализа (12-150 мкл),
- анализ большого количества (десятки тысяч) клеток,
- высокая точность и воспроизводимость,
- оценка 18-30 и более параметров одновременно,
- графическое представление результатов исследований в виде гистограмм, скатерограмм.
Гематологические анализаторы имеют систему обозначения - флаги или "сигналы тревоги" - указывающую на отклонение параметров от установленных границ. Они могут касаться как увеличения или уменьшения количества тех или иных клеток, так и изменения их функционального состояния, которое отражается на характеристиках измеряемых прибором клеток. Во всех этих случаях необходим строгий визуальный контроль окрашенных препаратов с соответствующими комментариями.
Диагностические возможности гематологических анализаторов:
- оценка состояния гемопоэза,
- диагностика и дифференциальная диагностика анемий,
- диагностика воспалительных заболеваний,
- оценка эффективности проводимой терапии,
- мониторинг за мобилизацией стволовых клеток из костного мозга.
Несмотря на все достоинства, даже самые современные гематологические анализаторы обладают некоторыми ограничениями, которые касаются точной морфологической оценки патологических клеток (например, при лейкозах), и не в состоянии полностью заменить световую микроскопию.
Автоматические счетчики крови оценивают размеры, структурные, цитохимические и другие характеристики клеток. Они анализируют около 10000 клеток в одном образце и имеют несколько различных каналов подсчета клеточных популяций и концентрации гемоглобина. На основании количества определяемых параметров и степени сложности их можно условно разделить на 3 основных класса:
I класс - автоматические гематологические анализаторы, определяющие до 20 параметров, включая расчетные показатели красной крови и тромбоцитов, гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему, а так же частичную дифференцировку лейкоцитов на три популяции - лимфоциты, моноциты и гранулоциты.
II класс - высокотехнологичные гематологические анализаторы, позволяющие проводить развернутый анализ крови, в том числе полную дифференцировку лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), гистограммы распределения лейкоцитов, эритроцитов и тромбоцитов по объему, скатерограммы.
III класс - сложные аналитические системы, выполняющие не только развернутый анализ крови с дифференцировкой лейкоцитов по 5 параметрам, но и подсчет, и анализ ретикулоцитов, некоторых субпопуляций лимфоцитов; при необходимости комплектуются блоком для автоматического приготовления и окраски мазков из заданных образцов крови.
В основе работы анализаторов I-го класса лежит кондуктометрический метод. Анализаторы II и III-го классов используют в своей работе комбинации разных методов.
3. Кондуктометрические гематологические анализаторы
Технология автоматического подсчета клеток была разработана в 1947 г. Wallace Н. и Joseph R. Coulter. Апертуро-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете числа и определении характера импульсов, возникающих при прохождении клеток через отверстие малого диаметра (апертуру), по обе стороны которого расположены два изолированных друг от друга электрода. Если через узкий канал, заполненный электропроводящим раствором, проходит клетка крови, то в этот момент сопротивление электрическому току в канале возрастает. Несмотря на то, что изменение сопротивления невелико, современные электронные приборы легко его улавливают. Каждое событие - прохождение клетки через канал, сопровождается появлением электрического импульса. Чтобы определить концентрацию клеток, достаточно пропустить определенный объем пробы через канал и подсчитать число электрических импульсов, которые при этом генерируются.
Если в один и тот же момент в канале находятся две клетки, они регистрируются в виде одного импульса, что приведет к ошибке подсчета клеток. Во избежание этого, проба крови разводится до такой концентрации, при которой в канале датчика всегда будет не больше одной клетки.
Апертуро-импедансный метод позволяет определять большинство эритроцитарных и тромбоцитарных показателей, связанных с объемом клеток (НСТ, MCV, МСН, МСНС, MPV), а также является основой для дифференцировки лейкоцитов по трем параметрам.
