Строгие постулаты Коха
Общие методы изучения вирусов. Аминокислотный состав вирусных белков. Матричная РНК как промежуточный носитель генетической информации. Компоненты вирионов, не относящиеся к нуклеиновым кислотам и белкам. Особенности взаимодействия фага с бактериями.
Рубрика | Медицина |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 22.08.2011 |
Размер файла | 88,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Проникновение фагового генома в клетку сопровождается физическим отделением нуклеиновой кислоты от большей части капсидных белков, которые остаются снаружи.
Кроме фаговой нуклеиновой кислоты внутрь бактериальной клетки инъецируется также небольшое количество белка и некоторые другие вещества, в том числе олигопептиды и полиамины. Роль этих веществ в процессе развития фага неизвестна, некоторые из них являются остатками протеолиза капсидных белков при сборке вирионов. Если бактериальные клетки способны поглощать свободную ДНК из среды, то и геном фага может проникнуть в них в виде свободных молекул ДНК. Это явление называют трансфекцией. Способность бактерий поглощать молекулы ДНК может возникнуть как нормальное явление на некоторых этапах роста, что наблюдается, например, у В subtilis.
В некоторых случаях такое состояние вызывается искусственно, как, например, у Е coli.
Процесс развития фага после трансфекции принципиально не отличается от происходящего при нормальной фаговой инфекции, за исключением того, что в этих случаях не наблюдается резистентности, вызываемой отсутствием рецепторов или другими свойствами оболочки клетки.
Проникновение генома фага в чувствительную к нему бактерию приводит либо к лизогенной, либо к литической инфекции, в зависимости от природы фага (а иногда и бактерии) и от окружающих условий, например температуры. При лизогенном типе взаимодействия геном фага в неинфекционной форме передается бактериальными клетками из поколения в поколение, причем время от времени в некотором количестве клеток синтезируются соответствующие вирионы, лизирующие эти клетки и выходящие затем во внешнюю среду. Лизогенные клетки, повторно зараженные этими вирионами, не лизируются (ибо они иммунны к этому фагу), так что лизогенная культура продолжает нормально расти. Присутствие свободных вирионов можно выявить путем воздействия на клетки каких-либо иных, нелизогенных штаммов бактерий, лизируемых данным фагом. Фаги, способные лизогенизировать заражаемые ими бактерии, называются умеренными, а фаги, у которых такая способность отсутствует, - вирулентными. Следует, однако, помнить, что даже умеренные фаги при первой инфекции чувствительных к ним бактерий вызывают продуктивную инфекцию у многих или даже у всех клеток. Возникновение лизогении и предупреждение созревания вирионов и лизиса клеток требуют серии определенных событий, которые вовсе не всегда случаются со всякой зараженной бактерией. Вероятность появления лизогении или продуктивной инфекции варьирует от фага к фагу и зависит от условий культивирования.
Связь между строением вириона и началом инфекции
Длинные нити (фибриллы) отростка служат для специфического узнавания фагом определенных участков на поверхности клетки-хозяина, к которым он прикрепляется. Мутации генов, кодирующих белки нитей, приводят к изменению или полной утрате способности фага прикрепляться к клетке-хозяину. Еще одним доказательством важной роли нитей отростков служат эксперименты с антифаговыми антисыворотками, показавшими что прикреплению фага к клеткам препятствуют только антитела к белкам дистальных частей концов нитей.
