Щитовидная железа
Анатомия, эмбриология и гистология щитовидной железы. Основные физиологические и метаболические эффекты тиреоидных гормонов. Органы мишени, регуляция синтеза и выделения. Гипоталомо-гипофизарно-тиреоидная система регуляции. Гипертиреоз и его последствия.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 15.12.2013 |
Размер файла | 706,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕНЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
КАФЕДРА НОРМАЛЬНОЙ ФИЗИОЛОГИИ
Реферат на тему
Щитовидная железа
Выполнила: студентка 2 курса 1 группы
педиатрического факультета
Гусейнова З.Р
Проверила
Пономаренко Тамара Степановна
Волгоград 2013г.
1. АНАТОМИЯ ЩИТОВИДНОЙ ЖЕЛЕЗЫ
Щитовидная железа состоит из двух долей и перешейка. У трети людей имеется добавочная пирамидальная долька, отходящая от перешейка. Боковые доли располагаются в области нижней половины латеральной поверхности щитовидного хряща, перстневидного хряща и трахеи. Нижний полюс их спускается до 5-6 кольца трахеи. Перешеек расположен на уровне 2-4 колец трахеи. Боковые доли железы покрывают a.carotis communis, v.jugularis, n.recurens, околощитовидные железы и примыкают сзади к пищеводу. Представление о топографии щитовидной железы помогает иногда объяснить развитие нарушений со стороны соседних органов в результате их сдавления развившимся зобом. Спереди щитовидная железа прикрыта m.sternocleidomastoideus и platysma . (Рисунок 1.)
Щитовидная железа имеет собственную оболочку (tunica fibrosa) от которой вглубь железы отходят соединительнотканные перегородки, разделяющие ее на дольки, и капсулой, происходящей из фасции шеи (capsula extema). Щитовидная железа с капсулой не спаяна, что имеет важное значение при операциях на ней. При помощи связок капсула фиксирует щитовидную железу к перстневидному хрящу и трахее, что обусловливает смещение железы при глотании вместе с гортанью и трахеей. Это облегчает распознавание при пальпации даже небольших образований в щитовидной железе и позволяет дифференцировать нетиреоидные образования шеи.
Щитовидная железа снабжается кровью четырех артерий: двумя верхними щитовидными, правой и левой, берущими начало из a.carotis extema, и двумя нижними, правой и левой, происходящими из a. subclavia. Артерии щитовидной железы сильно анастомозируют между собой, что дает возможность при операциях перевязывать несколько сосудов сразу, не опасаясь некроза щитовидной железы. После входа в паренхиму железы, артерии образуют густую сеть мелких артериол, распадающихся на капилляры, которые окружают фолликулы, тесно прилегая к фолликулярному эпителию. Интенсивность кровообращения щитовидной железы значительно превосходит все другие без искючения органы и ткани. При пересчете на единицу веса ткани кровоток через щитовидную железу значительно превышает таковой в миокарде, мозге и почках. Венозный отток из щитовидной железы осуществляется в v. jugularis intema и v.v.brachiocephalicae. Лимфатические сосуды впадают в глубокие шейные, предгортанные, претрахеальные и паратрахеальные лимфатические узлы.
Щитовидная железа имеет как симпатическую так и парасимпатическую иннервацию. Волокна симпатической иннервации происходят из шейных ганглиев и образуют верхние и нижние щитовидные нервы.
Парасимпатическая иннервация осуществляется ветвями блуждающего нерва -- верхним гортанным и возвратным гортанным нервами. Средний вес щитовидной железы взрослого человека составляет 15-ЗОг.
2. ЭМБРИОЛОГИЯ И ГИСТОЛОГИЯ ЩИТОВИДНОЙ ЖЕЛЕЗЫ
Зачаток щитовидной железы у плода образуется на 17-е сутки эмбрионального развития из эпителиального тяжа пищеварительной трубки в месте слепого отверстия и к концу 7-ой недели беременности железа занимает положение, свойственное взрослому организму. Нарушения в эмбриональной закладке щитовидной железы, в последствии реализуются в виде эктопически расположенной щитовидной железы у новорожденного.
В развитии щитовидной железы плода выделяют три фазы: преколлоидную, раннюю коллоидную и фолликулярную (от 80 дней беременности и до рождения). Таким образом, начиная с 11-12 недели беременности, щитовидная железа плода приобретает способность аккумулировать йод, синтезировать и секретировать тиреоидные гормоны. В первые три месяца внутриутробного развития обеспечение плода тиреоидными гормонами осуществляется главным образом организмом матери.
Гистологически щитовидная железа состоит из фолликулов и соединительно-тканной стромы, сформированной из коллагеновых и эластических волокон с проходящими в ней кровеносными, лимфатическими сосудами и нервами.
