Основы физиологии

Морфофункциональные особенности коры больших полушарий. Локализация функций в коре больших полушарий, их исследование Бродманом и И.П. Павловым, анализ современного представления. Дыхательная функция крови. Роль гемоглобина в транспорте О2 и СО2.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 11.11.2013
Размер файла 33,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Морфофункциональные особенности коры больших полушарий. Локализация функций в коре больших полушарий. Современное представление и локализация функций

полушарие бродман павлов кровь

v Морфофункциональные особенности коры больших полушарий

Высшим отделом центральной нервной системы (ЦНС) является кора большого мозга (кора больших полушарий).

Кора большого мозга имеет следующие морфофункциональные особенности:

· многослойность расположения нейронов;

· модульный принцип организации;

· соматотопическая локализация рецептирующих систем;

· экранность, т.е. распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора;

· зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;

· наличие представительства всех функций нижележащих структур ЦНС;

· цитоархитектоническое распределение на поля;

· наличие в специфических проекционных сенсорных и моторной системах вторичных и третичных полей с ассоциативными функциями;

· наличие специализированных ассоциативных областей;

· динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур;

· перекрытие в коре большого мозга зон соседних периферических рецептивных полей;

· возможность длительного сохранения следов раздражения;

· реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;

· способность к иррадиации возбуждения и торможения;

· наличие специфической электрической активности.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок. Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.

Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроизведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.

Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т.е. передача коре большого мозга функций нижележащих структур мозга. Однако эта передача не означает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптимальной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В дальнейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.

Общая площадь коры большого мозга человека около 2200 см2, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС.

Звездчатые клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Кора большого мозга имеет преимущественно шестислойное строение.

Слой I - верхний молекулярный, представлен в основном ветвлениями восходящих дендритов пирамидных нейронов, среди которых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регулирующие через дендриты этого слоя уровень возбудимости коры большого мозга.

Слой II - наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т.е. имеющих отношение к памяти.

Слой III - наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со II слоем обеспечивают корко-корковые связи различных извилин мозга.

Слой IV - внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов анализаторов.

Слой V - внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.

Слой VI - слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.

Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

У высших млекопитающих в отличие от низших от двигательного 4 поля хорошо дифференцируются вторичные поля 6, 8 и 10, функционально обеспечивающие высокую координацию, точность движений; вокруг зрительного поля 17 - вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного стимула (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассоциацию функций данного анализатора с функциями других анализаторов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору большого мозга периферических рецептирующих систем. Так, в сенсорной области коры второй центральной извилины имеются участки представительства локализации каждой точки кожной поверхности, в двигательной области коры каждая мышца имеет свою топику (свое место), раздражая которую можно получить движение данной мышцы; в слуховой области коры имеется топическая локализация определенных тонов (тонотопическая локализация), повреждение локального участка слуховой области коры приводит к потере слуха на определенный тон.

Точно так же в проекции рецепторов сетчатки глаза на зрительное поле коры 17 имеется топографическое распределение. В случае гибели локальной зоны поля 17 изображение не воспринимается, если оно падает на участок сетчатки, проецирующийся на поврежденную зону коры большого мозга.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность передачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.

Входные (афферентные) импульсы поступают в кору снизу, поднимаются к звездчатым и пирамидным клеткам III-V слоев коры. От звездчатых клеток IV слоя сигнал идет к пирамидным нейронам III слоя, а отсюда по ассоциативным волокнам - к другим полям, областям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны V слоя, отсюда обработанный сигнал уходит из коры к другим структурам мозга.

В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки - функциональные единицы коры, организованные в вертикальном направлении. Доказательством этого служит следующее: если микроэлектрод погружать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микроэлектрод вводить горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.

Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокортикального волокна. Соседние колонки имеют взаимосвязи, организующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.