Нити обвиваются вокруг отростка таким образом, что их средняя часть поддерживается «усиками», прикрепленными к тому месту, где головка соединяется с отростком. Синтез белка «усиков», вероятно, кодируется геном wac. Соприкосновение концов нитей с рецептором клетки, возможно, обусловливает их разворачивание и выпрямление. Отличительное свойство фага Т4, которое легко утрачивается вследствие мутации и отбора, заключается в том, что освобождение нитей отростка от «усиков» зависит от L- триптофана как кофактора. Зависимость выпрямления нитей и последующего прикрепления фага к клетке от концентрации триптофана указывает на то, что контакт некоторых нитей с клеткой может способствовать освобождению остальных нитей. Для следующего этапа взаимодействия фага с бактерией необходимо правильное пространственное положение базальной пластинки отростка, что в свою очередь, обеспечивается, вероятно, контактом всех шести нитей с рецепторами клетки. По-видимому, прикрепление фаговой частицы с помощью нитей отростка позволяет ей производить определенные скользящие движения по поверхности клетки, пока не будет найден участок, через который можно ввести ДНК. В этом отношении весьма важным оказалось наблюдение, согласно которому необратимое прикрепление фага к клетке и проникновение в нее его ДНК происходят лишь на определенных участках оболочки (всего их около 300), где цитоплазматическая и внешняя мембраны образуют прочные контакты, устойчивые к мягкому осмотическому шоку. Это справедливо, вероятно, и для других бактериофагов. Весьма важно было бы выяснить, каково отношение этих участков к местам синтеза мембранных компонентов и фаговых рецепторов. На следующем этапе взаимодействия фага с клеткой происходит сокращение чехла отростка, в результате чего стержень проникает в клеточную оболочку. Сокращение стимулируется базальной пластинкой, изменяющей свою конформацию под влиянием нитей отростка. В процессе сокращения принимают участие все 144 субъединицы чехла, и их совместное перемещение приводит к уменьшению длины чехла в два раза. Было высказано предположение, что энергия для сокращения чехла поставляется молекулами АТФ, ассоциированными с фагом, однако окончательно это еще не доказано. Дистальная часть стержня подводится вплотную к внутренней цитоплазматической мембране, но не обязательно проникает через нее. ДНК из обработанных мочевиной фагов, имеющих сокращенные чехлы и экспонированные стержни, может проникать в сферопласты Е coli, у которых внешние мембраны и жесткие оболочки либо совсем удалены, либо в значительной мере разрушены. Заражение сферопластов, осуществляемой в гипертонических средах, приводит к образованию нормального фагового потомства. В сферопласты можно вводить цельные или фрагментированные молекулы фаговой ДНК, которые затем реплицируются и участвуют в рекомбинации.
Естественно, что в процессе заражения сферопластов поверхностные рецепторы не участвуют. Поэтому обработанные мочевиной фаги Т4 могут заражать устойчивые к ним мутанты Е. Coli или даже устойчивые бактерии отдаленных видов. Прикрепление к сферопластам фаговых частиц, обработанных мочевиной, блокируется фосфатидилглицерином, который, вероятно, является составной частью мембран, стимулирующей введение ДНК в клетку.
Если бактерию, уже зараженную Т-четным фагом, спустя несколько минут вновь инфицируют этим же фагом, то второй контингент фага не участвует в размножении (так называемое исключение при суперинфекции) и не передает своей ДНК потомству. Было показано, что ДНК фаговых частиц, попавших в клетку при повторном заражении, разрушается (разрушение при суперинфекции). Оба этих процесса находятся под контролем активируемых в клетке-хозяине фаговых генов, функция которых может нарушаться при соответствующих мутациях.
Сборка вирионов
В отличие от ранних этапов развития фага ход сборки капсидов и полных вирионов не программируется последовательной экспрессией фаговых генов. По-видимому, все белки вириона и другие поздние белки, как, например, лизоцим фага, синтезируются более или менее одновременно и, накапливаясь, образуют «фонд предшественников». Отсюда они извлекаются путем прямого специфического взаимодействия с другими белковыми молекулами, в результате чего возникают субструктуры, которые затем собираются уже в цельные вирионы. Общий ход сборки стал понятен из результатов опытов in vivo с мутантными фагами и при изучении лизатов; однако после того, как была открыта возможность сборки предобразованных фаговых предшественников in vitro, с помощью этого эффективного метода было получено много новых данных. Сборка вириона состоит из четырех основных этапов, приводящих к образованию промежуточных структур, взаимодействующих между собой лишь в определенных критических точках.
Базальная пластинка фагового отростка построена из 15 белков, в синтезе которых, кроме основных,участвуют и некоторые другие гены. Весьма интересно, что пластинка содержит, по-видимому, несколько молекул двух кодируемых фагом ферментов - дигидрофолатредуктазы и тимидилатсинтетазы, а также некоторое количество фолиевой кислоты.