Структурной единицей щитовидной железы является фолликул, который представляет собой замкнутое образование округлой формы (схема 1). Размеры фолликулов варьируют от 20 до 300 мкм [I]. В полости фолликулов находится вещество - коллоид, продуцируемый эпителиальными или А-клетками. Стенка фолликула сформирована А-клетками (тиреоцитами), которые представляют собой однослойный кубический эпителий. Апикальная часть тиреоцитов, обращена в просвет фолликула, заполненного коллоидом. Основной компонент коллоида представлен тиреоглобулином (тиреоспецифический йодированный гликопротеид), который служит основой для синтеза тиреоидных гормонов и их депонирования. Тироксин (Т4), трийодтиронин (ТЗ) и тиреоглобулин (ТГ) синтезируются А-клетками ЩЖ.
При различных заболеваниях в щитовидной железе появляются В-клетки (синонимы: клетки Гюртле-Ашкенази, клетки Ашкенази, оксифильные клетки, онкоциты). Данные клетки никогда не встречаются в нормальной ткани щитовидной железы и характерны для аутоиммунного тиреоидита, диффузного токсического зоба и доброкачественных и злокачественных опухолей из В-клеток f4].
Помимо А-клеток, в ткани неизмененной щитовидной железы есть и С-клетки (синоним: парафолликулярные клетки), которые располагаются между фолликулами. С-клетки отличаются от А-клеток как по эмбриогенезу, так и по выполняемой ими функции. Этими клетками вырабатывается кальцитонин, который является основным гормональным фактором в регуляции обмена кальция и фосфора в организме.
3. ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ
Гормомны щитовимдной железым представлены двумя различными классами биологически активных веществ: йодтиронинами и полипептидным гормоном кальцитонином. Эти классы веществ выполняют разные физиологические функции: йодтиронины регулируют состояние основного обмена, а кальцитонин является одним из факторов роста и влияет на состояние кальциевого обмена, а также участвует в процессах роста и развития костного аппарата (в тесном взаимодействии с другими гормонами).
Основными и необходимыми компонентами синтеза тиреоидных гормонов -- тироксина (Т4) и трийодтиронина (ТЗ) являются йод, поступающий в адекватных количествах в щитовидную железу, и аминокислота тирозин. Йод поступает в организм с пищевыми продуктами. Физиологическое потребление йода человеком составляет 150-200 мкг в сутки. Всосавшийся из кишечника йод в виде йодидов достигает посредством кровеносной системы щитовидной железы и активно проникает через базальную мембрану в фолликулярные клетки против градиента концентрации. Йодид претерпевает стадию окисления, в результате чего переходит в молекулярный йод. Молекулярный йод соединяется с тиреоглобулином и в свободной форме остается всего 1-2% йода.
Органификация йода происходит в тиреоцитах, куда тиреоглобулин проникает через коллоид. Именно там осуществляется органическое связывание йода с последовательным образованием монойодтирозина (МИТ) и дийодтирозина (ДИТ).
В результате окислительной конденсации двух молекул ДИТ с потерей одной аланиновой цепи образуется тироксин. Образование трийодтиронина происходит в результате соединения молекул ДИТ и МИТ также с потерей одной аланиновой цепи.
Секреция тиреоидных гормонов начинается с резорбции коллоида под влиянием протеолитических ферментов. В результате протеолиза освобождаются МИТ, ДИТ, Т4 и ТЗ. МИТ и ДИТ подвергаются обратному дейодированию и высвобождающийся в результате этого йод вновь используется в синтезе тиреоидных гормонов.
В кровоток в основном поступают ТЗ и Т4 и циркулируют там в связанной транспортными белками форме. Щитовидная железа секретирует в 10-20 раз больше Т4 чем ТЗ, однако, ТЗ активнее Т4 по своему действию в 5 раз. Период полувыведения Т4 из организма составляет 6-7 дней, причем, около 40% тироксина метаболизируется с образованием ТЗ и реверсивного (неактивного) ТЗ. Период полураспада ТЗ равен 1-2 дням.
На периферии дейодированию подвергаются как Т4 так и ТЗ с образованием тетрайодтиропропионовой, тетрайодтироуксусной и трийодтироуксусной кислот. Эти вещества обладают очень слабым метаболическим эффектом.
Химическая структура тиреоидных гормонов показана ниже на схеме 2
Изменения секреции тиреоидных гормонов и нарушения функции щитовидной железы могут происходить в результате поломки биосинтеза тиреоидных гормонов на разных его этапах поступчения йодида из крови, окисления его в элементарный йод, включения йода в состав тирозинов с образованием монойодтирозина и дийодтирозина, конденсации мочекул йодтирозина с образованием Т4 и ТЗ
4. МЕХАМИНЗМЫ ДЕЙСТТВИЯ ГОРМОНОВ
Гормоны щитовидной железы воздействуют на обменные процессы в клетке за счет активации механизмов генной транскрипции. Первым этапом в механизме действия является связывание тиреоидных гормонов с ядерными рецепторами. Этот процесс в печени и почках подопытных крыс отмечается уже через 30 минут после введения Т3, причём среднее время диссоциации из связи с рецептором составляет для Т3 15 минут. Очевидно, биологическая роль принадлежит в большей степени этому гормону, т.к. для него степень сродства к ядерным рецепторам клеток-мишеней в 10 раз превышает таковую для Т4. Определена и природа ядерных рецепторов, связывающих Т3, это белок, не относящийся к гистонам, с молекулярной массой 50500 Да. Тиреоидные гормоны связываются и с определёнными низкомолекулярными структурами в цитоплазме, роль которых возможно состоит в удержании гормонов поблизости от истинных рецепторов.
