Нарушение белкового и липидного обмена. Витаминная недостаточность

Первичные и вторичные нарушения биосинтеза и распада белков в органах и тканях, наследственные дефекты их биосинтеза. Нарушения выделения и конечных этапов метаболизма аминокислот. Нарушение липидного обмена, ожирение. Болезни витаминной недостаточности.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 09.04.2012
Размер файла 57,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАРУШЕНИЕ БЕЛКОВОГО И ЛИПИДНОГО ОБМЕНА.

ВИТАМИННАЯ НЕДОСТАТОЧНОСТЬ

Содержание

  • 1. Нарушение белкового обмена
  • 1.1 Нарушения биосинтеза и распада белков в органах и тканях
  • 1.2 Наследственные дефекты биосинтеза белков
  • 1.3 Вторичные нарушения биосинтеза и распада белков в организме
  • 1.4 Нарушения выделения и конечных этапов метаболизма аминокислот
  • 2. Нарушение липидного обмена
  • 2.1 Ожирение
  • 2.2 Болезни накопления липидов у детей
  • 3. Витаминная недостаточность
  • Список использованной литературы

1. Нарушение белкового обмена

Белковый обмен занимает особое место в многообразных превращениях веществ, характерных для всех живых организмов. Биологическое значение белков определяется их многообразными функциями. Белки определяют микро - и макроструктуру отдельных субклеточных образований, клеток, органов и целостного организма, т.е. выполняют пластическую функцию. Белковый обмен обеспечивает непрерывность воспроизводства и обновления белковых тел организма. Энгельс охарактеризовал белки как материальный носитель жизни и подчеркнул динамичность белкового обмена. Он писал: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел".

Помимо пластической роли, белки выполняют уникальную, функциональ-ную, т.е. каталитическую роль. Этой функцией не наделены ни углеводы, ни жиры.

Белки (соответственно и продукты их гидролиза - аминокислоты) принимают непосредственное участие в биосинтезе рада гормонов, биологически активных веществ и медиаторов. К ним относятся либерины и статины гипоталамуса, инсулин, ангиотензин, кинины, гистамин, серотонин и др. В последние годы стали известны пептиды, снижающие болевую чувствительность - эндорфины.

Белки (особенно альбумины) поддерживают онкотическое давление крови. Являясь гидрофильными коллоидами, они связывают определенное количество воды и удерживают ее в кровеносном русле.

Белки участвуют в сложной системе регуляции гомеостаза. Они поддерживают рН крови, представляя собой так называемый белковый буфер.

обмен липидный белок витаминный

Главную роль в процессах мышечного сокращения и расслабления выполняют актин и миозин - специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам ряда субклеточных структур, что обеспечивает тончайшие процессы жизнедеятельности клеток.

Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-иммуноглобулинов. В качестве другого примера защитной роли можно привести участие ряда белков крови в процессе свертывания,

Белки выполняют транспортную функцию: они соединяются с различными веществами (гормонами, витаминами, жирами, медью, железом и др.), обеспечивая их доставку в ткани-мишени.

При определенных условиях, например, голодании, сахарном диабете белки могут использоваться как энергетический материал.

Таким образом, белковый обмен координирует, регулирует и интегрирует процессы обмена веществ в организме, подчиняя его сохранения вида, непрерывности жизни. Состояние белкового обмена определяется множеством экзо - и эндогенных факторов. Любые отклонения от нормального физиологического состояния организма отражаются на белковом обмене. Поэтому знание закономерностей этих изменений при конкретном патологическом процессе имеет важное значение для правильного понимания механизмов болезни и выбора тактики терапевтических мероприятий.

1.1 Нарушения биосинтеза и распада белков в органах и тканях

Белковый обмен обеспечивает непрерывность воспроизводства и обновления белков организма. Показано, что в среднем каждые 3 недели половина белковых компонентов человеческого тела полностью обновляется путем распада и ресинтеза. При этом общая скорость синтеза белков в организме в состоянии азотистого равновесия достигает 500 г в день, т.е. почти в 5 раз превосходит среднее потребление с пищей. Естественно, что такой результат, может быть обеспечен только за счет повторного использования аминокислотных предшественников и продуктов распада белков. Белки органов и тканей нуждаются в постоянном обновлении. В конечном счете, животным необходим не белок как таковой, а определенные аминокислоты, освобождающиеся при его гидролизе. Известно, что у детей продолжительный недостаток гистидина приводит к нарушению образования гемоглобина к возникновению экземы. Дефицит основной аминокислоты аргинина не сказывается на нормальном росте, но может привести к нарушению сперматогенеза.

На величины потребностей в определенных аминокислотах существенно влияет состав общей смеси аминокислот, получаемой организмом; так, например, потребность в фенилаланине и метионине значительно уменьшается при достаточном обеспечении тирозином и цистеином, так как фенилаланин превращается в организме в заменимую аминокислоту тирозин, а метионин метаболизируется с образованием заменимой аминокислоты цистеина. Если в эксперименте молодые крысы получают лишь минимальные количества незаменимых аминокислот, то поразительным стимулом для роста животных оказывается введение в рацион некоторых заменимых аминокислот, например, глутаминовой кислоты и аргинина. В то же время введение в рацион больших количеств других аминокислот, особенно глицина, может привести к значительному замедлению роста. Для оптимального синтеза белков, следовательно, необходима сбалансированная смесь аминокислот.