Собранная базальная пластинка после присоединения к ней белка гена Б4 служит затравкой для сборки стержня отростка, состоящего из 144 молекул продукта гена 19. Вокруг стержня происходит сборка чехла, представляющего собой полимер, построенный из 144 молекул продукта гена 18. Продукты двух других генов стабилизируют всю эту структуру. Непонятно, каким образом достигается постоянство длины стержня при сборке. Возможно, что существуют еще какие-то линейные белки, отмеряющие нужное расстояние, или контакт с базальной пластинкой придает субъединицам стержня такую специфическую конформацию, которая имеет минимум свободной энергии только в случае определенного размера стержня. Эта последняя гипотеза указывает на то, что процесс сборки, возможно, не является чисто механическим.
Оболочка фаговой головки, построенная из более чем 10 белков, образуется в результате активности многих генов. Основной из них представляет собой продукт гена 23, входящий в состав законченной головки лишь после отщепления от основного полипептида фрагмента с мол. весом 10000. Протеолиз осуществляется главным образом продуктом гена 22, а также, возможно, гена 21, отсутствующим в зрелом вирионе. Однако белок гена 22 представляет собой, по существу, внутренний белок, превращающийся в, конце концов, в результате самопереваривания в мелкие пептиды, причем некоторые из них остаются в головке фага. Здесь присутствуют также и другие внутренние белки, подвергающиеся частичному перевариванию белком гена 22.
После окончания раздельной сборки головки и отростка они самопроизвольно объединяются как in vitro, так и in vivo.
Нити отростка состоят из продуктов четырех генов. Их сборка идет независимо, но прикрепляются они к базальной пластинке только после соединения головки и отростка. Для этой реакции нужен белок гена 63, а также взаимодействие с «усиками», которые прикреплены к воротничку, расположенному между головкой и отростком.
Головка фага имеет специфическую форму, определяемую белком гена 23 и другими белками. Ее строение изменяется в результате мутаций соответствующих генов. Нормальная головка фага 74 имеет форму неправильного икосадельтаэдра, по длинной оси которого расположен дополнительный ряд субъединиц, состоящих из 840 копий белка гена 23. Субъединицы белка гена 20 располагаются на вершинах. Такая форма головки отражает наличие определенных пространственных ограничений, накладываемых белок - белковыми взаимодействиями. При отсутствии этих ограничений строение фага сильно изменяется.
Бактериофаг
Бактериофаг является умеренным фагом, т.е. он может либо переходить из клетки в клетку в процессе инфекции, либо передаваться от одного поколения к другому в ходе размножения данного бактериального штамма. В последнем случае латентный геном фага называется профагом, а клетки, несущие такой профаг, - лизогенными. Присутствие генома фага в лизогенной культуре можно обнаружить при спонтанном освобождении фага из небольшой части клеточной популяции, в которой произошло спонтанное развитие фага.
Естественным хозяином фага служит штамм Е coli K 12, генетика которого хорошо изучена. Поэтому фаг был избран в качестве объекта интенсивных исследований, направленных на выяснение природы лизогении. Исходный дикий штамм К 12 является лизогенным по фагу, который не образует бляшек на этом штамме, обладающем, подобно большинству лизогенных бактерий, иммунитетом по отношению к фагу, содержащемуся в нем в виде профага. Обычно фаг размножается на вариантах штамма К 12, «извлеченных» от профага. Такие извлеченные варианты обнаруживаются в небольших количествах среди клеток, выживших после интенсивного облучения. При образовании устойчивой лизогенной клеточной линии должны быть выполнены следующие два условия. Во-первых, профаг должен находиться в клетке в таком состоянии, чтобы при клеточном делении каждая дочерняя клетка получала по крайней мере одну его копию. В случае фага эта задача решается путем включения его ДНК в бактериальную хромосому, в результате чего ДНК профага пассивно реплицируется и сегрегируется с помощью аппарата клетки-хозяина. Во-вторых, те вирусные гены, продукты которых потенциально способны нарушить целостность клетки, должны регулироваться таким образом, чтобы клетки могли благополучно расти и размножаться. Это достигается путем репрессии транскрипции генов. В клетках, лизогенных по фагу , не транскрибируется ни один из вирусных генов, необходимых для продуктивной инфекции. В лизогенных культурах обнаруживается лишь очень небольшое количество вирусной м РНК.