Связываясь с ядерными рецепторами, тиреоидные гормоны повышают активность РНК-полимеразы и матричную активность хроматина, что приводит к стимуляции синтеза новых популяций гетерогенной РНК.
Согласно гипотезе Халберта, тиреоидные гормоны изменяют состав жирных кислот мембран, что приводит к усилению потоков субстратов синтеза белка в цитоплазму клеток и более быстрому включению в клетки метаболически важных солей (Na+,K+, Ca++), сахаров, нуклеотидов.
Под действием тиреоидных гормонов отмечают увеличение текучести липидного слоя биологических мембран ЭПР, а ещё более глубокие изменения обнаруживают при гормональном воздействии в липидном составе хроматина ядер. Нарушение в ядрах соотношения насыщенных и полиненасыщенных ЖК приводит к изменению вязкости мембран, их транспортных свойств, что также приводит к активации биосинтетических процессов в клетке.
Усиление под действием тиреотропных гормонов синтеза белков и фосфолипидов приводит к увеличению количества мембран ЭПР, что является необходимым условием дальнейшей интенсификации синтеза белков, процессов роста и дифференцировки.
Действие тиреоидных гормонов на клеточном уровне проявляется повышением метаболизма и увеличением поглощения O2, т.е. проявлениями калорического эффекта. Ранее действие тиреоидных гормонов на дыхание относили к немедленному эффекту, связанному с разобщением окислительного фосфорилирования, однако исследованиями было показано, что тиреоидные гормоны вызывают разобщение только в очень высоких, токсичных концентрациях (5.10-5 - 5.10-4 М), т.е. митохондрии не чувствительны к действию физиологических концентраций гормонов. В то же время было показано, что тиреоидные гормоны стимулируют синтез ферментов и других белков на внутренней мембране митохондрий в результате как деятельности самих митохондриальных, так и внемитохондриальных, цитоплазматических белоксинтезирующих систем, на-ходящихся под контролем м-РНК ядра. Исследования подтвердили активирование хроматина ядра, ускорение синтеза белка в бесклеточной системе при добавлении тиреоидных гормонов. Надо отметить, что если при введении небольших доз тиреоидных гормонов лабораторным животным наблюдается стимуляция биосинтетических и биоэнергетических процессов, активности мембранос-вязанных ферментов, то при тиреотоксикозе наблюдается обратный процесс, так, например содержание фосфолипидов в митохондриях печени кроликов при тиреотоксикозе было понижено по сравнению с нормой.
Согласно теории Эдельмана, большая часть энергии, утилизируемой клеткой, используется для работы Na+/K+-АТФазного насоса. Гормоны щитовидной железы увеличивают эффективность этого процесса, повышая число составляющих его единиц в каждой клетке.
5. ОРГАНЫ МИШЕНИ
В целом, все железы освобождают различные гормоны, которые в целом по необходимости распределяются кровью и направляются к органам мишеням, называемым эффекторами.
Эти органы, имея большую или меньшую рецептивность к гормонам, будут специфически реагировать на полученный гормон.
Например: гормон щитовидной железы, пришедший в мышцы ребёнка, заставляет их постоянно сокращаться: ребёнок находится в постоянном движении. Если мишенью становится мозг, ребёнок бывает задумчивым, мечтательным, фантазёром.
В остеопатии часто встаёт вопрос адаптации. Мы знаем, насколько это полезно и необходимо человеку жить подобающим образом.
Если щитовидная железа работает хорошо, адаптация переносится легче. Адаптация зависит от равновесия эндокринных желёз и в особенности от гипофиза, который является «дирижёром» этого «оркестра».
Поскольку щитовидная железа оказывает особое влияние на поведение человека, мы рассмотрим некоторые реакции, зависящие от различных парамеиров гормональной регуляции желёз.
6. ЭФФЕКТЫ,ПРОИЗВОДИМЫЕ ГОРМОНАМИ
Основные метаболические эффекты тиреоидных гормонов
Гормоны щитовидной железы принимают участие в регуляции обмена веществ и физиологических функций в организме.