Каждая колонка может иметь ряд ансамблей, реализующих какую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что при повторном раздражении в реакции участвует не вся группа нейронов, а ее часть. Причем каждый раз часть участвующих нейронов может быть разной по составу, т.е. формируется группа активных нейронов (вероятностный принцип), среднестатистически достаточная для обеспечения нужной функции (статистический принцип).

Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т.д. Наличие структурно различных полей предполагает и разное их функциональное предназначение. Действительно, в коре большого мозга выделяют сенсорные, моторные и ассоциативные области.

v Локализация функций в коре больших полушарий

Поля Бродмана

В коре головного мозга различают зоны - поля Бродмана (нем. физиолог).

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана. При ее раздражении - различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно ослабление, резкое снижение, исчезновение). В 50-е годы ХХ в. установили, что в двигательной зоне различные группы мышц представлены неодинаково. Мышцы нижней конечности - в верхнем отделе 1-ой зоны. Мышцы верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимают проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана). При раздражении этой зоны - возникают ощущения, при ее разрушении - выпадение кожной, проприо-, интерочувствительности. Гипостезия - снижение чувствительности, анестезия - выпадение чувствительности, парестезия - необычные ощущения (мурашки). Верхние отделы зоны - представлена кожа нижних конечностей, половых органов. В нижних отделах - кожа верхних конечностей, головы, рта.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны - отвечают за возникновение болевых ощущений.

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля - выпадение зрительных ощущений (корковая слепота).

Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение при точечном разрушении 17 поля выпадает видение окружающей среды, которое проецируется на соответствующие участки сетчатки глаза. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа и нарушается восприятие письма. При поражении 19 поля Бродмана - возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я зона - слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля - нарушается функция распознавания звуков. При разрушении 22 поля - возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.

7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Эта зона состоит из 3-х отделов:

1) Речедвигательный центр Брока - расположен в нижней части лобных извилин - это двигательный центр мышц языка. При поражении этой области - моторная афазия.

2) Сенсорный центр Вернике - расположен в височной зоне - связан с восприятием устной речи. При поражении возникает сенсорная афазия - человек не воспринимает устную речь, страдает произношение, та как нарушается восприятие собственной речи.

3) Центр восприятия письменной речи - располагается в зрительной зоне коры головного мозга - 18 поле Бродмана аналогичные центры, но менее развитые, есть и в правом полушарии, степень их развития зависит от кровоснабжения. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени. Если у детей повреждается левой полушарие, то его функцию на себя берет правое. У взрослых способность правого полушария воспроизводить речевые функции утрачивается.

Всего различают (по Бродману) 53 поля.

Представление Павлова о локализации функций в коре головного мозга

Кора головного мозга - это совокупность мозговых отделов, анализаторов. Различные отделы коры головного мозга могут выполнять одновременно и афферентные и эфферентные функции.

Мозговой отдел анализатора - состоит из ядра (центральная часть) и рассеянных нервных клеток. Ядро - совокупность высокоразвитых нейронов расположенных в строго определенной зоне коры головного мозга. Поражение ядра приводит к выпадению определенной функции. Ядро зрительного анализатора расположено в затылочной области, мозговой отдел слухового анализатора - в височной области.

Рассеянные нервные клетки - менее дифференцированные нейроны, разбросанные по всей коре. В них возникают более примитивные ощущения. Наибольшие скопления этих клеток в теменной области. Эти клетки необходимы, т.к. в них возникают ощущения, которые обеспечивают выполнение функции при поражении ядра. В норме эти клетки обеспечивают связь между различными сенсорными системами.

v Современные представления и локализация функций

В коре головного мозга существуют проекционные зоны.

Первичная проекционная зона - занимает центральную часть ядра мозгового анализатора. Это совокупность наиболее дифференцированных нейронов, в которых происходит высший анализ и синтез информации, там возникают четкие и сложные ощущения. К этим нейронам подходят импульсы по специфическому пути передачи импульсов в коре головного мозга (спиноталамический путь).