Вирусы животных
Адсорбция и проникновение в клетку
Первые этапы вирусной инфекции, независимо от того, о каком вирусек идет речь, традиционно принято называть адсорбцией, проникновением и «раздеванием» (разрушением вирусной оболочки). Под адсорбцией принято понимать первичный контакт вируса с клеткой. Часто этот контакт сначала бывает очень слабым - обратимая адсорбция. Затем прочность контакта возрастает - необратимая адсорбция. Эти термины в равной степени приложимы для описания начальной стадии проникновения в клетки любых вирусов. Термин «проникновение» ошибочен потому, что он подразкмевает активное воздействие на атакуемую клетку определенной части вириона, что не было доказано. Более вероятно, что во многих случаях на самом деле имеет место совсем другой процесс - прикрепление вируса к клетке вследствие физико-химической комплементарности между поверхностью вируса и молекулами рецепторов, находящихся на поверхности клетки, индуцирует в клетке изменения, необходимые для проникновения в нее вируса.
Общая картина адсорбции вирусов животных
Результаты, полученные при изучении адсорбции на клетках самых различных вирусов животных (как с оболочкой, так и без нее), создают следующую общую картину процесса прикрепления вируса к клетке. Процесс начинается со случайных столкновений мнрожества вирионов с поверхностью клетки, но к образованию связи между физически комплементарными друг другу участками поверхности клетки и вириона ведет лишь одно столкновение из каждых 10з или 104. Возможно, что в образовании таких связей принимают участие и ионы культуральной среды. Непосредственно реализовать эти связи могут находящиеся на поверхности вирионов выступы, состоящие из особых вирусных белков, такие, как «шипы» у вирусов с оболочкой, например микровирусов, тогавирусов и парамиксовирусов, или белковые нити (фибриллы), отходящие от вершин икосаэдрических вирионов (например, у некоторых аденовирусов). Участок связывания на поверхности вириона, непосредственно взаимодействующий с рецептором клетки, может состоять из индивидуального структурного вирусного белка, а может и представлять собой мозаику из нескольких белков капсида (по-видимому, именно так обстоит дело у пикорнавирусов). Рецептором во всех случаях служит расположенный на поверхности клетки белок или гликопротеид. На поверхности клетки имеются различные рецепторы, каждый из которых специфичен для своего вируса. Специфичность этих рецепторов не абсолютна, что приводит к возможности группировки вирусов по этому свойству в своеобразные «семейства». Вирусы, родственные друг другу по данному признаку, могут быть родственны и по другим признакам, однако это условие не является обязательным. На поверхности единичной клетки может содержаться от 104 до 105 копий каждого вида рецептора.
Следует подчеркнуть, что сам факт адсорбции вируса на клетке еще никоим образом не означает инициации вирусной инфекции. Связи, образующиеся при адсорбции между вирусом и клеткой, могут быть «слабыми», а адсорбция «обратимой», т.е. вирион может покидать поверхность клетки. Однако некоторые из адсорбировавшихся на клетке вирионов связываются с ней более прочными «необратимыми» связями.
Проникновение вирусов животных в клетку и «раздевание».
Следующий этап после прочного прикрепления вириона к поверхности чувствительной клетки - это проникновение внутрь клетки всего вириона или его части и начало синтеза вирус-специфического белка или вирусной м РНК. В основе начального связывания самых различных вирусов с клеткой могут лежать принципиально сходные процессы. Напротив, проникновение вирионов в клетку и активация вирусного генома могут происходить у разных вирусов по-разному. Ясно, что вирусы с оболочкой и «голые» вирусы должны проникать в клетку в результате разных физико-химических процессов. Уже давно предполагали, что в основе проникновения в клетку вирусов с оболочкой, вероятно, лежит процесс, в какой-то мере подобный «плавлению мембраны», или процесс «слияния». Что же касается таких относительно больших белковых структур, как голые вирионы, то для них известен только один механизм проникновения в клетку - это фагоцитоз, и уже давно предполагается, что такие вирусы проникают в клетки в результате варианта фагоцитоза, названного «виропексисом». В последние года стала известна еще одна важная подробность, касающаяся проникновения вирусов в клетки. Действительно, в ряде случаев единственным компонентом вириона, непосредственно ответственным за синтез новых компонентов вируса, является его нуклеиновая кислота, а в других еще и входящая в состав вириона РНК- или ДНК-полимераза.