Основными метаболическими эффектами тиреоидных гормонов являются:
1) Усиление поглощения кислорода клетками и митохондриями с активацией окислительных процессов и увеличением основного обмена,
2) Стимуляция синтеза белка за счет повышения проницаемости мембран клетки для аминокислот и активации генетического аппарата клетки:
3) Липолитический эффект и окисление жирных кислот с падением их уровня в крови,
4) Активация синтеза и экскреции холестерина с желчью,
5) Гипергликемия за счет активации распада гликогена в печени и повышения всасывания глюкозы в кишечнике,
6) Повышение потребления и окисления глюкозы клетками,
7) Активация инсулиназы печени и ускорение инактивации инсулина,
8) Стимуляция секреции инсулина за счет гипергликемии.
Таким образом, тиреоидные гормоны, стимулируя секрецию инсулина и одновременно вызывая контринсулярные эффекты, могут также способствовать развитию сахарного диабета.
Основные физиологические эффекты тиреоидных гормонов
Основные физиологические эффекты, обусловленные перечисленными выше сдвигами обмена веществ, проявляются в следующем:
1) Обеспечении нормальных процессов роста, развития и дифференцировки тканей и органов, особенно, центральной нервной системы, а также процессов физиологической регенерации тканей,
2) Активации симпатических эффектов (тахикардия, потливость, сужение сосудов и т.п.), как за счет повышения чувствительности адренорецепторов, так и в результате подавления ферментов (моноаминоксидаза), разрушающих норадреналин,
3) Повышении эффективности митохондрий и сократимости миокарда,
4) Повышении теплообразования и температуры тела,
5) Повышении возбудимости центральной нервной системы и активации психических процессов,
6) Защитном влиянии по отношению к стрессорным повреждениям миокарда и язвообразованию,
7) Увеличении почечного кровотока, клубочковой фильтрации и диуреза при угнетении каналыдевой реабсорбиии в почках,
8) Поддержании нормальной половой жизни и репродуктивной функции.
7. ТРАНСПОРТАНАЯ ФОРМА И ЖИЗНЕННЫЙ ЦИКЛ ГОРМОНОВ
Транспорт, метаболизм гормонов щитовидной железы.
От половины до двух третей содержащихся в организме тиреоидных гормонов постоянно находятся вне щитовидной железы, причём большая часть циркулирующих в крови гормонов существует в связанном с белками-переносчиками состоянии. Тироксин и Т3 связываются с тремя белками: тироксинсвязывающим глобулином (ТСГ), тироксинсвязывающим преальбумином (ТСПА) и альбумином. В количественном отношении более важен ТСГ, который представляет собой гликопротеин с молекулярной массой 50000 Да. На его долю приходится 75% тироксина и 85% Т3, которые связываются с ним со сродством в 100 раз превышающим таковое для ТСПА. Период полураспада в крови для ТСГ равняется 5 дням, скорость его разрушения равна 15 мг в сутки, а концентрация 1,6 мг/100 мл. Его ёмкость по гормонам щитовидной железы равняется 20 мкг на 100 мл плазмы. Этот белок лучше связывает тироксин, а Т3 в 4-5 раз слабее. ТСПА имеет время полураспада 2 дня, скорость распада 650 мг/сут, т.е. обращается быстрее, а концентрация его в плазме составляет 25мг/100 мл. Он связывает 15% Т4 и менее 5% Т3, причём оба гормона связываются с ним менее прочно, чем с ТСГ. Примерно по 10% каждого тиреотропного гормона в связанном состоянии приходится на альбумин крови. Время его полураспада составляет 15 дней, разрушение 7 г за сутки и содержание 3,5 г/100 мл плазмы. Свободная фракция тиреоидных гормонов крайне мала и составляет 0,03% для Т4 и 0,3% для Т3. Однако именно это небольшое количество свободных гормонов определяет их биологическую активность. Несмотря на большую разницу в концентрации общих гормонов (связанных и несвязанных) в сыворотке крови (8 мкг/100 мл для Т4 и 0,15 мкг/100мл для Т3) различное сродство белков-переносчиков к тиреоидным гормонам обеспечивает близкую их концентрацию в несвязанной, активной форме.
Роль белков-переносчиков в процессах транспорта тиреоидных гормонов заключается в предупреждении потери гормонов через почки и печень и регуляции скорости их доставки на периферию.
То, что сам ТСГ является объектом регуляции необходимо учитывать при диагностических исследованиях функции щитовидной железы, поскольку большинство используемых в клинике методов позволяет измерять общее содержание тиреоидных гормонов, а не содержание их свободной фракции. ТСГ образуется в печени и его уровень может регулироваться многими факторами. Он повышается эстрогенами (при беременности и применении противозачаточных средств), снижается при терапевтическом введении андрогенов или глюкокортикоидов и при некоторых болезнях почек. Кроме того, существует ряд генетически обусловленных нарушений выработки этого белка: увеличение синтеза или заметное его снижение. Во всех этих случаях будет регистрироваться сдвиги общего содержания Т3 и Т4, тогда как содержание свободной его фракции нарушено не будет. Салицилаты, конкурируя с Т3 и Т4 за связывание с ТСГ, могут понижать общее содержание тиреоидных гормонов в плазме, тогда как содержание свободной фракции остаётся в норме. При определении уровня тироксинсвязывающих белков применяется радио иммунологический метод, дающий нормальное значения уровня белка в плазме на уровне 1,2 - 2,2 мг на 100 мл. Кроме того для определения содержания тироксинсвязывающих белков используют специальные наборы типа `Тиопак-3
8. РЕГУЛЯЦИЯ СИНТЕЗА И ВЫДЕЛЕНИЯ
Биосинтез тиреоглобулина.