Вторичная проекционная зона - расположена вокруг первичной, входит в состав ядра мозгового отдела анализатора и получает импульсы от первичной проекционной зоны. Обеспечивает сложное восприятие. При поражении этой зоны возникает сложное нарушение функции.

Третичная проекционная зона - ассоциативная - это полимодальные нейроны, разбросанные по всей коре головного мозга. К ним поступают импульсы от ассоциативных ядер таламуса и конвергируют импульсы различной модальности. Обеспечивает связи между различными анализаторами и играют роль в формировании условных рефлексов.

Кора большого мозга имеет следующие морфофункциональные особенности:

· многослойность расположения нейронов;

· модульный принцип организации;

· соматотопическая локализация рецептирующих систем;

· экранность, т.е. распределение внешней рецепции на плоскости нейронального поля коркового конца анализатора;

· зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;

· наличие представительства всех функций нижележащих структур ЦНС;

· цитоархитектоническое распределение на поля;

· наличие в специфических проекционных сенсорных и моторной системах вторичных и третичных полей с ассоциативными функциями;

· наличие специализированных ассоциативных областей;

· динамическая локализация функций, выражающаяся в возможности компенсаций функций утраченных структур;

· перекрытие в коре большого мозга зон соседних периферических рецептивных полей;

· возможность длительного сохранения следов раздражения;

· реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;

· способность к иррадиации возбуждения и торможения;

· наличие специфической электрической активности.

Кора большого мозга имеет преимущественно шестислойное строение.

Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность передачи в другие заинтересованные структуры.

В коре головного мозга различают зоны - поля Бродмана (нем. физиолог).

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее - 4, 6, 8, 9 поля Бродмана.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 4, 5, 7 поля Бродмана).

3-я зона - зрительная зона - затылочная область коры головного мозга (17, 18, 19 поля Бродмана).

4-я зона - слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана).

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.

7-я зона - речедвигательная зона (по Джексону - центр речи) - у большинства людей (праворуких) располагается в левом полушарии.

Всего различают (по Бродману) 53 поля.

Представление Павлова о локализации функций в коре головного мозга: кора головного мозга - это совокупность мозговых отделов, анализаторов. Различные отделы коры головного мозга могут выполнять одновременно и афферентные и эфферентные функции.

Мозговой отдел анализатора - состоит из ядра (центральная часть) и рассеянных нервных клеток. Ядро - совокупность высокоразвитых нейронов расположенных в строго определенной зоне коры головного мозга. Рассеянные нервные клетки - менее дифференцированные нейроны, разбросанные по всей коре.

Современные представления и локализация функций: первичная проекционная зона - занимает центральную часть ядра мозгового анализатора; вторичная проекционная зона - расположена вокруг первичной, входит в состав ядра мозгового отдела анализатора и получает импульсы от первичной проекционной зоны; третичная проекционная зона - ассоциативная - это полимодальные нейроны, разбросанные по всей коре головного мозга.

2. Дыхательная функция крови. Роль гемоглобина в транспорте О2 и СО2

Одной из основных функций, которые выполняет кровь в организме животного и человека, является дыхательная функция. Кровь, осуществляя транспорт кислорода воздуха от капилляров легочных альвеол к тканевым капиллярам, обеспечивает таким образом бесперебойную доставку кислорода, необходимого для нормального течения жизненно важных процессов в организме.

Переносимый кислород находится в крови в двух состояниях. Небольшая часть кислорода находится в растворенном состоянии в плазме. Коэффициент растворимости кислорода в крови невелик и составляет (при температуре 370 и парциальном давлении кислорода 100 мм ртутного столба) 0,3 об.%. Это значит, что каждые 100 мл нормальной крови могут переносить в растворенном состоянии лишь 0,3 мл кислорода, что явно недостаточно для поддержания жизнедеятельности организма человека.

В процессе эволюции был выработан принципиально другой механизм переноса кислорода кровью. Этот механизм связан с наличием в крови специального сложного белка (хромопротеида), способного обратимо присоединять молекулярный кислород. В организме человека и высших животных таким хромопротеидом является гемоглобин, содержащийся в эритроцитах.