В основе развития ряда патологических состояний в организме лежат нарушения динамического равновесия двух фаз метаболизма: анаболизма и катаболизма белковых структур. Патологические изменения в анаболической фазе могут возникать вследствие дефектов генетического кода и нарушений отдельных этапов биосинтеза белков: репликации, транскрипции, трансляции и посттрансляционных модификаций молекул. Чаше всего следствием таких нарушений является дефицит одного или нескольких белков, что в зависимости от их функциональной значимости приводит к развитию различных клинических проявлений. Так, например, при сахарном диабете снижается белок-синтезирующая активность рибосом, что, по-видимому, связано с нарушениями процесса инициации. Установлено, что некоторые виды наследственных анемий человека - талассемии - характеризуются нарушением процесса трансляции в-мРНК или нехваткой белковых факторов трансляции. Есть данные, свидетельствующие о том, что прикрепление мРНК к рибосомам, а также процессу транслокации могут тормозиться дифтерийным токсином. К ингибиторам инициации можно отнести и ряд широко используемых антибактериальных антибиотиков, тормозящих присоединение аминоацил-тРНК на всех стадиях трансляции. К ним относятся антибиотики тетрациклинового ряда, аминогликозидные антибиотики (стрептомицин, неомицин, канамицин и др.). Образование аминоацил-тРНК и белка может быть подавлено препаратами салициловой кислоты. Показано, что афлатоксины - продукты жизнедеятельности гриба Aspergillus flavus, подавляют синтез ДНК и митоз клеток. Установлено, что некоторые антибиотики (рифамицины, рифампицин) нарушают матричный синтез РНК, подавляя активность ДНК-зависимой РНК-полимеразы.

В подавляющем большинстве случаев не представляется возможным говорить об изолированных нарушениях анаболической фазы белкового обмена, так как они обязательно сочетаются с нарушениями катаболизма. Это наблюдается при общем и белковом голодании, дефиците отдельных незаменимых аминокислот, изменениях в последовательности поступления аминокислот, так как белковый синтез подчинен закону "все или ничего". Выраженный дисбаланс процессов синтеза и распада белков имеет место при нарушении гормональной регуляции и влияний центральной нервной системы.

1.2 Наследственные дефекты биосинтеза белков

Генетически обусловленные нарушения структуры, а следовательно, и свойств белков представляют собой в сущности группу моногенных наследственных болезней. Она возникают в результате точечных мутаций как структурных, так и регуляторных генов и передаются в поколениях в соответствии с законами Менделя.

Фенотипические проявления этих заболеваний обусловлены функциональными свойствами белков, их органной и тканевой принадлежностью, значимостью для метаболизма и т.д. Следует отметить, что первичный генетический дефект ряда моногенных болезней (муковисцедоз, ахондроплазия, мышечные дистрофии и др.) пока не выяснен, но роль нарушений биосинтеза белков несомненна.

Энзимопатии являются наиболее изученной и представительной группой этих заболеваний, характеризующихся наследственной недостаточностью каталитической активности отдельных ферментов. Этот дефект наследуется, как правило, по аутосомно-рецессивному типу. Фенотипические проявления во многом обусловлены нарушениями биохимических закономерностей течения реакция. К ним относятся избыток субстрата, нерасщепляемого мутантным ферментом; недостаток продуктов реакции, катализируемой этим ферментом и, наконец, появление соединений, являвшихся продуктами функционирования смежных или побочных метаболических путей (например, при алкаптонурии, альбинизме, фенилкетонурии).

Иногда симптомы заболевания появляются под влиянием провоцирующих факторов. Примером могут служить гемолитические кризы у больных с дефицитом глюкозо-6-фосфатдегидрогеназы в эритроцитах при назначении противомалярийных и некоторых других лекарственных препаратов. В ряде случаев энзимопатии представляют собой тяжелые заболевания, симптомы которых появляются в раннем детском возрасте, как это имеет место при фенилпировиноградной олигофрении.

Выделение других групп генетически обусловленных дефектов белков, помимо энзимопатий, довольно условно, так как один и тот же белок может выполнять в организме несколько функций, в том числе и каталитическую, через которую и опосредуется физиологический эффект. Примером может служить выделение в отдельную группу наследственных дефектов синтеза факторов свертывания крови.

Общность функций белков, ответственных за транспорт веществ в организме, объединяет в одну группу заболевания с самыми различными клиническими проявлениями. Наиболее распространенными среди них являются гемоглобинопатии - наследственные дефекты синтеза гемоглобина, при которых возможно развитие серьезных нарушений транспорта газов в организме. К этой же категории относятся различные типы наследственных дислипопротеидемий, проявления которых связаны с нарушением транспорта холестерина и других липидов.

Генетические дефекты могут явиться также причиной нарушения синтеза структурных белков организма. Чаще всего это связано с патологическими изменениями структуры пластических белков соединительной ткани. Биохимические дефекты фибриллярного белка - коллагена объединяются в группу коллагеновых болезней, характеризующихся полиморфностью клинических проявлений. Врожденный адреногенитальный синдром связан с генетически обусловленной неполноценностью ферментных систем стероидогенеза в коре надпочечников. Недостаток ферментов (в первую очередь 21-гидроксилазы), участвующих в биосинтезе кортикостероидов, приводит к снижению продукции кортизола и накоплению в крови предшественников его метаболизма (17-окси-прогестерон, прогестерон). Растормаживание секреции кортикотропина стимулирует выработку андрогенов, которые оказывают вирилизирующее действие на детский организм. При глубоком дефиците 21-гидроксилазы также происходит резкое снижение биосинтеза альдостерона, в результате развивается сольтеряющий синдром.

В ряде случаев нарушения функционирования иммунной системы связаны с патологическими изменениями в геноме. Наследственная недостаточность иммунного ответа может затрагивать специфические механизмы гуморального и клеточного иммунитета. В этих случаях речь идет о первичных иммунодефицитах. Наследственные дефекты неспецифических факторов защиты (фагоцитоза, системы комплемента и др.) могут встречаться как в изолированных вариантах, так и в комбинации с дефектами специфических факторов иммунной защиты.

1.3 Вторичные нарушения биосинтеза и распада белков в организме

Интенсивность фаз анаболизма и катаболизма белков в клетках зависит от их функционального состояния, изменения регуляторных влияний, характера развивающихся патологических процессов. Знание активности и соотношения этих фаз представляет определённый практический интерес. В ряде случаев реальная возможность для оценки метаболизма белков в органах и тканях появляется при исследовании белков крови. Это связано с тем, что белки плазмы крови синтезируются в клетках различных органов и систем: в печени, иммуноцитах, клетках системы мононуклеарных фагоцитов и т.д. Патологические и компенсаторные процессы в этих структурах отражаются в конечном итоге на показателях белкового состава плазмы крови. Другой механизм изменения белкового спектра крови заключается в том, что при нарушении целостности мембран клеток в кровь могут поступать белки, несвойственные нормальному составу крови. В данном случае речь идет о ферментах, определение изменений активности которых в крови имеет большое диагностическое и прогностические значение. Ряд патологических процессов в органах сопровождается повышением активности некоторых ферментов в крови - гиперферментемией. При развитии некрозов в отдельных органах (инфаркт миокарда, острые гепатиты и панкреатиты, отравления CCl4 и др.) вследствие разрушения клеток тканевые трансаминазы (аспартат - и аланинаминотгрнсферазы) поступают в кровь и повышение их активности в таких случаях является одним из диагностических тестов.

