Устройство и метод работы фиброоптической подсветки рабочего наконечника
Функции (беспрерывная работа светодиода, изменение интенсивности света и защита от перепадов напряжения), свойства и составляющие фиброоптической подсветки в стоматологии. Способы получения белого света LED: смешивание цветов, нанесение люминофора.
Рубрика | Медицина |
Вид | доклад |
Язык | русский |
Дата добавления | 26.12.2012 |
Размер файла | 161,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственное бюджетное образовательное учреждение высшего профессионального образования
Рязанский государственный медицинский университет имени академика И.П. Павлова
Кафедра ортопедической стоматологии и ортодонтии
Устройство и метод работы фиброоптической подсветки рабочего наконечника
Выполнил:
студент 1 курса стоматологического факультета
Иванов Эрик
Проверил: Машкова Н.В.
Рязань, 2012
В ротовой полости довольно плохая освещённость и как бы широко пациент не открывал рот, этого может быть мало. Для того, что бы врач не работал вслепую или на ощупь в рабочие наконечники встраивают фиброоптическую подсветку.
Она состоит из светодиода и блока питания, который преобразует переменный электрический ток в постоянный или импульсный. Его основные функции: беспрерывная работа светодиода, изменение интенсивности света и защита от перепадов напряжения. Зачастую блок встраивается в стоматологическую установку, в распоряжении врача остается панель управления. фиброоптическая подсветка стоматология led люминофор
Второй составляющей фиброоптической системы является сам источник света - светодиод. Это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. По-английски светодиод называется light emitting diode, или LED. Он представлен полупроводниковым кристаллом на подложке, корпусом с контактными выводами и оптической системой.
Технология изготовления LED, что касается выращивания кристаллов, то основная технология - металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок - в р-области. За один процесс, который длится несколько часов, можно вырастить структуры на 6 - 12 подложках диаметром 50 - 75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5 - 2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это - технология, требующая высокой культуры. Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к п- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24x0,24 до 1x1 мм2.
Следующим шагом является создание LED из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый LED, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости LED определяется этими этапами высокой технологии. Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного LED перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности.
В связи с этим на смену традиционной технологии и несколько более совершенной SMD-техноло-гии (surface montage details - поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (кристалл полупроводника не помещается в корпус, а устанавливается прямо на плату. После этого выводные контакты кристалла и платы соединяются при помощи проводников толщиной всего несколько микрон.
Далее чип герметизируется. Это необходимо для защиты кристалла от воздействия окружающей среды.). LED, изготовленный по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора - в этом случае она делается из металла. Так создаются LED модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими. Раньше в светодиодных сборках было очень много LED. Сейчас, по мере увеличения мощности, LED становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.
Свечение LED возникает при рекомбинации электронов и дырок в области p-n-перехода (тонкий слой, образующийся в месте контакта двух областей полупроводников акцепторного и донорного типов). Но не всякий p-n-переход излучает свет. Во-первых, ширина запрещенной зоны в активной области LED должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу. Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.
Существует три способа получения белого света от LED. Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые LED, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность LED, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой LED, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.
У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные LED. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество LED в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины LED нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения - суммарные цветовая температура и цвет "плывут" за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.
Белые LED с люминофорами существенно дешевле, чем LED RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих - люминофор тоже стареет, причем быстрее, чем сам LED. Промышленность выпускает как LED с люминофором, так и RGB-матрицы - у них разные области применения.
Яркость LED зависит от количества тока проходящего через светодиод, чем больше тока проходит, тем больше электронов и дырок поступает в зону рекомбинации, но ток нельзя увеличивать до бесконечности, так как вследствие внутреннего сопротивления LED перегреется и выйдет из строя, так же изменять яркость методом широтно-импульсной модуляции (ШИМ). Метод ШИМ заключается в том, что на LED подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость LED становится управляемой, в то же время LED не гаснет.