Под обратимым присоединением кислорода понимают способность гемоглобина образовывать с кислородом лабильное соединение (оксигемоглобин).

Гемоглобин присоединяет кислород в среде с высоким парциальным давлением кислорода и отдает кислород в среде с низким парциальным давлением. Каждый грамм гемоглобина в нормальных условиях может присоединять 1,34 мл кислорода. Поскольку нормальное содержание гемоглобина составляет 14,5 - 16 г.%, то 100 мл крови могут переносить в связанном с гемоглобином состоянии 19 - 21 мл кислорода.

Для того чтобы рассмотреть путь кислорода от легких к тканям, необходимо уточнить вопрос о парциальном давлении кислорода.

Парциальное давление кислорода в воздухе равно 152 мм ртутного столба. Это означает, что из 760 мм нормального атмосферного давления, создаваемого смесью газов воздуха, на долю кислорода приходится приблизительно 1/5 часть. Состав альвеолярного воздуха несколько отличается от состава атмосферного воздуха, главным образом за счет повышения содержания углекислоты. Поэтому содержание кислорода и, следовательно, его парциальное давление в альвеолярном воздухе ниже, чем в атмосферном. Парциальное давление кислорода в альвеолярном воздухе равно 106 - 107 мм ртутного столба. В строгом смысле этого слова понятие «парциальное давление» применимо лишь к смесям газов. В литературе, однако, принято говорить о парциальном давлении кислорода в жидкостях (крови, плазме и т.д.). Под этим подразумевается следующее. Растворимость газа в жидкости зависит от парциального давления данного газа над жидкостью. Для идеальных газов растворимость прямо пропорциональна парциальному давлению газов (закон Генри). Во всяком случае каждому значению содержания газа в жидкости соответствует определенное значение его парциального давления над жидкостью, при котором происходило растворение. Поэтому, когда говорят, например, о том, что парциальное давление кислорода в плазме при каких-то условиях равно 90 мм ртутного столба, это означает, что в плазме в растворенном состоянии содержится столько кислорода, сколько его могло раствориться, если бы плазма находилась в контакте с воздухом, в котором парциальное давление кислорода составляло 90 мм ртутного столба. Аналогичные рассуждения справедливы и для кислорода, связываемого гемоглобином, и для кислорода тканевой жидкости. Это следует иметь в виду при рассмотрении значений парциального давления кислорода в тканях и жидкостях организма.

Парциальное давление кислорода в артериальной крови равно 100-85 мм, парциальное давление кислорода в тканевых жидкостях - 10-20 мм, парциальное давление кислорода в венозной крови - 40-50 мм ртутного столба. Из этих цифр становится ясным, что между тканевой жидкостью и кровью, проходящей по тканевым капиллярам, полное равновесие установиться не успевает.

Рассмотрим теперь, как происходит процесс переноса кислорода. В притекающей к альвеолам венозной крови парциальное давление кислорода составляет около 40 мм ртутного столба. Сквозь мембрану капилляров легочных альвеол кровь соприкасается с кислородом при парциальном давлении 106 мм ртутного столба. Поэтому за время прохождения крови по легочным капиллярам происходит диффузия кислорода в кровь. Следует отметить, что при этом весь кислород должен пройти через стадию растворения в плазме.

Действительно, можно считать, что непосредственно с газообразным кислородом (через мембраны) контактирует плазма. Количество кислорода в плазме венозной крови меньше, чем то количество его, которое может раствориться при парциальном давлении кислорода в альвеолярном воздухе. Поэтому в плазме растворяются дополнительные количества кислорода. В результате нарушается динамическое равновесие между кислородом, растворенным в плазме, и кислородом, связанным гемоглобином в эритроцитах. Кислород из плазмы, диффундируя через мембрану эритроцита, дополнительно связывается с гемоглобином. Если бы этот процесс мог идти достаточно долго, то количество кислорода в оттекающей от альвеол артериальной крови должно было бы соответствовать парциальному давлению в альвеолярном воздухе. Однако за время прохождения крови через альвеолы равновесие установиться полностью не успевает, и парциальное давление кислорода в артериальной крови не превышает 100 мм ртутного столба. Как мы увидим в дальнейшем, этот процесс тесно связан с транспортом углекислоты.

