Строение спинного мозга
Нейрон как структурно-функциональная единица нервной системы, ее разновидности и значение, строение и элементы. Общая характеристика и функциональные особенности аксонов, дендритов. Нейросекреторные клетки, их действие. Нейроглия: понятие, виды, функция.
Рубрика | Медицина |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.01.2014 |
Размер файла | 30,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Нейрон. Виды нейронов
Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов. Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона. Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Структурная классификация
На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.
Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.
Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.
Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.
Функциональная классификация
По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).
Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.
Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.
Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).
Морфологическая классификация
Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:
· учитывают размеры и форму тела нейрона;
· количество и характер ветвления отростков;
· длину нейрона и наличие специализированных оболочек.
По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т.д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.
По количеству отростков выделяют следующие морфологические типы нейронов:
· униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
· псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
· биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
· мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.
2. Аксон. Дендрит
Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны.
Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.
Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.
Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.
3. Строение нейрона
Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в которых находятся ионные каналы.
Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксоны. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.
4. Нейросекреторные клетки
Ряд клеток обладающих секреторной активностью, клетки гипоталамуса. Они вырабатывают секрет попадающий непосредственно в спинномозговую жидкость. Имеют ряд особенностей - липоиды. Гранулы секрета не растворяются в воде и спирте. Ядра нейросекреторной клетки не правильной формы, более крупные, что говорит о высокой активности. Секрет содержит белок, полисахариды и липиды. В цитоплазме находятся гранулы и капли секрета. Аксоны нейросекреторных клеток характеризуются многочисленными расширениями, которые возникают в связи с временным накоплением нейросекрета. Крупные и гигантские расширения называются «телами Геринга». В пределах мозга аксоны нейросекреторной клетки лишены миелиновой оболочки.
5. Нейроглия: понятие, виды, функция
аксон дендрит нейрон
Глиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объёма ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.
Нейроглия является клеточным клеем нервной системы. Все клетки делятся на микроглию и макроглию.
Микроглия - специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением.
Макроглия представлена 3 видами клеток:
1. Астроциты - представляют собой опорный аппарат нервной системы. Подразделена на два вида: волокнистые и плазматические. Волокнистые лежат в белом веществе, имеют длинные, слабоветвящиеся отростки, которые на поверхности кровеносных сосудов образуют разграничительные мембраны. Плазматические залегают в сером веществе, имеют крупное ядро и несколько ветвящихся отростков, участвуют в обменных процессах. Наиболее активны в условиях паталогии.
2. Эпендимоциты - выстилают все желудочки мозга и спинномозговой канал. Имеют реснички способствуют продвижению жидкости. Некоторые клетки обладают секреторной активностью, при этом гранулы секрета попадают в спинномозговую жидкость. Особенностью является наличие крупных метохондрий в цитоплазме, вкропление жира и пигментов.
3. Олигодендроглиоциты - выполняют опорную функцию, входят в состав оболочек нервных клеток, участвуют в процессах передачи и восприятия нервного импульса, а также в обменных процессах.
6. Эпендимоциты
Эпендимоциты - эпителиоподобные клетки нейроглии, выстилающие все желудочки мозга и спинномозговой канал. Эпендимоциты выполняют в центральной нервной системе опорную, разграничительную и секреторную функции. Тела эпендимоцитов вытянуты, на свободном конце - реснички (теряемые во многих отделах мозга после рождения особи). Биение ресничек способствует циркуляции спинномозговой жидкости. Со стороны эпендимоцита, обращенной внутрь тканей мозга, от клетки отходит длинный, ветвящийся отросток.
Некоторые эпендимоциты выполняют секреторную функцию, участвуя в образовании и регуляции состава цереброспинальной жидкости. Цитоплазма эпендимоцитов содержит развитую эргастоплазму и различные включения.