Активность кислой фосфатазы в сыворотке крови увеличивается при раке простаты, активность альдолазы возрастает при мышечной дистрофии. Увеличение активности амилазы в плазме крови наблюдается при острых панкреатитах, язве двенадцатиперстной кишки, в то время как при гепатитах, раке печени, остром алкоголизме активность этого фермента уменьшается. При заболеваниях печени и отравлении фосфорорганическими соединениями падает активность холинэстеразы. При инфаркте миокарда в плазме увеличивается содержание четвертой и пятой изоформ лактатдегидрогеназы.

Количественные изменения в белковом составе крови могут проявляться в виде: гиперпротеинемии и гипопротеинемии. Однако эти показатели далеко не всегда отражают и моющиеся изменения в белковом составе. В случае разнонаправленных изменений белковых фракций, а также при нарушениях синтеза отдельных белков, концентрация которых в плазме невелика, суммарное содержание белков остается неизменным. В связи с этим получил широкое распространение термин диспротеинемия. Его используют не только для обозначения изменений суммарного количества белков в крови, но и в случаях изменения соотношения в содержании отдельных белковых фракций. Появление в крови белков с измененной структурой, несвойственных здоровому организму, обозначается как парапротеинемия.

Чрезвычайно тесные взаимоотношения существуют между процессами биосинтеза белков в печени и белковым составом плазмы крови. В гепатоцитах синтезируются все альбумины крови, до 90% альфа-глобулинов. В клетках Купфера образуется до 50% бета-глобулинов плазмы крови. Поэтому патологические процессы в печени (воспаление, дистрофия, опухоли, цирроз и др.) сопровождаются нарушением биосинтеза белков плазмы крови.

Уменьшение альбуминов проявляется не только в снижении содержания этой фракции в крови (гипоальбуминемии), но и сказывается на общем количестве белков - развивается гипопротеинемия, главным следствием которой является снижение онкотического давления крови и развитие отеков. Следует откатить, что гипопротеинемии могут быть связаны и с активацией процессов катаболизма при острых инфекциях, некоторых эндокринных заболеваниях и т.д. Часто встречаются гипопротеинемии, связанные с потерей белков, например, при кровопотерях, нефротическом синдроме, ожогах, обширных раневых поверхностях, в послеоперационном периоде, при злокачественных опухолях, лейкозах и т.д.

Нарушения биосинтеза некоторых белков плазмы крови часто не отражаются на общем их содержании, однако могут явиться причиной развития ряда патологических состояний. Примерами могут служить:

геморрагические синдромы при нарушениях образования протромбина, фибриногена и других факторов свертывания крови;

нарушения механизмов антимикробной резистентности при недостаточном синтезе компонентов системы комплемента;

анемии, обусловленные недостаточностью трансферрина и ферритина - белков, необходимых для реутилизации железа;

гепатоцеребральная дистрофия (болезнь Вильсона) при нарушениях образования церулоплазмина, участвующего в транспорте меди.

Чрезвычайно многообразны проявления нарушений процессов биосинтеза и распада белков в организме при синдроме белковой недостаточности.

В экономически бедных районах тропической Америки, Центральной и Южной Африки, Индии недостаточное количество белка в рационе является важным этиологическим фактором заболевания детей - квашиоркора - на языке Ганы "красный мальчик" (син.: гидрокахексия, пеллагра детская, синдром "депигментация - отёк").

Заболевание характеризуется задержкой роста, анемией, гипопротеинемией (часто с отеком), жировой инфильтрацией печени, атрофией ацинарных клеток поджелудочной железы, сопровождавшейся диарреей и стеаторреей.

Поступление в организм недостаточного количества белка приводит к нарушению функций кишечника и неэффективному использованию тех небольших количеств белка, которые поступают о пищей (ЛОНП, липопротеиду очень низкой плотности).

Патологические изменения белкового обмена на этапах биосинтезе и распада белков могут происходить из-за нарушения процессов регуляции, которые осуществляются нервной я эндокринной системами, Нервные влияния могут реализоваться либо прямым воздействием на метаболизм белков, либо опосредованно через железы внутренней секреции. Денервация органов и тканей приводит к нарушению их питания развитию атрофии. При этом происходит активация протеолиза и торможение биосинтеза белков. Примерами таких состояний могут служить прогрессирующие мышечные дистрофии, развивающиеся вследствие поражений вегетативной нервной системы на различных уровнях.

Механизмы влияний гормонов на белковый обмен различны. Эти влияния могут осуществляться путем воздействия на геном клетки, что определяет в конечном итоге количество вновь образующегося белка. Под гормональным контролем находится активность ферментов. Это предопределяет возможность регуляторных влияний, как на скорость течения отдельных биохимических реакций, так и на различные фазы обмена. Примерами патологических состояний, обусловленных нарушением эндокринных влияний на фазы белкового обмена, могут быть акромегалия и гигантизм, гипофизарная кахексия (болезнь Симмондса), гипофизарный нанизм; истощение с выраженным отрицательным азотистым балансом, наблюдающиеся при тиреотоксикозе и др.

Усиление распада белков в тканях может наблюдаться при различиях типических патологических процессах (воспаление, аллергия, ишемия и т.д.) и при ряде инфекционных заболеваний, сопровождающихся лихорадкой, при интоксикациях, обширных ожогах и травмах мягких тканей. Повышенный катаболизм белков в этих случаях может носить как локальный, так и генерализованный характер.