Очевидно, оксигенация крови в альвеолах зависит от большого числа фактороз: скорости кровотока, проницаемости мембраны капилляров и эритроцитов, парциального давления кислорода во вдыхаемом воздухе. В норме толщина мембраны легочной альвеолы равна 4m.

В тканевых капиллярах в процессе отдачи кислорода тканям он также проходит стадию растворения в плазме. С тканевой жидкостью через мембрану контактирует непосредственно плазма крови. В связи с тем что в плазме кислорода содержится больше, чем в тканевой жидкости, диффузия кислорода из крови в ткань превышает диффузию из ткани в кровь, и содержание кислорода в плазме уменьшается. Это приводит к нарушению динамического равновесия между содержанием кислорода в плазме и количеством его, связанным с гемоглобином в эритроцитах.

Равновесие оксигемоглобин - гемоглобин смешается в сторону увеличения количества восстановленного гемоглобина. Таким образом, в результате прохождения крови через тканевые капилляры часть кислорода уходит из крови в ткань.

Разница в содержании кислорода в артериальной и венозной крови носит название артерио-венозного различия и для большинства тканей составляет 5-6 об.%.

Максимальное количество кислорода, которое может связать 100 мл крови за счет как связывания гемоглобином, так и растворения в плазме, равно в норме 21 мл. Эта величина носит название кислородной емкости крови и зависит прежде всего от содержания гемоглобина.

Кроме емкости, показателем дыхательной функции крови является содержание кислорода в крови. Как и емкость, эта величина выражается в объемных процентах и соответствует истинному содержанию кислорода в крови при данных конкретных условиях.

Отношение содержания кислорода к емкости, выраженное в процентах, носит название процента насыщения крови кислородом. Ниже приводятся основные характеристики дыхательной функции крови в норме.

Парциальное давление кислорода в атмосферном воздухе составляет примерно 152 мм ртутного столба, в воздухе легочных альвеол - 106-107 мм, в венозной крови - 50-40 мм и в тканях - 0-20 мм.

Содержание гемоглобина у женщин 14,5 г%, у мужчин - 16 г.%. Один грамм гемоглобина может связать 1,34 мл кислорода. Кислородная емкость составляет 21 об.%. Содержание кислорода в артериальной крови 19 об.%, в венозной крови - 14 об.%. Артерио-венозное различие в содержании кислорода для крови и большинства тканей составляет 5 об.%. Парциальное давление углекислоты в атмосферном воздухе составляет 0,2 мм ртутного столба, в воздухе легочных альвеол - 40 мм, в артериальной крови - 40 мм, в венозной крови - 46 мм и в тканях - 40-60 мм.

Таким образом, весь сложный путь от вдыхаемого воздуха через альвеолярные пространства и кровь к тканям кислорода проходит под знаком постепенного падения парциального давления.

Транспорт углекислоты от тканей к альвеолярному воздуху также совершается при постепенном падении парциального давления углекислоты. Парциальное давление кислорода падает:

а) при поступлении кислорода из внешнего воздуха в систему альвеол, что объясняется наличием там большого количества углекислоты;

б) при диффузии кислорода через альвеолярную мембрану в артериальную систему.

Учитывая чрезвычайно малую толщину альвеолярной перегородки, можно было бы ожидать, что парциальное давление кислорода в артериальной крови должно быть таким же, как и в альвеолярном воздухе. Но, так как скорость диффузии кислорода через альвеолярную мембрану составляет только 1/20 - 1/30 скорости диффузии углекислоты, кислород проходит не с такой быстротой, чтобы успело выровняться давление по обе стороны. Это и обусловливает различие в парциальном давлении кислорода между артериальной кровью и альвеолярным воздухом.