Размножение вирусов животных. РНК-содержащие вирусы
Одно из резких различий между вирусами бактерий и вирусами животных состоит в неодинаковой продолжительности их одиночного цикла репродукции. Так, одиночный цикл репродукции даже у наиболее быстро размножающихся вирусов животных продолжается 5-6 г, а у ряда других вирусов - несколько дней. Кроме того, многие вирусы вызывают лишь персистентные инфекции, при которых клетки-хозяева не погибают, хотя вирус все время образуется и в них и в их потомках. Столь длительный цикл репродукции вирусов животных по сравнению с более коротким циклом репродукции большинства фагов, вероятно, зависит от относительных размеров соответствующих клеток-хозяев.
Многие особенности вирусов животных связаны со специфическими особенностями архитектуры эукариотических клеток. ДНК большинства ДНК-содержащих вирусов синтезируется в ядре клетки. Напротив, белки всех без исключения вирусов синтезируются в цитоплазме. Заражение клеток вирусами в принципе может привести к двум последствиям. Зараженная клетка может либо погибнуть, образовав при этом большое количество вируса (литический тип взаимодействия вирусов с клетками), либо продолжать жить и делиться, синтезируя небольшие количества вируса. Культуры размножающихся клеток, продуцирующих вирус, называют персистентно инфицированными. Почти любой вирус животных при соответствующих условиях может вызвать персистентную инфекцию. Более того, многие вирусы лизируют клетки очень редко, и обычно в зараженных клетках устанавливается состояние устойчивого равновесия - образуется персистентно инфицированная культура клеток.
Установлено, что при успешной литической инфекции в зараженных клетках происходит пять четко отличающихся друг от друга событий, реализуемых функционально активными вирус-специфическими белками. В ходе одиночного цикла репродукции вируса эти события развиваются либо параллельно, либо последовательно. Их временная последовательность определяется специфическими свойствами каждого вируса. Это следующие события: 1) подавление вирусом ряда клеточных функций; 2) синтез вирусных м РНК; 3) репликация вирусного генома; 4) морфогенез вирионов; 5) освобождение вирионов из клетки.
Согласно правилам спаривания оснований по Уотсону и Крику, для каждой данной молекулы РНК можно записать комплементарную ей нуклеотидную последовательность. Для удобства классификации вирусов вирусную м РНК условно обозначают как «плюс»-цепь, а комплементарную ей последовательность, как «минус»-цепь. Исходя из структурной взаимосвязи между нуклеиновой кислотой вириона и его м РНК, все вирусы животных можно разделить на шесть классов. Конечно, эту классификацию можно применить также и к бактериофагам, и к вирусам насекомых, и растений, но в настоящее время разумнее всего ограничить ее применение вирусами животных.
К классу I относятся вирусы, содержащие двухцепочечную ДНК, например вирус осповакцины м РНК этих вирусов синтезируется таким же образом, как и клеточные м РНК, геном вируса - двухцепочечная ДНК - служит матрицей для синтеза м РНК. Класс II включает вирусы, содержащие одноцепочечную ДНК. Их м РНК по нуклеотидному составу, вероятно, полностью гомологична ДНК вириона. Поэтому м РНК должны транскрибироваться с «минус»- цепи ДНК, входящей в состав репликативного промежуточного комплекса-вируса. К остальным классам относятся вирусы, у которых геном служит РНК. Класс III включает вирусы, содержащие двухцепочечную РНК, например реовирусы. Эта РНК служит мартицей для асимметричного синтеза вирусных м РНК. Оказалось, что у всех до сих пор обнаруженных вирусов класса III геном сегментирован, т.е. состоит из множества хромосом, каждая из которых кодирует один полипептид. Вирусы, относящиеся к классу IV, содержат «плюс»-цепи РНК. Геном этих вирусов имеет ту же полярность, что и их м РНК. Вирусы данного класса делятся на два подкласса. У вирусов подкласса Ivа, типичным представителем которых является вирус полиомиелита, все белки синтезируются при трансляции одной-единственной молекулы м РНК. Образующийся при этом полипротеин расщепления затем протеолитическими ферментами с образованием функционально активных белков. Все м РНК этих вирусов имеют ту же длину, что и РНК-геном. Вирусы подкласса Ivв называют также тогавирусами. Они синтезируют в клетке по меньшей мере два вида вирусных м РНК: м РНК одного вида имеет ту же длину, что и РНК вириона, а м РНК второго вида представляет собой фрагмент РНК вириона.