Среди других факторов, ограничивающих синтез белка, следует отметить гипоксию. Дефицит кислорода в тканях вызывает нарушение всех видов обмена, в том числе и пластического. Биосинтез белка (как весьма энергоемкий процесс) снижается. Это особенно влияет на синтез тех белков, которые имеют короткое время полужизни, например, факторы свертывания. Концентрация аминокислот в крови повышается. Увеличивается содержание аммиака, снижается количество глутамина, устанавливается отрицательный азотистый баланс.

1.4 Нарушения выделения и конечных этапов метаболизма аминокислот

Одним из нарушений метаболизма аминокислот в организме является повышенное выделение их с мочой - гипераминоацидурии. Они могут быть следствием повышенного содержания аминокислот в крови, когда фильтрация аминокислот превышает возможность их реабсорбции. В этих случаях возникает генерализованная аминоацидурия, наблюдающаяся при белковом голодании, раневом истощении, тяжелых ожогах, кахектической стадии злокачественных новообразований, болезни Иценко-Кушинга и т.д. В развитии этих нарушений имеет значение относительная недостаточность процессов дезаминирования аминокислот в печени.

Гипераминоацидурии, развивающиеся вследствие нарушения реабсорбции в почечных канальцах, могут носить и наследственный характер. Генерализованная гипераминоацидурия наблюдается при синдроме Фанкони, для которого характерно усиление выведения аминокислот с мочой в сочетании с гиперфосфатурией и глюкозурией. При гепатоцеребральной дистрофии значительная экскреция аминокислот носит вторичный характер и связана с тем, что избыток выделяющейся меди образует в почках комплексные соединения с аминокислотами, которые не могут подвергаться реабсорбции.

Может наблюдаться также и избирательное снижение реабсорбции отдельных аминокислот. Примером может служить цистинурия, при которой нарушение реабсорбции цистина, обусловленное поражением транспортной системы диаминомонокарбоновых кислот, сочетается с повышенным выделением аргинина, лизина и орнитина. Ведущим в клинической картине этого заболевания является нефролитиаз - образование камней почки и мочевыводящих путей вследствие плохой растворимости цистина.

Аминокислоты в организме расщепляются до конечных продуктов. При этом углеродный скелет в общих путях катаболизма - цикле трикарбоновых кислот и терминальных механизмах биологического окисления распадается до углекислого газа и вода, а азотсодержащие функциональные группы - до конечных продуктов азотистого обмена: аммиака и мочевины. Процесс дезаминирования аминокислот осуществляется во всех органах и тканях. Синтез мочевины протекает в основном в печени. Транспортной формой аммиака в организме являются амиды дикарбоновых кислот: глутаминовой и аспарагиновой - глутамин и аспарагин. Азотистые группировки этих соединений являются поставщиками азота для синтеза мочевины в печени и процесса аммониогенеза в почках. Таким образом, ведущую роль в развитии нарушений конечных этапов метаболизма аминокислот играют патологические процессы печени и почек.

Индикаторным показателем, способным охарактеризовать состояние конечных этапов обмена аминокислот и адекватность функций печени и почек по обеспечению этих процессов, является остаточный азот крови. Наибольшей информативностью обладают не интегральные изменения этого показателя, то есть - азотемия - избыточное содержание всех азотсодержащих компонентов крови, а изменения содержания каждого из компонентов остаточного азота.

Нарушение функций гепатоцитов сказывается на активности процессов дезаминирования и трансаминирования аминокислот. Это проявляется в увеличении аминного компонента остаточного азота. Параллельно может наблюдаться нарушение мочевинообразовательной функции печени. В этих случаях увеличение содержания азота аминокислот, глутамина и аммонийных солей в крови сопровождается уменьшением концентрации мочевины. Возможно развитие изолированных нарушений мочевинообразовательной функции при наследственной недостаточности ферментов орнитинового цикла.

Наиболее частым следствием нарушения синтеза мочевины является накопление в крови аммиака, обладающего выраженным цитотоксическим эффектом, особенно для клеток нервной системы. В организме сформирован ряд компенсаторных процессов, обеспечивающих связывание аммиака. Установлено, что 80% аммиака, поступающего из кишечника через аортальную вену в печень, превращается в мочевину, четвертая часть образующейся мочевины секретируется в кишечник, остальное количество выводится почками. Аммиак, не прошедший через орнитиновый цикл, в присутствии глутаминсинтетазы и АТФ превращается в глутаминовую кислоту, а затем - в глутамин. Глутамин переносится кровью в печень и почки, где гидролизуется глутаминазой до свободного аммиака, превращающегося затем в мочевину или связывающегося с ионами водорода и выделяющегося в виде солей аммония с мочой. Последний процесс, названный аммониогенезом, является важным механизмом, направленным на поддержание кислотно-щелочного равновесия. Таким образом осуществляется цикл глутамина, представляющего собой одну из форм транспорта и резерва аммиака.

Даже при небольшом содержании ионов NH4 в крови, они оказывают вредное действие, так как их токсичность зависит от рН среды. Установлено, что степень проникновения аммиака через гематоэнцефалический барьер прямо пропорциональна рН крови. По теории "неионной диффузии" аммиак диффундирует из пространства с более высоким рН в пространство с менее высоким рН, что способствует его проникновению внутрь мозговых клеток. Считают, что ионы аммония снижают уровень б-кетоглутаровой кислоты, нарушая реакции цикла Кребса, угнетая тканевое дыхание. Наряду с уменьшением образования энергии в мозге, возможно и повышение ее распада под действием АТФ-азы, активность которой возрастает при небольших дозах аммиака. Существуют и другие объяснения церебротоксического действия аммиака: образование или накопление в мозге гипотетического вещества, тормозящего передачу нервных импульсов (гамма-аминобутират), нарушение включения в цикл Кребса пировиноградной кислоты, недостаток ацетилхолина, прямое токсическое действие аммиака на клеточные мембраны, нарушение транспорта ионов, снижение внутриклеточного содержания калия, что тесно связано с активностью транспортной АТФ-азы и содержанием ATФ.

Таким образом, аммиак повреждает метаболические процессы в мозговой ткани, приводя к истощению энергетические ресурсы, расходуемые на его обезвреживание, что влечет за собой падение электрической активности клеток мозга и развитие психомоторных нарушений.