Некоторые клетки обладают секреторной активностью. При этом гранулы секрета попадают в спинномозговую жидкость. Особенность наличие крупных митохондрий в цитоплазме, в кропление жира и пигментов.
7. Астроциты
Астроцит - тип нейроглиальной клетки. Происходит из спонгиобластов, развивающихся в клетке, имеющие множество отростков. Длинные извитые отростки переплетаются с отростками нейронов. Значительное число отростков астроцитов представляют собой «ножки», плотно прилегающие к капиллярам и покрывающие собой почти всю поверхность сосуда. Астроциты, расположенные в местах концентрации тел нейронов (серое вещество), образуют больше отростков, чем астроциты в белом веществе. Таким образом, астроциты - это клетки, располагающиеся между капиллярами и телами нейронов и осуществляющие транспорт веществ из крови в нейроны и обратно. Кроме того, астроциты связывают с кровеносным руслом спинномозговую жидкость.
Функции
· Опорная и разграничительная функция - поддерживают нейроны и разделяют их своими телами на группы (компартменты). Эту функцию позволяет выполнять наличие плотных пучков микротрубочек в цитоплазме астроцитов.
· Трофическая функция - регулирование состава межклеточной жидкости, запас питательных веществ (гликоген). Астроциты также обеспечивают перемещение веществ от стенки капилляра до плазматической мембраны нейронов.
· Участие в росте нервной ткани: астроциты способны выделять вещества, распределение которых задает направление роста нейронов в период эмбрионального развития. Рост нейронов возможен как редкое исключение и во взрослом организме в обонятельном эпителии, где нервные клетки обновляются раз в 40 дней.
· Участие в нейрональной миграции: в ростральном миграционном тракте астроциты образуют глиальные трубки, по которым нейробласты, образованные при взрослом нейрогенезе, продвигаются в обонятельную луковицу.
· Гомеостатическая функция - обратный захват медиаторов и ионов калия. Извлечение глутамата и ионов калия из синаптической щели после передачи сигнала между нейронами.
· Гематоэнцефалический барьер - защита нервной ткани от вредных веществ, способных проникнуть из кровеносной системы. Астроциты служат специфическим «шлюзом» между кровеносным руслом и нервной тканью, не допуская их прямого контакта.
· Модуляция кровотока и диаметра кровеносных сосудов - астроциты способны к генерации кальциевых сигналов в ответ на нейрональную активность. Астроглия участвует в контроле кровотока, регулирует высвобождение некоторых специфических веществ,
· Регуляция активности нейронов - астроглия способна высвобождать нейропередатчики.
· Регуляция медленноволновой активности во время сна.
Виды астроцитов
Астроциты делятся на фиброзные (волокнистые) и плазматические. Фиброзные астроциты располагаются между телом нейрона и кровеносным сосудом и преимущественно находятся в белом веществе, характеризуются высоким содержанием глиального фибриллярного кислого белка, а плазматические - между нервными волокнами в сером веществе.
8. Олигодендроглиоциты
Олигодендроциты, или олигодендроглиоциты - клетки нейроглии. Это - наиболее многочисленная группа глиальных клеток. Олигодендроциты локализуются в центральной нервной системе.
Олигодендроциты - клетки овальной формы с отростками. Их основная функция - миелинизация аксонов ЦНС. Каждый олигодендроглиоцит имеет множество отростков, каждый из которых оборачивает собой часть какого-либо аксона. В результате один олигодендроцит оказывается связан с несколькими нейронами. Тем самым обеспечивется изоляция аксона, и, как следствие ее - возможность быстрого сальтаторного проведения нервных импульсов (по перехватам Ранвье, остающимся между изолированными участками).
Олигодендроциты выполняют также трофическую функцию по отношению к нейронам, принимая активное участие в их метаболизме.