4. Подсчет эритроцитов и тромбоцитов, расчет величины гематокрита, эритроцитарных и тромбоцитарных индексов
Разделение эритроцитов и тромбоцитов в современных анализаторах проводится по измерению амплитуды электрического сигнала: тромбоциты (небольшие по размеру клетки) при прохождении измерительного канала генерируют электрические импульсы низкой амплитуды, а сравнительно большие клетки - эритроциты и лейкоциты - импульсы высокой амплитуды. После лизиса эритроцитов в суспензии остаются лейкоциты. Из первого счета импульсов высокой амплитуды вычитают импульсы высокой амплитуды второго счета (лейкоциты). Разница импульсов высокой амплитуды до и после лизиса соответствует количеству эритроцитов - RBC (Red Blood Cells).
Устройство, которое разделяет импульсы по величине амплитуды, называется дискриминатор. В современных анализаторах применяются многоканальные дискриминаторы, позволяющие получить детальную информацию о размерах клеток в виде гистограмм, поскольку каждый канал соответствует определенному объему клеток.
При суммировании амплитуд импульсов, получаемых при подсчете количества эритроцитов, получается величина, отражающая общий объем, занимаемый эритроцитами, то есть гематокрит Hct (hematocrit). Разделив гематокритную величину на концентрацию эритроцитов (RBC), получается полезная характеристика эритроцитов - средний объем MCV (mean corpuscular volume).
Очевидно, что аналогичные показатели можно получить и для тромбоцитов: концентрация тромбоцитов - PLT (platelet), тромбокрит - РСТ (platelet crit), средний объем тромбоцитов - MPV (mean platelet volume).
Поскольку в норме концентрация эритроцитов в крови на 3 порядка превышает концентрацию лейкоцитов, то вклад лейкоцитов в общее количество подсчитываемых клеток пренебрежимо мал по сравнению с эритроцитами, поэтому в некоторых анализаторах за количество эритроцитов принимают общее подсчитанное количество клеток. Такое допущение справедливо, за исключением случаев явных лейкоцитозов.
5. Подсчет и дифференцировка лейкоцитов
Определение количества лейкоцитов возможно только после лизиса эритроцитов. Эта задача оказалась легко решаемой, так как свойства мембран эритроцитов и лейкоцитов существенно различаются. Эритроциты легко лизируются под воздействием многих поверхностно-активных веществ, при этом лейкоциты, хотя и претерпевают некоторые изменения, остаются целыми. Поэтому при подсчете лейкоцитов, прежде чем пропустить разведенную суспензию крови через апертуру датчика, к ней добавляют лизирующий раствор или гемолитик, эритроциты разрушаются до очень мелких фрагментов, которые при подсчете лейкоцитов генерируют электрические импульсы очень низкой амплитуды, не влияющие на результат анализа.
Разделение неизмененных лейкоцитов кондуктометрическим методом на основные субпопуляции невозможно в виду близости их объемов, однако можно подобрать такую композицию растворителя и гемолитика, что различные формы лейкоцитов претерпевают изменения размеров в разной степени и, благодаря этому, могут разделяться данным методом. Изменение объема клетки зависит от многих факторов, включающих величину и форму ядра, объем цитоплазмы, наличие внутриклеточных включений и т. д., поэтому размер трансформированных клеток не соответствует размерам клеток при визуальном просмотре их в окрашенном мазке крови.
Полученные после анализа лейкоциты распределяются на гистограмме следующим образом:
- Область малых объемов (35-90 фл) формируется лимфоцитами, которые под действием гемолитика значительно уменьшаются в объеме.
- Гранулоциты (нейтрофилы, базофилы и эозинофилы), напротив, подвергаются небольшому сжатию и расположены в области больших объемов (120-400 фл).
- Между двумя пиками имеется зона так называемых "средних лейкоцитов" (90-120 фл), которая лучше всего коррелирует с моноцитами (по этой причине в некоторых анализаторах клетки в этой области указываются как моноциты). Однако, учитывая тот факт, что коэффициент корреляции с моноцитами R = 0,5-0,8 сравнительно невысок, более корректным является название параметра "средние лейкоциты" или "средние клетки" (MID). Практически в область средних клеток могут частично попадать базофилы, эозинофилы, различные патологические формы.