Наиболее выраженная азотемия наблюдается при нарушении выделительной функции почек. При этом содержание остаточного азота повышается главным образом за счет азота мочевины. Максимальная степень выраженности этого нарушения проявляется уремией. Уремия возникает при острой или хронической почечной недостаточности.

Общая активация катаболических реакций белкового обмена в организме приводит к равномерному повышению содержания всех компонентов остаточного азота. При этом повышение содержания аминокислот - гипераминоацидемия - сопровождается потерей их с мочой. Это наблюдается при преобладании катаболических гормонов - глюкокортикоидов, тироксина; при голодании, тяжелых хронических заболеваниях.

2. Нарушение липидного обмена

Одной из особенностей метаболизма липидов в организме является их способность к накоплению.

Среди патологических состояний, обусловленных изменением накопления липидов, можно выделить следующие варианты:

ожирение - избыточное накопление липидов в жировой ткани;

жировое истощение - пониженное содержание липидов в жировых депо;

жировые дистрофии и липидозы - приобретенные и генетически обусловленные нарушения метаболизма липидов, приводящие к повреждающему накоплению их в различных органах и тканях;

липоматозы - повышенное отложение жира в жировой ткани с опухолеобразным разрастанием.

2.1 Ожирение

Ожирение - избыточное накопление жира в организме, приводящее к увеличению массы тела на 20% и более от средних нормальных величин ("идеальная масса тела"). В настоящее время по данным ВОЗ ожирение представляет собой одно из самых распространенных заболеваний, которым в экономически развитых странах страдают до 30% населения.

Общепринятой классификации форм ожирения до сих пор нет. Различают первичную форму или алиментарно-экзогенную (до 75% общего числа страдающих ожирением), о которой говорят в тех случаях, когда без явного основного заболевания имеет место превышение нормальной массы тела. Вторичные формы ожирения могут быть обусловлены нарушениями функций эндокринных желез и церебральными нарушениями. Д.Я. Шурыгин и др. (1980) конкретизировали формы первичного и вторичного ожирения и предложили следующую классификацию:

I. Формы первичного ожирения.

Алиментарно-конституциональное ожирение.

Нейроэндокринное ожирение:

гипоталамо-гипофизарное ожирение;

адипозогенитальная дистрофия (у детей и подростков),

II. Формы вторичного (симптоматического) ожирения.

Церебральное.

Эндокринные:

гипотироидное;

гипоовариальное;

так называемое климактерическое;

надпочечниковое.

Степени ожирения: I - фактическая масса тела превышает "идеальную" не более чем на 29%; II - на 30-49%, III - на 50-99; IV - на 100% и более.

Этиология ожирения определяется многими факторами. Причины, указанные ниже, лежат в основе патогенетических механизмов развития алиментарно-экзогенного ожирения. Вместе с тем действие этих же факторов, как правило, имеет место при вторичных формах ожирения и существенно усугубляет их течение.

Ведущим фактором в развитии ожирения является положительный энергетический баланс - преобладание энергопотребления над энергозатратами, т.е. любое ожирение представляет собой, в конце концов, проблему баланса. При этом следует подчеркнуть, что доминирующим регулятором массы тела является поступление калорий. Общепринято считать, что ожирение является результатом переедания. Для тучных лиц характерно своеобразное пищевое "поведение" - они с удовольствием едят любую пищу. Несомненно, что недостаточная физическая активность, гиподинамия способствуют развитию ожирения, но не играют главенствующей роли.

Помимо вышеперечисленных факторов к тучности ведет несбалансированный рацион питания: потребление высококалорийной пищи с избытком жиров и легкоусвояемых углеводов. Не последнее место занимает нарушение ритма питания; питание с преобладанием потребления большей части суточного рациона в вечерние часы; редкие, но обильные приема пищи, злоупотребление специями, соленой пищей и т.д.

Конституциональный фактор, наследственная предрасположенность, в основе которых может лежать генетически обусловленная скорость метаболических реакций, также входят в число факторов, способствующих ожирению. Отмечено, что в случае ожирения у одного из родителей тучность у детей наблюдается в 40% случаев. Если ожирением страдают оба родителя, тучность у детей встречается в 80% случаев.

Доказательством, указывающими на передачу ожирения по наследству, являются наследственные синдромы, сопровождающиеся ожирением, например, синдром Лоуренса-Муна-Барде-Бидля; существование линий мышей с передающимся по наследству ожирением (линии ob/ob, db/db); высокая корреляция по массе тела у монозиготных близнецов по сравнению с дизиготными. Более непосредственных доказательств передачи ожирения по наследству у людей не обнаружено. Следует помнить, что семейный характер ожирения нередко является отражением привычек и наклонностей.

В развитии ожирения имеют значение три основных патогенетических фактора: повышенное поступление пищи, несоответствующее энергозатратам, недостаточная мобилизация жира из депо; избыточное образование жира из углеводов (С.Н. Лейтес).

Кроме того, в настоящее время в патогенезе ожирения учитывается значение особенностей самой жировой ткани, количество и величина жировых клеток. Регуляция количества жиров в организме может осуществляться путем увеличения размеров адипоцитов (гипертрофия) или путем увеличения их количества (гиперплазия). Соответственно этим двум механизмам можно разделить ожирение на гипертрофическое и пигерпластическое. Наряду с указанными, существует смешанный тип ожирения (гиперпластически-гипертрофический). Изменения величины и количества адипоцитов связаны с их чувствительностью к действию регулирующих факторов, в частности некоторых гормонов. Показано, что увеличенные в размерах адипоциты обладают сниженной чувствительностью к тормозящему липолиз действию инсулина.

Для развития ожирения необходима перестройка функций организма, поддерживающих постоянную массу тела, т.е. изменение скорости и направленности обменных процессов, в регуляции которых основное место принадлежит нервной и эндокринной системам.

Регуляция аппетита - сложный многокомпонентный механизм, - одним из важных звеньев которого являются центры насыщения и голода, располагающиеся в гипоталамусе. Центр насыщения локализуется в вентромедиалных ядрах гипоталамуса, его разрушение приводит к гиперфагии. Разрушение венролатеральных ядер гипоталамуса ("центр голода") вызывает анорексию. Этот механизм регуляции аппетита называют "аппестатом".