Итак, парциальное давление кислорода падает при переходе из артериальной системы в венозную и из капиллярной крови в ткани. В крови парциальное давление кислорода создается количеством его, находящимся в состоянии физического растворения, а также кислородом, связанным с гемоглобином крови, «чудесным веществом» (Баркрофт), обладающим способностью воспринимать из воздуха большие количества кислорода и по мере прохождения через капилляры легко и быстро отдавать его тканям. Тем не менее и кислород, растворенный в плазме, является чрезвычайно важным элементом в кислородном бюджете организма. С одной стороны, он находится почти в полном равновесии с альвеолярным воздухом, с другой - определяет снабжение эритроцитов кислородом. Соотношение давлений кислорода в капиллярной крови и в тканях указывает на дальнейшее его падение при переходе в ткань. В тканях давление кислорода оказывается ниже, а давление СО2 выше, чем в крови.

Способы, позволяющие непосредственно определять давление кислорода в тканях, отсутствуют, поэтому для суждения о нем приходится пользоваться косвенными методами. В настоящее время принято считать, что парциальное давление кислорода в разных тканях различно, будучи обусловлено функциональной способностью ткани. Количество кислорода, доставляемое тканям, значительно превосходит количество, воспринимаемое ими. Ткани обладают специальными механизмами, регулирующими парциальное давление кислорода в них соответственно их потребностям.

Таким образом, переход кислорода из альвеолярного воздуха в кровь есть результат простой диффузии. Давление кислорода в артериальной крови всегда ниже, чем в альвеолярном воздухе. Давление кислорода в тканевой жидкости зависит от количества его, находящегося в растворенном виде, что в свою очередь обусловлено жизнедеятельностью тканей, сопровождающейся постоянным понижением парциального давления кислорода в тканевой жидкости.

Одной из основных функций, которые выполняет кровь в организме животного и человека, является дыхательная функция. Кровь, осуществляя транспорт кислорода воздуха от капилляров легочных альвеол к тканевым капиллярам, обеспечивает таким образом бесперебойную доставку кислорода, необходимого для нормального течения жизненно важных процессов в организме.

В процессе эволюции был выработан принципиально другой механизм переноса кислорода кровью. Этот механизм связан с наличием в крови специального сложного белка (хромопротеида), способного обратимо присоединять молекулярный кислород. В организме человека и высших животных таким хромопротеидом является гемоглобин, содержащийся в эритроцитах.

Под обратимым присоединением кислорода понимают способность гемоглобина образовывать с кислородом лабильное соединение (оксигемоглобин).

Весь сложный путь от вдыхаемого воздуха через альвеолярные пространства и кровь к тканям кислорода проходит под знаком постепенного падения парциального давления.

Парциальное давление кислорода падает при переходе из артериальной системы в венозную и из капиллярной крови в ткани. В крови парциальное давление кислорода создается количеством его, находящимся в состоянии физического растворения, а также кислородом, связанным с гемоглобином крови, «чудесным веществом» (Баркрофт), обладающим способностью воспринимать из воздуха большие количества кислорода и по мере прохождения через капилляры легко и быстро отдавать его тканям. Тем не менее и кислород, растворенный в плазме, является чрезвычайно важным элементом в кислородном бюджете организма. С одной стороны, он находится почти в полном равновесии с альвеолярным воздухом, с другой - определяет снабжение эритроцитов кислородом. Соотношение давлений кислорода в капиллярной крови и в тканях указывает на дальнейшее его падение при переходе в ткань. В тканях давление кислорода оказывается ниже, а давление СО2 выше, чем в крови.

Переход кислорода из альвеолярного воздуха в кровь есть результат простой диффузии. Давление кислорода в артериальной крови всегда ниже, чем в альвеолярном воздухе. Давление кислорода в тканевой жидкости зависит от количества его, находящегося в растворенном виде, что в свою очередь обусловлено жизнедеятельностью тканей, сопровождающейся постоянным понижением парциального давления кислорода в тканевой жидкости.