6. Высокотехнологические гематологические анализаторы
Высокотехнологические гематологические анализаторы способны осуществлять дифференцированный счет лейкоцитов по 5-ти (5Diff) основным популяциям, используя различные принципы дифференцирования клеток: нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты, оценивать наличие незрелых гранулоцитов, анализировать ретикулоциты и их субпопуляции, проводить оценку стволовых гемопоэтических клеток и субпопуляций лимфоцитов. Многочисленные функции современных гематологических анализаторов стали возможны, благодаря развитию новых технологий, которые отличаются у разных фирм-производителей.
Так, в анализаторах фирмы Bekman-Coulter (LH 500, LH750) (США - Франция) используется трехмерный анализ дифференцировки лейкоцитов (VCS-технология), который включает в себя одновременный компьютерный анализ клеток по объему (Volume), электропроводности (Conductivity) и дисперсии лазерного света (Scatter).
Полученные по трем каналам данные с помощью электроники комбинируются и анализируются, в результате чего происходит распределение клеток по дифференцировочным кластерам и, таким образом, лейкоциты разделяются на пять основных популяций: лимфоциты, моноциты, нейтрофилы, эозинофилы и базофилы. Результатом отображения объемного графика на плоскости является лейкоцитарная скатерограмма, на которой каждый тип клеток имеет свою зону расположения.
В анализаторах серии Cell-Dyn для дифференцировки лейкоцитов применяется технология MAPSS - Multi Angle Polarized Scatter Separation - мультипараметрическая система лазерного светорассеивания - регистрация интенсивности рассеивания клетками поляризованного лазерного луча под разными углами. Этот метод заключается в компьютерном анализе дисперсии лазерного счета клетками крови. Рассеивание клеткой поляризованного лазерного луча под разными углами дает сведения о таких ее свойствах, как:
- размер клеток - для чего оценивается прохождение поляризованного лазерного луча под малым углом рассеивания (близким к 0 град.);
- структура и степень сложности клеток - оценивается по анализу рассеивания поляризованных лазерных лучей, направленных под углом до 7 град.;
- ядерно-цитоплазматическое соотношение - оценивается по анализу рассеивания поляризованных лазерных лучей, направленных под углом до 10 град.;
- оценка формы клеточного ядра - осуществляется благодаря анализу светорассеивания поляризованных лазерных лучей под углом 90 град.;
- для оценки клеточной зернистости и дифференцировки эозинофилов используется оценка светорассеивания деполяризованного луча под углом в 90 град.
В приборах серии Technicon, ADVIA120, 2120, Pentra DX 120 разработан принцип жидкостной цитохимии (измерение активности пероксидазы в лейкоцитах), который в сочетании с другими методами (кондуктометрический, гидродинамическое фокусирование, оптическая абсорбция) позволяет проводить дифференцировку лейкоцитов.
Использование пероксидазной реакции основано на различной ее активности в лейкоцитах. Так, эозинофилы и нейтрофилы имеют интенсивную пероксидазную активность, моноциты - слабую, в лимфоцитах она не выявляется.
Проточная цитохимическая техника включает регистрацию рассеянного и поглощенного светового луча. В лейкоцитарном канале после лизиса эритроцитов и стабилизации лейкоцитов происходит цитохимическая реакция, далее лейкоциты дифференцируются по двум признакам: размеру клеток, определяемому методом рассеивания лазерного луча, и пероксидазной активности - по поглощению клеткой светового потока. Дифференцировка базофилов от других гранулоцитов проводится в базоканале. Цитоплазма всех лейкоцитов за исключением базофилов подвергается лизису после обработки пробы специфическим лизатом. Затем в канале осуществляется измерение дисперсии лазерного света под углами 2 град.-3 град. и 5 град.-15 град., что позволяет различить клетки в зависимости от формы ядер.