Очевидно, при ожирении гиперфагия обусловлена запоздалыми реакциями центра насыщения, в норме тормозящего центр голода. Возможно, что наследственный дефект, обусловливающий дисфункцию центров насыщения и голода, связан с нарушением синтеза нейротрансмиттеров (моноаминов и пептидов). "Центр голода" имеет многочисленные связи с дофаминергической, тогда как "центр сытости" - с норадренергической системой. Кроме того, показано, что в регуляции поступления и расходования энергии в организме участвуют эндорфинергическая и серотонинергическая иннервация.

Основная роль в регуляции чувства сытости отводится холецистокинину. Считают, что прием пищи вызывает высвобождение холецистокинина, который снижает аппетит через афферентные окончания блуждающего нерва, расположенные в кишечнике. При ожирении снижается содержание холецистокинина в гипоталамусе, чем объясняется недостаточное угнетение чувства голода и как результат этого избыточный прием пищи.

На центры насыщения и голода могут оказывать непосредственное влияние и некоторые цереброинтестинальные гормоны (соматостатин, вещество Р, вазоактивный кишечный пептид и др.). Активность нейронов гипоталамуса может модулироваться деятельностью других нейронов, реагирующих на различные сигналы, такие как растяжение желудка, высвобождение гормонов ЖКТ, утилизация глюкозы и т.д.

Нарушение фунтами гипоталамической области у человека приводит к развитию ожирения. Травматические, воспалительные процессы, опухоли и метастазы злокачественных опухолей могут быть причиной диэнцефального ожирения.

Важное значение в патогенезе ожирения имеют гиперинсулинизм и инсулинорезистентность, связанная со снижением числа инсулиновых рецепторов в жировых, почечных, печёночных клетках и нейронах вентромедиального гипоталамуса. Инсулинорезистентность объясняется препятствующим усвоению глюкозы повышением концентрации НЭЖК в крови тучных людей.

Таким образом, некоторые важные особенности метаболизма при ожирении можно представить в следующем порядке:

усиление липогенеза и увеличение размеров адипоцитов при

переедании;

повышение метаболической активности жировых клеток;

увеличение концентрации НЭЖК в крови;

потребление мускулатурой главным образом НЭЖК в условиях

конкуренции НЭЖК и глюкозы (цикл Рэндла);

повышение уровня глюкозы в крови;

усиление секреции инсулина и увеличение его концентрации в крови;

повышение аппетита. Последнее приводит к перееданию и замыканию

"порочного" круга.

При ожирении выявляются нарушения функций гипофиза и периферических эндокринных желез. У больных ожирением часто отмечаются изменения функций половых желез, которые у женщин проявляются нарушением менструального цикла и гирсутизмом (следствие измененной функции гипоталамо-гипофизарной системы). У страдающих ожирением, повышен уровень свободных андрогенов в сыворотке крови вследствие снижения концентрации глобулина, связывающего половые гормоны.

При ожирении развивается резистентность к тироидным гормонам и снижается количество рецепторов в Т3 и Т4. Также снижается исходный уровень и уменьшается секреция СТГ. Возможно, гиперинсулинизм, наблюдающийся при ожирении, способствует повышению концентрации соматомединов, а последние по механизму обратной связи ингибируют секрецию гормона роста. Нарушается секреция пролактина, что является результатом нарушения гипоталамического контроля секреции в высвобождения гормона из гипофиза.

У 70-80% больных, страдающих ожирением, отмечается нарушение толерантности к углеводам, а у 1/4-1/5 выявляется сахарный диабет. Изучение содержания иимунореактивного инсулина в сыворотке крови больных показало двух-трех кратное превышение его концентрации по сравнению с лицами, имеющими нормальную массу тела.

В крови больных с ожирением отмечается повышение уровня холестерина, триглицеридов, мочевой кислоты, липопротеидов очень низкой плотности и снижение количества липопротеидов высокой плотности.

Таким образом, ожирение сопровождается нарушением всех видов обмена веществ и изменением функций большинства эндокринных желез. Глубокие дисгормональные изменения и нарушения метаболизма замыкаются в порочный круг, усугубляющий картину заболевания. Усиливаются эффекты липогенных гормонов - инсулина, глюкокортикостероидов и повышается чувствительность к ним. Снижается действие жиромобилизущих гормонов - половых, адреналина. Гиперсекреция альдостерона способствует задержке воды и натрия, увеличивая массу тела и уменьшая использование жиров на эндогенный синтез воды. Метаболическая иммунодепрессия, наблюдающаяся при ожирении, снижает устойчивость организма к инфекционным агентам и повышает вероятность развития опухолей. Ожирение отражается на функциональном состоянии всех органов и систем, нарушает взаимоотношения регуляторных механизмов и интермедиарный обмен.

Основными принципами лечения ожирения являются субкалорийная диета с пониженным содержанием жиров и углеводов, но полноценная в отношении содержания белков и витаминов, психотерапия, лечебная гимнастика, массаж. Медикаментозное лечение проводится в случае неэффективности диетотерапии. С этой целью применяют тироидные гормоны, повышающие основной обмен и усиливающие специфически-динамическое действие пищи. Показаны препараты, угнетающие аппетит (фепранон, дезопимон и др.).

В последние годы широко применяется адипозин - препарат из гипофиза крупного рогатого скота, стимулирующий липолиз.

Так как похудеть тяжелее, чем предотвратить прибавление масcы тела, нужно обратить серьезное внимание на пропаганду здорового образа жизни и проведение профилактических мероприятий.

2.2 Болезни накопления липидов у детей

Под болезнями накопления липидов (липидозы, в узком смысле сфинголипидозы) понимают гетерогенную группу заболеваний, характеризующуюся нарушениями метаболизма представителей различных классов липидов. Многие из них являются врожденными лизосомными заболеваниями, при которых имеется дефект определенного лизосомального фермента, который участвует в катаболизме сфинголипидов. Расщепление сфинголипидов, являвшихся нормальной составной частью, прежде всего мозга, а также других органов и экстрацеллюлярных жидкостей прерывается на определённом этапе, что ведет к их накоплению и клинически характеризуется прогрессирующими двигательными и умственными расстройствами, поражением паренхиматозных органов, кожи, сетчатки глаза.