Синтез Т осуществляется в составе йодсодержащего гликопротеида тиреоглобулина, с молекулярной массой 660 000 Да. Углеводы составляют 8-10% его массы, а йодид 0,2-1%, в зависимости от его содержания в пище. Коэффициент седиментации тиреоглобулина составляет 19S. Он состоит из двух субъединиц (димеров) с коэффициентом седиментации 12S. Синтез тиреоглобулина происходит на одной из самых крупных в организме матричной РНК с молекулярной массой 2,8.
Да и коэффициентом седиментации 33. Протяженность гена тиреоглобулина, картированного в длинном плече 8 хромосомы в области полосы 24, составляет более 300 пар нуклеотидов и включает не менее 37 экзонов. Ген представлен всего одной копией на геном, что в сочетании с его большой длиной обуславливает относительно частые нарушения его структуры. Считается что 3-5% случаев врождённого гипотиреоза обусловлены нарушением синтеза молекулы тиреоглобулина. Тиреоглобулин содержит 115 остатков тирозина, каждый из которых представляет собой потенциальный сайт йодирования. Около 70% йодида этого гликопротеида содержится в составе неактивных предшественников - монойодтирозина (МИТ) и дийодтирозина (ДИТ), 30% в йодтиронильных остатках Т. Необходимость образования молекулы белка из 5000 аминокислот для синтеза нескольких молекул модифицированной диаминокислоты заключается, возможно, в том, что для конденсации тирозильных остатков или органификации йодида необходима именно такая конформация молекулы. Синтез молекулы тиреоглобулина происходит на больших полирибосомах на мембранах гранулярной ЭПС. Включение углеводного компонента начинается в цистернах гранулярного эндоплазматического ретикулума, где также начинается формирование вторичной и третичной структуры тиреоглобулина. Каждая молекула содержит более 20 углеводных цепей, которые могут различаться по длине, быть простыми и разветвлёнными. В комплексе Гольджи происходит окончательное дозревание молекул тиреоглобулина, которые затем путём экзоцитоза выделяются с апикального конца тироцитов в полость фолликула.Считается, что ткань щитовидной железы содержит по крайней мере три йодпротеина: тиреоглобулин, тиреоальбумин и партикулярный белок. Соотношение этих элементов изменяется при патологии. Так при узловом зобе увеличивается содержание партикулярного белка и тиреоальбумина
Окисление йодида и йодирование тирозина.
Хотя щитовидная железа не единственный орган, способный концентрировать йод, она обладает уникальной способностью окислять I до состояния с более высокой валентностью, что необходимо для его включения в органические соединения. Синтез цепи тиреоглобулина и его йодирование происходят раздельно, причём последний процесс происходит на люминальной поверхности тироцитов. В процессе активации йода принимает участие содержащая гем пероксидаза. Тиреопероксидаза представляет собой тетрамерный белок с молекулярной массой 60000 - 64000 Да. Различные тиреопероксидазы по-разному локализованы и связаны с мембраной тироцита. В качестве окисляющего агента используется H2O2, которая образуется НАДФН-зависимимым ферментом, сходным с цитохром-c-редуктазой. В ходе реакции I- переводится в I+, который затем замещает атом водорода в 3 и 5 положениях в тирозине. В первую очередь происходит замещение в третьем положении ароматического кольца (с образованием монойодтирозина МИТ), затем в пятом, с образованием дийодтирозина (ДИТ). Органификация необходима для связывания и удержания йода, т.к. он в таком случае уже не может покинуть железу. Йодироваться также может и свободный тирозин, но он не включает в белок, т.к. отсутствует специфическая тРНК, распознающая йодированный тирозин.
Считается, что в процессе органификации йода участвуют глутатион, цистеин, аскорбиновая кислота.
Как правило, ДИТ образуется больше, чем МИТ, а небольшая часть йода (около 10%) вообще не связывается и легко покидает железу.Ряд соединений способен (через угнетение пероксидазы) ингибировать окисление йода и его дальнейшее включение в МИТ и ДИТ. Среди них наиболее важны соединения тиомочевины (тиоурацил, метимазол, пропилтиоурацил), которые применяются в качестве антитиреоидных препаратов, способных подавлять синтез гормонов на этом этапе и назначаемых, например, при болезни Грейвса.