Олигодендроциты имеют то же происхождение, что и астроциты. По размерам они меньше, чем астроциты и имеют меньше отростков. Основная масса олигодендроцитов располагается в белом веществе мозга и ответственна за образование миелина. Эти олигодендриты обладают длинными отростками. Олигодендроциты, расположенные в периферической нервной системе, называются Шванновскими клетками. Те олигодендроциты, которые находятся в сером веществе, располагаются, как правило, вокруг тел нейронов, плотно прилегая к ним. Поэтому их называют клетками-сателлитами. Они характеризуются наличием коротких отростков.
9. Микроглия
Микроглия - специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки. Происходят из моноцитов крови (потомки стволовой клетки крови), то есть характеризуются мезодермальным происхождением. В ходе воспалительного процесса микроглия активируется, причем форма клеток претерпевает сильные изменения - в активированном состоянии они выпускают многочисленные отростки, напоминая амёбы. Микроглия распознает различные агенты в своем окружении при помощи специализированных мембранных рецепторов. Микроглия также подавляет патогены при помощи выделения цитотоксических веществ. Показано, что в культуре клетки микроглии (как и другие фагоциты в ходе «респираторного взрыва») выделяет большие количества перекиси водорода и NO. Оба эти вещества могут убивать нейроны. Микроглия выделяет также специфические протеазы и цитокины (например, интерлейкин-1, который может вызывать демиелинизацию аксонов). Наконец, микроглия может повреждать нейроны при выделении избытков глутамата, при действии которого на NMDA-рецепторы возникает явление эксайтотоксичности. Таким образом, чрезмерная активация микроглии может приводить к патологическим процессам и, в частности, к гибели нейронов, что, как полагают, является одним из патологических механизмов нейродегенеративных болезней, таких как болезнь Альцгеймера, болезнь Паркинсона, деменция, вызванная СПИДом, и некоторых других. Клетки микроглии происходят из мезодермы. Они отличаются небольшими размерами. Эти клетки могут активно передвигаться и выполнять фагоцитарные функции. Благодаря способности к активной миграции микроглия распределена по всей центральной нервной системе. При раздрожении форма клетки меняется, отростки втягиваются внутрь и клетка округляется.
10. Нервные волокна: понятие, виды
Немрвные воломкна - отростки нейронов, покрытые глиальными оболочками.
В различных отделах нервной системы оболочки нервных волокон значительно отличаются по своему строению, что лежит в основе деления всех волокон на миелиновые и безмиелиновые. Те и другие состоят из отростка нервной клетки, лежащего в центре волокна, и поэтому называемого осевым цилиндром (аксоном), и окружающей его глиальной оболочки.
В зависимости от интенсивности функциональной нагрузки нейроны формируют тот или иной тип волокна. Для соматического отдела нервной системы, иннервирующей скелетную мускулатуру, обладающую высокой степенью функциональной нагрузки, характерен миелиновый тип нервных волокон, а для вегетативного отдела, иннервирующего внутренние органы - безмиелиновый тип.
Отростки нервных клеток объединяются и называются нервными волокнами. Нервные волокна покрыты глиальными оболочками. Внутри нервного волокна располагается осевой цилиндр - отросток нервной клетки. Оболочка образована клетками - олигодендроглимоцитами. Все волокна распределяются на два типа:
1. Миелиновые - более толстые, т.к. содержат миелин - находятся внутри под оболочкой; входят в состав соматической нервной системы. Миелин через несколько участков резко истончается, образуя таким образом перехват. Он называется перехват Ранвье. Отросток между перехватами называется межузловой сигмент. Миелин на подобии жира.
2. Безмиелиновые - входят в состав вегетативной нервной системы, содержат несколько осевых цилиндров, при этом осевые цилиндры могут покидать основное волокно и переходить в смежное.
11. Миелиновые нервные волокна
Миелин - вещество, образующее миелиновую оболочку нервных волокон.
Миелиновая оболочка - электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновую оболочку образуют глиальные клетки: в периферической нервной системе - Шванновские клетки, в центральной нервной системе - олигодендроциты. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоёв клеточной мембраны.
Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длиной примерно 1 мм. В связи с тем, что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведёт к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5-10 раз быстрее, чем по немиелинизированным.
Из вышесказанного становится ясным, что миелин и миелиновая оболочка являются синонимами. Обычно термин миелин употребляется в биохимии, вообще при упоминании его молекулярной организации, а миелиновая оболочка - в морфологии и физиологии. Химический состав и структура миелина, произведённого разными типами глиальных клеток, различны. Цвет миелинизированных нейронов - белый, отсюда название «белого вещества» мозга. Приблизительно на 70-75% миелин состоит из липидов, на 25-30% - из белков. Такое высокое содержание липидов отличает миелин от других биологических мембран.
12. Безмиелиновые нервные волокна
Безмиелиновые - входят в состав вегетативной нервной системы, содержат несколько осевых цилиндров, при этом осевые цилиндры могут покидать основное волокно и переходить в смежное.
Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное, такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфтой.
Оболочки леммоцитов при этом прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, «одевающий» осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.
Размещено на Allbest.ru
Подобные документы
Нейрон как структурно-функциональная единица нервной системы, особенности строения данной клетки, ее функциональные возможности и специализация. Формирование миелиновой оболочки. Немиелиновое волокно. Принципы и обоснование проведения нервного импульса.
презентация [2,3 M], добавлен 30.09.2013Классификация отделов нервной системы человека, ее структурно-функциональные единицы. Общая анатомия спинного мозга: сегментарное строение, оболочки, серое и белое вещество. Строение, синусы (пазухи) и система кровоснабжения головного мозга и мозжечка.
шпаргалка [88,6 K], добавлен 07.02.2013Классификация, строение и значение нервной системы. Структура и функции центральной нервной системы. Морфология и принципы формирования корешка спинного мозга. Клеточно-тканевой состав и топография проводящих путей серого и белого веществ спинного мозга.
методичка [1,7 M], добавлен 24.09.2010Нейрон как структурно-функциональная единица нервной системы, знакомство с основными видами: униполярные, чувствительные, возбуждающие. Рассмотрение ключевых особенностей взаимодействия нейрона с другими клетками. Общая характеристика свойств синапса.
презентация [471,6 K], добавлен 15.02.2014Сегменты спинного мозга и их структурно-функциональная характеристика. Закон Белла-Мажанди. Афферентные и эфферентные нейроны. Центры спинного мозга и управления скелетной мускулатурой. Принцип метамерии. Локализация восходящих путей в белом веществе.
презентация [7,1 M], добавлен 26.01.2014Трофическая функция нервной системы. Основная структурная единица нервной системы. Процессы, протекающие в нервной клетке. Развитие, анатомическое строение и функции промежуточного мозга. Таламус, гипоталамус и эпифиз. Ретикулярная формация ствола мозга.
курсовая работа [198,5 K], добавлен 05.01.2011Виды нервной ткани в организме: нейроны и нейроглии. Классификация нейронов по функциям: чувствительные, ассоциативные и двигательные. Характеристика периферической (соматической и вегетативной) и центральной нервной системы. Строение спинного мозга.
презентация [2,4 M], добавлен 07.04.2014Спинной мозг человека, его описание, расположение и характеристика. Оболочка спинного мозга, ее особенности и разновидности. Строение и основные функции спинного мозга, схематическое изображение и детальное описание особенностей каждой части мозга.
реферат [743,0 K], добавлен 28.01.2009Переферическая нервная система. Проводниковая функция спинного мозга. Задний мозг: мозговой мост и мозжечок. Рефлекс как основная форма нервной деятельности. Внутреннее строение спинного мозга. Причины спинального шока. Физиология среднего мозга.
презентация [627,5 K], добавлен 07.12.2013Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.
шпаргалка [72,7 K], добавлен 16.03.2010