Список использованных источников и литературы

1. Гайворонский И.В. Нормальная анатомия человека - М.: «СпецЛит», 2001; Т1 - 424 с.

2. Дегтярев В.П., Будылина С.М. Нормальная физиология/ В.П. Дегтярев, С.М. Будылина, Медицина, 2006. - 736 с.

3. Покровский В.М., Коротько Г.Ф. Физиология человека/ В.М. Покровский, Г.Ф. Коротько. - М.: Медицина, 1997; Т1 - 448 с.

4. Сапин М.Р. Анатомия и физиология человека/ М.Р. Сапин, В.И. Сивоглазов. - М.: «Академия», 2008. - 384 с.

5. Фомин Н.А. Физиология человека. - М.: Просвещение, 1995. - 416 с.

Размещено на Allbest.ru


Подобные документы

  • Общий план внешнего строения больших полушарий мозга. Основные тенденции в ходе эволюции мозга. Соотношение разных отделов коры больших полушарий. Классификация связей коры. Разновидности по филогенетическому возрасту. Послойная организация неокортекса.

    презентация [4,8 M], добавлен 12.01.2014

  • Общая информация о коре больших полушарий, их строение. Строение области новой коры. Ассоциативные зоны и локализация полей. Филогенез и онтогенез коры, ее формирование в ходе внутриутробного развития ребенка. Первичные, вторичные и третичные поля коры.

    реферат [586,2 K], добавлен 20.03.2011

  • Кора больших полушарий головного мозга — структура головного мозга, слой серого вещества толщиной 1,3—4,5 мм, расположенный по периферии полушарий головного мозга, и покрывающий их. Функции и филогенетические особенности коры. Поражение корковых зон.

    презентация [254,1 K], добавлен 26.11.2012

  • Классификация видов коры в соответствии с филогенезом, ее функциональная организация. Слои коры больших полушарий. Функции лобных, теменных, височных, затылочных долей. Сенсорные входы в моторную кору. Связи моторной коры с глубокими структурами мозга.

    презентация [2,4 M], добавлен 26.01.2014

  • Физиология коры больших полушарий и слухового анализатора. Влияние электромагнитного излучения на кору больших полушарий. Взаимосвязь количества ошибок в ответ на неречевой звук с количеством минут, за которые студент использует мобильный телефон.

    курсовая работа [243,1 K], добавлен 20.07.2014

  • Виды боли и ее формирование. Сенсорная часть системы боли. Обезболивающая часть системы боли. Характеристика ассоциативных областей коры больших полушарий. Префронтальная ассоциативная кора. Понятие болевого порога. Физиологические основы обезболивания.

    контрольная работа [925,4 K], добавлен 08.09.2013

  • Кора большого мозга. Локализация функций в коре головного мозга. Функции и синдромы поражения. Первичные проекционные поля. Высшие корковые функции и методы их исследования. Различия правого и левого полушария. Способность узнавать раздражения.

    реферат [25,0 K], добавлен 28.02.2011

  • Строение больших полушарий головного мозга. Кора больших полушарий головного мозга и ее функции. Белое вещество и подкорковые структуры мозга. Основные составляющие процесса обмена веществ и энергии. Вещества и их функции в процессе обмена веществ.

    контрольная работа [59,2 K], добавлен 27.10.2012

  • Характеристика и функции, основные компоненты пирамидной системы: двигательные области коры больших полушарий, пирамидные пути. Симптомы центрального и периферического паралича. Базальные ганглии. Ретикулярная формация, ее зоны и ядра, основные функции.

    презентация [3,5 M], добавлен 08.01.2014

  • Понятие межполушарной асимметрии. Краткая история изучения проблемы, критика теории доминантного полушария. Доминантность полушарий головного мозга и психические функции. Межполушарное взаимодействие как основа осуществления высших психических функций.

    реферат [15,0 K], добавлен 18.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.