Конденсация йодтирозинов.
Следующим этапом синтеза гормонов щитовидной железы является конденсация йодтирозинов. Конденсация двух молекул ДИТ с образованием тироксина или молекул МИТ и ДИТ с образованием Т3 происходит в составе молекулы тиреоглобулина, хотя потенциально возможна и конденсация свободных МИТ и ДИТ со связанными ДИТ. Полагают, что ферментом, катализирующим этот процесс, также является тиреопероксидаза, подтверждением чему служит то, что реакция конденсации ингибируется теми же веществами, что подавляют окисление I-. В то же время, описаны редкие нарушения синтеза тиреоидных гормонов, которые проявляются только на этой стадии синтеза, что даёт основание предположить, что в реакции принимает участие другой тип пероксидазы.Возможным механизмом конденсации молекул может служить окисление молекулы дийодтирозина до свободного радикала и образование тироксина через хиноновый эфир. При этом взаимодействуют две молекулы дийодтирозина, находящиеся в связанном состоянии; образовавшиеся в результате реакции тирозин, и серин остаются в молекуле тиреоглобулина.Образовавшиеся гормоны остаются в составе тиреоглобулина до начала стадии его деградации. Гидролиз тиреоглобулина стимулируется тиреотропином, но тормозится I-, что иногда используют для лечения гипертиреоза введением KI.
Высвобождение гормонов щитовидной железы.
Тиреоглобулин, представляя собой форму хранения гормонов щитовидной железы в коллоиде, в норме способен обеспечить устойчивое их выделение в течение нескольких недель. При понижении уровня гормонов в крови срабатывает механизм освобождения тиреотропина, который связывается с рецепторами в щитовидной железе. Уже через 10 минут после введения ТТГ заметно увеличивается число микроворсинок на апикальной поверхности тироцитов. В ходе связанного с микротрубочками процесса на поверхности клеток образуются псевдоподии, которые осуществляют путём эндоцитоза захват капли коллоида.
Лизосомы мигрируют к апикальной части клеток, сливаются с фагосомами, образуя фаголизосомы, в которых кислые протеазы и пептидазы гидролизуют тиреоглобулин до аминокислот, включая йодтиронины, Т3 и Т4, которые затем выделяются из клетки преимущественно по механизму облегчённой диффузии.Высвободившиеся в ходе процесса МИТ и ДИТ, на которые в тиреоглобулине приходится до 70% содержащегося там йода, в дальнейшем теряют йод в результате действия НАДФН-зависимой дейодиназы, которая также обнаруживается в печени и почках. Отщеплённый йодид образует в щитовидной железе пул, поддерживаемый поступающим в железу и отщепляемым йодидом, который далее используется для йодирования тирозина. В норме количество йодида, поступающего в щитовидную железу, соответствует количеству её покидающему. Ежедневная секреция гормонального йода щитовидной железой составляет в норме 50 мкг, что с учётом среднего захвата йодида (25-30% от потреблённого), даёт цифру дневной потребности в этом микроэлементе в пределах 150 - 200 мкг в сутки, что полностью покрывается поступлением его с пищей в районах с нормальным содержанием йода в почве. Иногда встречается нарушение процесса отщепление йода от йодотирозинов. В таких случаях наблюдается высокая концентрация этих соединений в моче, в норме там не определяющихся. Кроме того, эта патология приводит к большой потере йодидов, что может негативно сказаться на выработке адекватного количества тиреоидных гормонов. Отношение уровня Т4 к Т3, выделяемых в кровь ниже, чем в тиреоглобулине, что подводит нас к важной функции щитовидной железы - избирательному `центральному' дейодированию Т4, в противоположность `периферическому', которое имеет место в различных тканях организма, и будет рассмотрено ниже. Я.Х. Туракулов с соавторами рассматривали внутритиреоидное дейодирование тироксина и влияние на эти процессы тиреотропного гормона и деятельности вегетативной нервной системы. Их данные, полученные в экспериментах на животных, подтвердили, что часть Т4 в процессе секреции из щитовидной железы дейодируется до трийодтиронина и реверсивного трийодтиронина, представляющего собой неактивный продукт метаболизма тироксина, и дийодтиронина. Они также подтвердили наличие специфических дейодирующих ферментов в микросомальных фракциях щитовидной железы, печени и почек, но показали, что в отличие от находящихся в печени и почках активность дейодиназы щитовидной железы в значительной мере регулируется уровнем ТТГ. Кроме того, они показали, что суммарное воздействие симпатической и парасимпатической системы угнетает процесс внутритиреоидного дейодирования тироксина, что согласуется с данными о подавлении ТТГ-стимулированной секреции тиреоидных гормонов адреналином и норадреналином
9. ГИПОТАЛАМО-ГИПОФИЗАРНО-ТИРЕОИДНАЯ СИСТЕМА РЕГУЛЯЦИИ
Гипоталамо-гипофизарно-тиреоидная система представляет собой функциональную суперсистему, работающую по принципу обратных связей. Основным звеном механизма обратной связи является изменение чувствительности клеток аденогипофиза к стимулирующему действию ТРГ в зависимости от концентрации тиреоидных гормонов.