Болезни накопления липидов генетически обусловлены. В общем здесь имеет место аутосомно-рецессивный тип наследования за исключением болезни Фабри, которая наследуется сцепленно с X-хромосомой. Заболевания проявляются преимущественно в грудном возрасте, однако имеются ювенильные и хронические формы течения. Исход большей частью летальный, т.к. попытки заместительной терапии ферментом, инкапсулированным в липосомах, не даёт обнадеживающих результатов.

Патогенез умственных расстройств при лизосомных болезнях накопления, по-видимому, базируется на двух общих следствиях недостаточной деградации клеточных компонентов. Накопление, превышающее, критический порог, приводит к нарушению функций клеток и они гибнут. Кроме того, их гибель может быть связана с токсическим влиянием некоторых накапливающихся детергентоподобных соединений. Дополнительным фактором умственных расстройств является искажение сложно упорядоченной геометрии нейронов. В ответ на накопление в нейронах непереваренных клеточных компонентов образуются необычные, очень большие отростки, называемые меганейритами. Они больше тела родительской клетки и своими множественными шиловидными ответвлениями случайным образом, аберрантно контактируют с другими нейронами и дендритами, существенно нарушая нормальную "проводниковую схему" мозга.

Наиболее известными и распространенными заболеваниями этой группы являются болезни Тея-Сакса, Гоше, Нимана-Пика и др.

Болезнь Тея-Сакса - наследуемый по рецессивному типу ганглиозидоз, встречающийся особенно часто у евреев. Для этой патологии характерна недостаточность фермента гексозаминидазы А (участвующей в катаболизме ганглиозидов мозга), в результате чего эти липиды накапливаются в нейронах; при этом нарушаются функции мозга, развивается слепота и ребенок погибает,

При болезни Нимана-Пика у взрослых сфингомиелин накапливается главным образом в селезенке и печени; у детей наблюдается умственная отсталость и ранняя смерть. Заболевание обусловлено недостатком одного из изоферментов сфингомиелиназы.

Болезнь Гоше характеризуется избыточным отложением цереброзидов в макрофагах селезенки, печени, лимфатических узлов и костного мозга вследствие генетически предопределенного дефекта фермента гликоцереброзидазы.

Прежде чем перейти к рассмотрению частных вопросов нарушений липопротеидного обмена и атеросклероза необходимо остановиться на некоторых общих положениях метаболизма холестерина а организме, характеристике состава и образования транспортных форм липидов крови.

3. Витаминная недостаточность

Болезни витаминной недостаточности (авитаминозы, гиповитаминозы и др.) - группа заболеваний, вызванных недостаточностью в организме одного или многих витаминов.

Витамины - незаменимые биологически активные вещества, выполняющие роль катализаторов различных ферментных систем или входящие в состав многих ферментов. Витамины необходимы для нормального обмена веществ, роста и обновления тканей, биохимического обеспечения всех функций организма. Недостаточное поступление витаминов ведет к нарушению ферментативных реакций, гипо- и авитаминозу с соответствующей картиной заболевания.

Значительный дефицит тех или иных витаминов в организме (авитаминоз) в настоящее время довольно редок. Значительно чаще встречается субнормальная обеспеченность витаминами, что не сопровождается яркой клинической картиной авитаминоза, но все же отрицательно сказывается на общем состоянии: ухудшается самочувствие, уменьшается сопротивляемость организма инфекционным заболеваниям, снижается работоспособность.

Субнормальная обеспеченность витаминами, выявляемая специальными ферментными и радиоизотопными методами исследования, отражается на общем физическом развитии ребенка или подростка. Доказано, что рациональный пищевой рацион не во всех случаях обеспечивает должное поступление витаминов в организм человека; нередко это требует периодического дополнительного их введения в виде поливитаминных препаратов ("Гексавит", "Ундевит" и др.).

Этиология, патогенез. Различают гиповитаминозы первичные (экзогенные, обусловленные дефицитом поступления витаминов в организм с пищей) и вторичные (эндогенные, связанные с нарушением всасывания витаминов в желудочно-кишечном тракте или их усвоением, избыточной потребностью в витаминах при лечении некоторыми антибиотиками). Способствуют возникновению витаминной недостаточности чрезмерно низкая или высокая температура окружающей среды, длительное физическое или нервно-психическое напряжение, заболевание эндокринных желез, некоторые профессиональные вредности и другие факторы. Особое значение имеют ограниченность рациона питания (при недостаточном содержании витаминов в продуктах, например консервах), некоторые гельминтозы (потребление большого количества витаминов гельминтами), беременность и период лактации у женщин (повышенная потребность в витаминах для плода и грудного ребенка).

Полигиповитаминозы часто наблюдались в различных странах в период социальных и стихийных бедствий (войны, неурожаи), при нерациональном (несбалансированном) питании как групп людей (во время длительных походов, путешествий и т.д.), так и отдельных лиц (питание консервами, сушеными продуктами, длительное однообразное питание). В некоторых развивающихся странах болезни витаминной недостаточности все еще встречаются очень часто. Многие заболевания желудочно-кишечного тракта, сопровождающиеся синдромами недостаточности пищеварения и недостаточности всасывания, ведут к витаминной недостаточности.

Заболевания печени и нарушение проходимости внепеченочных желчных ходов (опухоль, закупорка камнем и др.), сопровождающихся прекращением поступления желчи в кишечник, приводят к нарушению всасывания жирорастворимых витаминов. Кишечный дисбактериоз (при острых и хронических заболеваниях кишечника, длительном лечении антибиотиками) нарушает эндогенный синтез некоторых витаминов бактериальной флорой кишечника (особенно В1, В2, B6 и РР). В детском возрасте (вследствие повышенной потребности растущего организма) и старческом возрасте (вследствие нарушения усвоения) витаминная недостаточность встречается чаще и имеет свои особенности. При тяжелых инфекционных заболеваниях повышается потребность в некоторых витаминах. Следует учитывать синергизм ряда витаминов, задерживающий развитие витаминной недостаточности (аскорбиновой кислоты с тиамином, фолиевой кислотой, тиамина - с рибофлавином и пиридоксином и др.), а также их антагонизм (токоферола с пиридоксином, никотиновой кислоты о тиамином, холином и т.д.).