Сравнивая информацию, получаемую с Perox- и Baso-каналов, компьютер осуществляет дифференцировку лейкоцитов на 5 основных популяций, а также сигнализирует в виде флагов о присутствии в крови активированных лимфоцитов, незрелых гранулоцитов, бластов, эритробластов.
В гематологических анализаторах серии XT и ХЕ фирмы Sysmex применяется метод проточной цитофлюориметрии с использованием флуоресцентного красителя полиметина. Этот флуоресцентный краситель связывается с ДНК и РНК неизмененных клеток, что позволяет использовать его как для дифференцировки лейкоцитов по 5-ти параметрам (нейтрофилы, эозинофилы, базофилы, моноциты и лимфоциты), так и для подсчета ретикулоцитов. Анализ клеток происходит в проточной кювете при пересечении луча лазера длиной 633 нм. После контакта лазерного луча с окрашенной клеткой происходит рассеивание последнего под большим и малым углами и возбуждение флуоресцентного красителя. Данные сигналы улавливаются фотоумножителями и регистрируются в виде трех параметров:
1. Светорассеивание под малым углом (FSC) - отклонение лазерного луча под малым (до 10 град.) углом, которое зависит от размера (объема, только при условии сферической формы частицы) и формы клетки;
2. Боковое светорассеивание (SSC) - рассеивание под углом до 90 град. зависит от рефрактерного индекса (или плотности) клетки и характеризует сложность внутриклеточных структур;
3. Детекция специфического флуоресцентного сигнала (SFL), которая регистрируется также как боковое светорассеивание под углом 90 град. и позволяет судить о содержании РНК/ДНК в клетках.
На основании полученных сигналов все клетки распределяются по соответствующим кластерам (зонам) в соответствии с их размером, структурой и количеством ДНК. Таким образом, происходит дифференцировка лейкоцитов на 4 популяции: лимфоциты, моноциты, эозинофилы и нейтрофилы вместе с базофилами. Разделение нейтрофилов и базофилов происходит в базоканале, где используется метод специфического химического лизиса, основанный на предварительной обработке лейкоцитов реактивом, осуществляющим лизис всех клеток, за исключением базофилов, с последующим дискриминантным анализом всех элементов по размеру и сложности структуры и количеству ДНК.
Кроме того, приборы оборудованы каналом для выделения незрелых гранулоцитов и атипичных лимфоцитов.
Таким образом, использование приборов с полным дифференцированным подсчетом лейкоцитов (5 Diff) позволяет повысить точность дифференциального подсчета лейкоцитов, провести скрининг нормы и патологии, динамический контроль над лейкоцитарной формулой и резко сократить ручной подсчет лейкоцитарной формулы, оставляя примерно до 15-20% образцов крови для световой микроскопии.
7. Определение гемоглобина
В классическом гемиглобинцианидном методе (метод Драбкина) Fe+2 гемоглобина окисляется до Fe+3 метгемоглобина феррицианидом, затем метгемоглобин переводится в стабильный цианметгемоглобин цианидом. Оптическая плотность CNmetHb измеряется при 540 нм, при которой имеется максимум поглощения. Гемиглобинцианидный метод рекомендован Международным комитетом по стандартизации в гематологии Всемирной Организации Здравоохранения и используется в мировой практике более 30 лет.
В гематологических анализаторах к методам определения гемоглобина предъявляется ряд специфических требований. Во-первых, время реакции должно быть в десятки раз меньше для обеспечения высокой производительности анализаторов. Во-вторых, для оптимизации конструкции анализаторов гемоглобин должен измеряться в том же гемолизате, который используется для подсчета лейкоцитов, и, следовательно, компоненты, обеспечивающие гемоглобиновую реакцию, не должны негативно влиять на подсчет лейкоцитов.
Многие гематологические анализаторы измеряют концентрацию гемоглобина модифицированным гемиглобинцианидным методом. Высокая скорость реакции достигается путем быстрого лизиса эритроцитов, денатурирования и окисления гемоглобина до Fe+3 с помощью поверхностно-активных веществ. Последующая реакция с цианидом формирует устойчивую форму со спектром поглощения, похожим на спектр гемиглобинцианида в методе Драбкина, и максимумом поглощения около 545 нм. Достоинством метода является его простота, высокая скорость реакции и стабильность конечного продукта. Применение циановых методов в гематологических автоанализаторах имеет два существенных недостатка, связанных с тем, что цианид из флаконов постепенно выпаривается в виде синильной кислоты.