Уровень тиреоидных гормонов в периферических тканях определяет выработку гипоталамического тиреолиберина, который в свою очередь регулирует биосинтез и освобождение в портальную систему гипофиза тиреотропного гормона (ТТГ) (Рисунок 3. Гипоталамо-гипофизарно-тиреоидная система регуляции.)
гипертиреоз метаболический эффект орган
Развитие гипоталамо-гипофизарного контроля функции щитовидной железы у человека происходит в период между 20 и 30-ой неделями антенатального развития и в первом месяце постнатальной жизни. В основе регуляции секреции ТТГ лежит механизм отрицательной и положительной обратной связи: высокие концентрации свободных Т4 и ТЗ ингибируют, а низкие - стимулируют его выброс. Необходимо помнить, что в аденогипофизе дейодирование Т4 с образованием ТЗ идет значительно более интенсивно, чем в периферических тканях. Поэтому, уровень ТТГ, определяемый в крови не претерпевает мгновенных изменений при назначении того или иного лекарственного препарата, а наблюдается только через некоторое время.
ТТГ представляет собой гликопротеид с молекулярной массой 28 000, состоящий из двух субъединиц -- альфа и бета. Период полураспада ТТГ составляет 40-60 минут. Биологическая активность ТТГ осуществляется его бета-субъединицей. ТТГ оказывает прямое действие на щитовидную железу. Одной из причин изменения секреции тиреоидных гормонов в результате нарушения центральных регуляторных механизмов является повышенная или сниженная секреция ТТГ [12].
На поверхности мембран тиреоцитов присутствуют специфичные для альфа-субъединицы ТТГ рецепторы. Под действием ТТГ образуется циклический моноаминофосфат, запускающий каскад фосфорилирования ряда белковых субстратов, что приводит к реализации биологического эффекта ТТГ -- синтезу гормонов щитовидной железы [I].
Принцип обратной афферентации или принцип обратных связей в гипоталамо-гипофизарно-тиреоидной системе лежит в основе исследования функционального состояния щитовидной железы в норме и при различных заболеваниях. Знание этого принципа необходимо для коррекции проводимой терапии. Например, удаление щитовидной железы или применение тиреостатических препаратов, сопровождается увеличением содержания ТТГ в крови. Соответственно этому при первичном гипотиреозе у людей наблюдается повышенный уровень ТТГ, а нормализация уровня тиреоидных гормонов сопровождается снижением ТТГ. Также, не совсем ясна роль ТТГ в возникновении нетоксического узлового зоба. Долгое время считалось, что развитие зоба зависит от секреции ТТГ, однако, в последнее время было установлено, что уровень ТТГ при узловом зобе чаще всего не изменен и у больных, особенно в возрасте старше 50 лет, имеет место ТТГ-независимая реакция на тиреолиберин. Причина отсутствия реакции ТТГ на тиреолиберин при узловом эутиреоидном узловом зобе не выяснена. Можно предполагать, что эутиреоидное состояние у таких больных поддерживается секрецией ТЗ, а это влияет на состояние системы "обратной связи". С возрастом секреторная функция щитовидной железы снижается. Возрастное уменьшение среднесуточной концентрации общего Т4 в крови и его свободной фракции у мужчин наступает раньше, чем у женщин. Вместе с тем, на введение тиреолиберина сохраняется адекватная реакция щитовидной железы, что свидетельствует об интактности гипоталамо-гипофизарно-тиреоидных связей, а также достаточности функциональных резервов железы.
Контроль регуляции тиреоидной функции осуществляется и на уровне щитовидной железы. Йодная недостаточность приводит к гиперсекреции ТТГ, а тиреоидные гормоны могут угнетать функцию щитовидной железы независимо от гипоталамуса и гипофиза. Помимо центральных, гипоталамо-гипофизарных механизмов регуляции функции щитовидной железы, существует периферическая регуляторная система, влияющая на секрецию тиреоидных гормонов. Основная роль в этой системе принадлежит тиреостимулирующим иммуноглобулинам. Действие иммуноглобулинов заключается в увеличении поглощения йода щитовидной железой, ускорением высвобождения тиреоидных гормонов и индукции гистологических изменений в ткани щитовидной железы, неотличимых от действия ТТГ [10].