Считается, что LED исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через LED в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных LED короче, чем у маломощных сигнальных, и составляет в настоящее время 20 - 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, LED надо менять.
Спектр излучения LED близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо - доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии LED на человеческий глаз отсутствуют.
В 2010 году впервые появился и сейчас набирает популярность турбинный наконечник W&H со встроенным генератором и светодиодом. А точнее серия этих наконечников, которые выпускаются под разные соединения и с разными размерами рабочих головок. Наконечники полностью автономны, т.е. встроенный генератор вырабатывает при работе электричество, необходимое для питания светодиода. Основные преимущества: устанавливать систему фиброоптики в установку и покупать соответствующий наконечник дороже, дольше и труднее, чем просто воспользоваться турбинным наконечником W&H с генератором. Плюс если Вы работаете в разных местах и планируете купить стоматологический турбинный наконечник лично себе, то на какой бы установке Вы не работали, у Вас всегда под рукой наконечник со светом, вне зависимости от наличия фиброоптики в установке.
Размещено на Allbest.ru
Подобные документы
Поляризации света. Общие сведения об электромагнитных волнах. Развитие терапии поляризованным некогерентным светом. Описание действия поляризованного света на биоткань. Механизм действия света видимого и ближнего ИК диапазонов набиологические объекты.
дипломная работа [2,5 M], добавлен 18.05.2016Лазеротерапия как лечебное применение монохроматичного, когерентного, поляризованного света, порядок и условия ее использования в физиотерапии. Устройство и принцип работы аппаратов для лазеротерапии, показания и противопоказания к ее использованию.
реферат [20,3 K], добавлен 24.11.2009Назначение ультразвукового аппарата для стоматологии. Методика расчета выходного трансформатора, усилителя-ограничителя, параметрического стабилизатора напряжения постоянного тока. Расчет себестоимости и цены ультразвукового аппарата для стоматологии.
дипломная работа [188,0 K], добавлен 26.06.2013Необходимость разработки более эффективных методов для диагностики и устранения дефектов зубов на начальных стадиях. Определение эффективности применения узконаправленного света и офтальмологической оптики для диагностики стоматологических заболеваний.
презентация [890,7 K], добавлен 27.04.2016Особенности внешнего и внутреннего строения спинного мозга. Устройство спинномозговых нервов и оболочки. Свойства серого, белого вещества. Сущность простого безусловного рефлекса. Механизм осуществления рефлекторной и проводниковой функций спинного мозга.
презентация [2,2 M], добавлен 29.03.2015История применения фитотерапии в стоматологии. Использование фитопрепаратов в стоматологии детского возраста. Методики исследования потребительских предпочтений фитопрепаратов, применяемых в стоматологии. Анализ результатов исследования, их обсуждение.
курсовая работа [321,4 K], добавлен 10.04.2017Метод рациональной психотерапии. Метод отвлечения. Метод ролевого аутотренинга. Метод молниеносной мышечной релаксации. Метод пассивного очищающего дыхания. Метод динамического мышечного напряжения. Метод добрых дел.
монография [26,7 K], добавлен 21.08.2007Место рентгенологического метода в комплексе обследования больных с заболеваниями челюстно-лицевой области. Методические подходы к исследованию зубочелюстной системы. Защита больных и персонала при рентгенологическом исследовании в стоматологии.
реферат [25,6 K], добавлен 20.11.2009Физиология и строение глаза. Структура сетчатки глаза. Схема фоторецепции при поглощении глазами света. Зрительные функции(филогенез). Световая чувствительность глаза. Дневное, сумеречное и ночное зрение. Виды адаптации, динамика остроты зрения.
презентация [22,4 M], добавлен 25.05.2015История возникновения, физико-химические свойства, активность, токсичность и фармакокинетика местных анестетиков. Классификация видов обезболивания в стоматологии, осложнения, возникающие при проведении местного обезболивания, оказание неотложной помощи.
презентация [252,9 K], добавлен 10.04.2014