Во-первых, это может оказывать вредное воздействие на персонал при плохой вентиляции помещения.
Во-вторых, это приводит к ухудшению реакции и изменению калибровки по гемоглобину через 2-3 месяца после подсоединения к прибору флакона с гемолитиком.
Учитывая недостатки модифицированных гемиглобинцианидных методов, в последние годы в большинстве новых моделей гематологических анализаторов используются бесциановые методы. Одной из первых бесциановый SLS (натрий лаурил сульфат)-метод использовала фирма Sysmex. Этот метод оказался не совместимым с определением лейкоцитов в одном канале, для его реализации используется дополнительный реагент и канал измерения.
В других современных бесциановых методах используются компоненты гемихромной реакции, которые совместимы с подсчетом лейкоцитов и их дифференциацией на три популяции. Высокая скорость реакции достигается путем быстрого лизиса эритроцитов, денатурирования и окисления гемоглобина до Fe+3 с помощью окислителей в присутствии поверхностно-активных веществ. При этом в качестве лигандов атомов железа гема используются отличные от цианида вещества.
Оптимальной областью фотометрирования является максимум спектральной кривой поглощения. Для гемиглобинцианида - это 540 нм, которая и есть рабочая длина волны для этого метода. Измерение в максимуме кривой, где смягчаются требования к точности установки длины волны, снижает требования к точности изготовления и стабильности оптических фильтров. Максимум кривой поглощения гемихрома находится на длине волны 533 нм. Однако измерение на этой длине волны возможно только в спектрофотометрах. В фотометрических ячейках гематологических анализаторов, как правило, применяются полосовые светофильтры с типовыми длинами волн. Ближайшая к 533 нм типовая длина волны 540 нм, на которой и проводится фотометрирование с учетом коэффициента пересчета для 540 нм. При переходе с цианового на бесциановый метод, как правило, требуется корректировка калибровки гемоглобина в пределах 0-5%.
8. Качество результатов исследования крови на гематологическом анализаторе
Качество результатов исследования крови на гематологическом анализаторе определяется следующими факторами:
- точностью дозирования цельной или разведенной крови;
- точностью дозирования изотонического раствора при проведении процедуры разведения крови;
- точностью определения объема суспензии, пропущенного через датчики подсчета клеток;
- точностью самого подсчета клеток;
- точностью определения размеров клеток;
- корректностью математических методов обработки первичных результатов измерений.
Во избежание случаев несовместимости реагентов следует использовать изотонический раствор и гемолитик от одного изготовителя. При смене реагентов одного производителя на реагенты другого производителя необходимо проверить калибровку анализатора по контрольной крови, обращая особое внимание на Hb и MCV/HCT, и при необходимости нужно делать перекалибровку этих показателей. Калибровка других показателей, как правило, не меняется.
При эксплуатации гематологических анализаторов важную роль играет качество электрической сети и заземления. Внезапное отключение электропитания приводит к сбоям в работе приборов и необходимости вмешательства инженеров сервисной службы. В том случае, если электрическое питание пропадает в момент забора пробы или анализа и появляется спустя несколько часов (5-20 ч), последствия могут оказаться значительно более серьезными - может выйти из строя гидравлика, засориться сгустками крови капиллярные трубки, апертура и т. д.
Поэтому прибор должен работать с источником бесперебойного питания, который должен обеспечить возможность окончания анализа и промывку прибора, т. е. работу прибора в течение нескольких минут.
Периодически необходима калибровка по стандартным материалам, так как электронные и механические компоненты прибора, датчиков, насосов и т. д. со временем подвергаются старению и меняют свои технические параметры. Для осуществления калибровки необходимо пользоваться только качественными контрольными материалами.