10. ГИПЕР- И ГИПОФУНКЦИЯ ЩИТОВИДНОЙ ЖЕЛЕЗЫ
Дефицит гормонов приводит к гипотиреозу
Острый дефицит тиреоидных гормонов приводит к микседеме - тяжелой форме гипотиреоза. Из-за нарушения энергетического обмена все процессы в организме замедляются: человек словно впадает в хроническую спячку, как физиологическую, так и интеллектуальную. Падает температура тела (человек все время мерзнет), снижаются артериальное давление и частота сердечных сокращений (брадикардия), могут начать выпадать волосы. Даже на фоне пониженного аппетита хуже работает желудочно-кишечный тракт. Из-за перебоев с обменом белков образуются тяжелые отеки по всему организму.
Гипертиреоз и его последствия.
Чрезмерная выработка тиреоидных гормонов выглядит совершенно иначе. Обмен веществ ускоряется. Хороший аппетит и усиленное питание не спасают от потери веса. Появляется повышенная потливость, может развиться непереносимость тепла.
Увеличивается частота сердечных сокращений (тахикардия), появляются симптомы сердечной недостаточности. Человек становится чрезмерно эмоциональным, беспокойным. У него дрожат руки, он не может сосредоточиться. У женщин нарушается менструальный цикл, а у мужчин падает потенция и возможно увеличение груди (гинекомастия).
Список литературы
1. Балаболкин М.И. Достижения в изучении биосинтеза тиреоидных гормонов. Проблемы эндокринологии. т. 34, №2 1988. стр. 46-50.
2. Никитин В.Н., Бабенко Н.А. Тиреоидные гормоны и липидный обмен. Физиологический журнал. т. 35 №3 1989. стр. 91-98.
3. Оперативная хирургия и топографическая анатомия, 3-е издание, Кованов В.В.. М.медицина, 1995г.
4. Ю.И. Афанасьев, Юрина Н.А. - Гистология - Москва «Медицина» 2001
5. Сапин А.В. Анатомия человека. М., Просвещение, 1999
Размещено на Allbest.ur
Подобные документы
Гипоталамо-аденогипофизарно-тиреоидная ось. Органы мишени. Гормоны щитовидной и паращитовидных желез и их функции. Эндоцитоз коллоида тироглобулина через апикальную мембрану тироцитов. Метаболические эффекты тиреоидных гормонов. Гипер- и гипотиреоз.
презентация [8,7 M], добавлен 13.12.2013Классификация и химическая природа гормонов щитовидной железы. Участие гормонов щитовидной железы в обменных процессах организма. Влияние тиреоидных гормонов на метаболические процессы организма. Проявление дефицита и избытка гормонов щитовидной железы.
реферат [163,5 K], добавлен 03.11.2017Анатомия щитовидной железы, ее функции, механизм образования гормонов. Определение концентрации свободного тироксина. Метаболические проявления заболеваний щитовидной железы (гипотиреоз и гипертиреоз), их клинические проявления, лабораторная диагностика.
курсовая работа [39,9 K], добавлен 30.04.2014Источник развития и микроскопическое строение передней доли гипофиза. Развитие и строение щитовидной железы. Влияние тиреотропного гормона передней доли гипофиза на тироциты щитовидной железы, процессы синтеза, накопления и выведения тиреоидных гормонов.
реферат [1,6 M], добавлен 24.11.2010Влияние гормонов эпифиза на выработку альдостерона в клубочковой зоне надпочечника. Изучение действия щитовидной железы на функцию почек, изменение диуреза под влиянием тиреоидных гормонов. Паратгормон и его действие на канальцевый транспорт электролитов.
реферат [22,9 K], добавлен 09.06.2010Анатомия щитовидной железы. Влияние стойкого избытка тиреоидных гормонов на организм. Классификация тиреотоксикоза по патогенезу, по особенностям поглощения. Стадии тиреотоксикоза. Рост базального метаболизма при изменении функции щитовидной железы.
презентация [1,7 M], добавлен 29.11.2015Строение и регуляция функции щитовидной железы. Образование и секреция тиреоидных гормонов. Характеристика гипо-и гипертиреоза, микседемы. Причины и сущность базедовой болезни. Последствия недостатка йода в организме. Влияние стресса на щитовидную железу.
реферат [44,6 K], добавлен 25.05.2009Околоушная железа как самая большая из слюнных желез, расположена на лице, ее форма, окраска, объем, эмбриология, анатомия, гистология и возможные пороки развития. Анализ взаимосвязи околоушной железы с мышцами, нервами, суставами, венами и сосудами.
реферат [21,7 K], добавлен 29.05.2010Понятие и формы гипертиреоза, его симптомы проявления при различных поражениях щитовидной железы. Особенности и виды патологий, сопровождающихся высоким уровнем тиреоидных гормонов. Методы лечения заболевания. Оказание сестринской помощи больным.
презентация [1,7 M], добавлен 21.03.2017Что такое гормоны? Транспорт гормонов. Основные органы эндокринной системы. Гипоталамус. Гипофиз. Эпифиз. Щитовидная железа. Паращитовидные железы. Тимус. Поджелудочная железа. Надпочечники. Половые железы.
реферат [39,6 K], добавлен 06.05.2002