Клинические проявления болезней витаминной недостаточности возникают постепенно, по мере расходования витаминов, депонированных в различных органах и тканях (запасы большинства витаминов, за исключением А и В12, в организме невелики). Различают 3 стадии развития болезней витаминной недостаточности.

Стадия 1 - прегиповитаминоз (субнормальная обеспеченность витаминами) - проявляется малоспецифическими общими изменениями некоторых функций внутренних органов, снижением тонуса, общей сопротивляемости организма, работоспособности. Наличие витаминной недостаточности на этой стадии подтверждается лишь специальными лабораторными исследованиями.

Стадия II - гиповитаминоз - является следствием относительного дефицита витамина (витаминов). Характеризуется явными клиническими проявлениями, зависящими от преимущественного дефицита того или иного витамина; последнее подтверждается лабораторными исследованиями (определением содержания витамина в сыворотке крови, выделения его или продуктов метаболизма с мочой и др.).

Стадия III - авитаминоз - крайняя степень витаминной недостаточности вследствие полного (или почти полного) отсутствия поступления витаминов в организм. Проявляется характерной яркой клинической картиной и значительным снижением содержания витаминов в организме (при лабораторных исследованиях).

Различают также моногипо- и моноавитаминоз, развивающийся при недостаточности в организме какого-то одного витамина, и полигипо- и поливитаминоз, развивающийся при недостаточности нескольких или многих витаминов. Следует особо отметить, что стертые эндогенные формы гиповитаминозов, особенно наблюдающиеся при хронических заболеваниях органов пищеварения и нарушениях процессов всасывания кишечной стенкой, встречаются достаточно часто и представляют известные трудности для ранней диагностики. Ниже рассмотрены наиболее часто встречающиеся болезни витаминной недостаточности.

Список использованной литературы

1. Патологическая физиология / Под ред. Адо А.Д. и Ишимовой Л.М. - К.: Медицина, 1980.

2. Овсянников В.Г. Патологическая физиология (типовые патологические процессы). Учебное пособие. - Изд-во Ростовского университета, 1987.

3. Мак-Мюррей У. Обмен веществ у человека. - М.: Мир, 1980.

4. Мусил Я. Основы биохимии патологических процессов. - M.: Медицина, 1985.

5. Вельтищев Ю.Е., Ермолаев М.В., Ананенко А.А., Князев Ю.А. Обмен веществ у детей. - М.: Медицина, 1983.

6. Галлер Г., Ганефельд М, Яросс В. Нарушения липидного обмена. - М.: Медицина, 1979.

Размещено на Allbest.ru


Подобные документы

  • Особое место белкового обмена в многообразных превращениях веществ во всех живых организмах. Нарушения биосинтеза и распада белков в органах и тканях. Наследственные дефекты биосинтеза белков. Нарушения выделения и конечных этапов метаболизма аминокислот.

    реферат [123,1 K], добавлен 22.01.2010

  • Особенности метаболизма липидов в организме. Патологические состояния, обусловленные изменением накопления липидов. Ожирение - избыточное накопление жира. Болезни накопления липидов у детей. Пути метаболизма холестерина. Образование липопротеидов.

    реферат [25,1 K], добавлен 22.01.2010

  • Причины, клиническая характеристика, диагностика и лечение нарушений липидного обмена. Ожирение, истощение, дислипопротеинемии, липодистрофии и липидозы. Жировая дистрофия, сопровождающаяся избыточным накоплением липидов в паренхиматозных клетках.

    презентация [587,1 K], добавлен 14.10.2015

  • Нефротический синдром как клинико-лабораторный симпто-мокомплекс, включающий массивную протеинурию, нарушения белкового и липидного обмена и отеки. Характеристика острой почечной недостаточности. Этиология и патогенез хронической почечной недостаточности.

    реферат [77,8 K], добавлен 25.10.2011

  • Классификация и клинические проявления нарушений обмена веществ. Наследственные нарушения обмена веществ. Распространенность наследственных заболеваний обмена веществ с неонатальным дебютом. Клиническая характеристика врожденных дефектов метаболизма.

    презентация [8,4 M], добавлен 03.07.2015

  • Молекулярные нарушения углеводного обмена. Нарушение распада галактозы в печени из-за недостатка галактозо-1-фосфата. Фруктозонемия и фруктозоурия. Патологические типы гипергликемий и гипогликемий. Нарушение инсулинзависимой реабсорбции глюкозы.

    презентация [6,8 M], добавлен 27.09.2016

  • Наследственные и приобретенные нарушения обмена веществ. Метаболические энцефалопатии как расстройства различных отделов ЦНС. Нарушения мозгового кровотока, миелина, нервных механизмов управления движениями и нарушение движений при повреждении мозжечка.

    реферат [19,6 K], добавлен 13.04.2009

  • Нарушение обмена, переваривания и всасывания липидов. Гиперлипемия как один из показателей нарушения жирового обмена. Нарушение депонирования жиров (ожирение и жировая инфильтрация печени): причины и патогенез. Обмен липидов и ненасыщенных жирных кислот.

    лекция [1,2 M], добавлен 13.04.2009

  • Наследственные нарушения метаболизма: биохимическая классификация. Органические ацидурии и аминоацидопатии. Митохондриальные и пероксисомные заболевания, нарушения В-окисления жирных кислот. Лизосомные болезни накопления, нарушения гликозилирования.

    презентация [935,7 K], добавлен 24.12.2015

  • Общая характеристика амилоидоза как нарушения белкового обмена, сопровождающегося образованием и отложением в тканях специфического белково-полисахаридного комплекса — амилоида. Клинические проявления и лабораторно-инструментальная диагностика болезни.

    презентация [2,3 M], добавлен 19.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.