Гематологические анализаторы очень чувствительны к длительным отключениям и перебоям в работе, что связано с подсыханием шлангов, проростом микрофлоры, кристаллизацией из растворов. При длительной остановке (на период отпуска, переезда или отсутствия реагентов) обязательным является заполнение шлангов консервирующими растворами с последующей многократной отмывкой от них.
Общее правило - не прерывать работу гематологического анализатора на длительный срок.
9. Основные параметры автоматизированного анализа крови и факторы, влияющие на их значения
Гематологические анализаторы позволяют не только автоматизировать процесс подсчета клеток крови, повысить производительность труда в лабораториях, улучшить качество и точность измерения, но и получить дополнительные, высоко информативные характеристики клеток крови. Для правильной их интерпретации специалисты клинической лабораторной диагностики, а также врачи других специальностей должны иметь представление о нормальном кроветворении, знать клиническую симптоматику различных заболеваний и патологических процессов, возможные причины, приводящие к отклонениям в гемограмме, ориентироваться в системе расстановки флагов, имеющейся в каждом анализаторе, гистограммах и скатерограммах. При анализе гемограммы следует учитывать возможные причины ложных результатов. Только в этом случае можно профессионально прокомментировать и при необходимости помочь клиницистам в интерпретации полученных результатов исследования крови.
Любые изменения общего анализа крови трактуются как патологические и требуют тщательного обследования пациента. Изменения в гемограмме при многих заболеваниях могут иметь неспецифический характер. В этих случаях их используют для динамического наблюдения за больным, а также по ним ориентируются при прогнозировании исходов заболевания. При системных заболеваниях кроветворной системы исследование общего анализа крови приобретает первостепенное диагностическое значение. Оно определяет дальнейшую стратегию обследования пациента с последующим выбором схемы лечения и необходимо для мониторинга проводимой терапии.
В гематологических анализаторах различных фирм-производителей нормальные показатели крови могут существенно варьировать в зависимости от норм, используемых в той или иной стране. Следуя инструкции прибора, перед началом работы на анализаторе рекомендуется изменить их в соответствии с нормами, принятыми в нашей стране.
Заключение
В гематологических исследованиях применяются различные счетчики клеток крови. Например, для измерения концентрации эритроцитов и лейкоцитов в суспензиях крови -- кондуктометрические гемоцитометры, для определения концентрации гемоглобина в крови -- фотоэлектрические гемоглобинометры, автоанализаторы морфологические и др.
Эти и аналогичные им приборы в крупных лабораториях диагностических центров заменили трудоемкие процессы подсчета клеток крови и определения содержания гемоглобина, распределения клеток по размерам и т.д. Для определения групповой и резус-принадлежности крови, проведения серологических реакций используют различные автоматизированные устройства. Для исследования свертывающей системы крови применяют самопишущий переносной коагулограф, а для определения минерального состава биологических проб -- пламенные фотометры.
Однако в небольших лабораториях для исследования крови часто пользуются простейшими устройствами: камерой Горяева для счета форменных элементов крови, лабораторным счетчиком для подсчета различных клеток крови (лейкоцитарной формулы) при микроскопическом исследовании, штативом и пипетками для определения СОЭ, капиллярным гемовискозиметром для определения вязкости крови и др.
Оснащение современных лабораторий автоматизированными и механизированными устройствами постепенно вытесняет ручные и визуальные методы исследования, обеспечивает более высокую точность и воспроизводимость результатов определений, увеличивает производительность труда лаборантов, что особенно важно в связи с постоянным ростом числа выполняемых в лабораториях анализов, появлением новых методик и расширением количества исследуемых показателей.
кровь гематологический венозный клинический
Список литературы
1. Долгов В.В., Луговская С.А., Морозова В.Т., Почтарь М.Е. // Лабораторная диагностика анемий. Тверь, Губернская медицина, 2001.
2. Козинец Г.И., Макаров В.А. (Ред.) // Исследование системы крови в клинической практике. М., Триада-Х, 1997.
3. Козинец Г.И., Погорелов В.М., Шмаров Д.А. и др. // Клетки крови - современные технологии их анализа. М, "Триада-Фарм", 2002, с. 4-27.
4. Г.И. Козинец, В.М. Погорелов, О.А. Дягилева, И.Н.Наумова. // Кровь. Клинический анализ. Диагностика анемий и лейкозов. Интерпретация результатов. М., Медицина XXI, 2006.
5. Меньшиков В.В. (Ред.) Клиническая лабораторная аналитика. // М., т. 2, 1999.
6. Кузнецова Ю.В., Ковригина Е.С., Байдун Л.В. и др. // Использование эритроцитарных индексов и показателей обмена железа в дифференциальной диагностике микроцитарных анемий. Гематол. и трансфузиол., 2000, т. 45, N 6, с. 46-48.
7. Луговская С.А., Почтарь М.Е. // Гематологический атлас. М., "Триада", 2004.
8. Луговская С.А., Морозова В.Т., Почтарь М.Е., Долгов В.В. // Лабораторная гематология. М., "Триада", 2006.
Размещено на Allbest.ru
Подобные документы
Исследование крови как один из важнейших диагностических методов, общая методика и этапы его проведения, особенности и значение. Параметры оценки красной и белой крови, тромбоцитов, нейтрофилов и эритроцитов, документальное оформление результатов.
курсовая работа [65,4 K], добавлен 25.04.2009Изучение различий в составе периферической крови до и после физических нагрузок. Оценка влияния интенсивности нагрузки и стажа тренировок на показатели периферической крови и адаптивные резервы организма человека. Техника проведения общего анализа крови.
курсовая работа [1,3 M], добавлен 23.09.2016Автоматические методы анализа клеток крови. Основные источники ошибок при подсчете эритроцитов и лейкоцитов в камере. Особенности влияния различных факторов на результаты исследования крови. Информативность и достоверность гематологических тестов.
реферат [44,1 K], добавлен 20.12.2012Общая характеристика нарушений функций или строения клеток крови — эритроцитов, лейкоцитов или тромбоцитов, патологических изменений их числа, а также изменений свойств плазмы крови. Виды и проявления анемии, талассемии, диатеза, тромбоцитопатии.
презентация [5,2 M], добавлен 26.06.2015Основные методы магнитотерапии. Физические основы первичного действия магнитны полей. Действие магнитных полей на систему крови. Улучшение клинического и тромбогенного потенциала крови. Воздействие электрических и магнитных полей низких частот.
презентация [12,6 K], добавлен 26.07.2015Кровь. Функции крови. Компоненты крови. Свертывание крови. Группы крови. Переливание крови. Болезни крови. Анемии. Полицитемия. Аномалии тромбоцитов. Лейкопения. Лейкоз. Аномалии плазмы.
реферат [469,2 K], добавлен 20.04.2006Значение общего анализа крови в педиатрической практике, высокая изменчивость результатов как его важная особенность. Место болезней крови в общей структуре детской заболеваемости. Анатомо-физиологические особенности крови и органов кроветворения у детей.
презентация [188,0 K], добавлен 21.12.2016Виды непрямого переливания крови в зависимости от пути ее введения. Техника проведения венепункции. Способы осуществления прямого переливания крови. Методы аутогемотрансфузии и обменного переливания крови. Показания для проведения венесекции и реинфузии.
реферат [18,0 K], добавлен 27.12.2009Клиническая диагностика как важнейший раздел клинической ветеринарии, предмет и методы ее изучения. Порядок клинического исследования сердечнососудистой системы собаки, порода Американский Стаффордширский терьер. Взятие крови и методика ее анализа.
курсовая работа [23,3 K], добавлен 09.11.2009Анализ нейтрофилов как клеток крови, случаи их патологического изменения. Методы изучения нейтрофилов. Экспериментальная апробация способа получения гематологических характеристик, которые могут быть использованы как признаки патологии нейтрофилов.
курсовая работа [1,3 M], добавлен 29.02.2012