Вирусы класса V называют также «минус» - РНК-вирусами. По нуклеотидной последовательности м РНК этих вирусов комплементарна РНК вирионов. Следовательно, вирион содержит матрицу для синтеза м РНК, но не для синтеза белков. Различают два подкласса вирусов класса V. Геном вирусов подкласса Vа представляет собой одну молекулу РНК, с которой транскрибируется целый ряд м РНК, причем все до сих пор изученные м РНК этих вирусов моноцистронные. Вирусы подкласса Vв имеют сегментированный геном. Каждый из сегментов генома служит матрицей, с которой транскрибируется лишь один вид молекул м РНК. Один из этих м РНК кодируют мноцистроенные, а другие - полицистроенные полипротеины. Вирусы, относящиеся к классу VI, называют также ретровирусами. Это самые необычные из всех известных РНК-содержащих вирусов, ибо при транскрибировании их РНК синтезируется не РНК, как обычно, а ДНК, которая в свою очередь служит матрицей для синтеза м РНК. Следовательно м РНК этих вирусов и РНК их вирионов не отличаются по полярности друг от друга, а некоторые из них идентичны и по длине. Из удивительных свойств этих генетических систем вытекает не мало замечательных следствий.
Плюс - РНК-вирусы: пикоркавирусы (класс IV а)
Вирусы этого подкласса, из которых наиболее интенсивно изучался вирус полиомиелита, известны под общим названием «пикоркавирусы». К их числу относятся также вирус менго, вирус энцефаломиокардита (пикоркавирусы мышей), риновирусы (вирусы, вызывающие у человека один из видов острых респираторных заболеваний, - так называемую простуду_ и вирус ящура.
Тогавирусы (класс IV в)
К тогавирусам относятся все плюс - РНК-вирусы, в которых образуются м РНК двух типов, различающиеся по своим размерам. Название «тогавирусы» отражает особенности внешней оболочки их вирионов. Синтез этой оболочки рассматривается в другом разделе, а здесь мы обсудим только механизмы синтеза РНК и белков, используемые вирусами данного класса. Прежде чем перейти к рассмотрению молекулярной биологии тогавирусов, интересно вспомнить, как были обнаружены вирусы этой группы. Эпидемиологи установили, что многие вирусы, вызывающие заболевания позвоночных животных, переносятся клещами или комарами.
Тогавирусы, патогенные для человека, обычно эндемичны для различных видов животных и передаются человеку лишь через укус какого-либо членистоногого переносчика. Вирусы этой группы были названы арбовирусами (означает «переносимый членистоногими»). Впоследствии, однако, стало ясно, что под этим названием объединены вирусы, резко различающиеся по своим биохимическим свойствам. Общим у них обычно является способность размножаться как в клетках насекомого-переносчика, так и в клетках тех или иных позвоночных животных. Основная часть арбовирусов по своим биохимическим свойствам относится к тогавирусам. Серологически тогавирусы делятся на две группы (А и В), которые в настоящее время называются альфавирусами и флавирусами соответственно. К числу тогавирусов относятся по меньшей мере два вируса, не являющиеся арбовирусами, - вирус краснухи и вирус, повышающий в крови зараженного им животного содержание лактатдегидрогеназы..
Вирусы, содержащие минус - цепь РНК (класс V): вирус везикулярного стоматита
Минус - РНК-вирусы подразделяются на три главные морфологические категории: рабдовирусы, парамиксовирусы и ортомиксовирусы. В плане биохимической стратегии рабдовирусы и парамиксовирусы очень близки друг к другу и составляют большую часть хорошо изученных вирусов класса Vа. В данном разделе основное внимание будет уделено только одному рабдовирусу - вирусу везикулярного стоматита (ВВС), так как он изучен наиболее детально. Хотя ВВС и патогенен для крупного рогатого скота, вызываемые им заболевания протекают легко и не приводят к серьезным экономическим убыткам. В культурах клеток ВВС размножается быстро и урожай его достигает высоких титров. Зараженные им клетки погибают. При заражении чувствительных клеток другими рабдовирусами или парамиксивирусами обычо развивается персистентная инфекция, не приводящая к гибели клеток. Поэтому такие системы вирус-клетка намного труднее поддаются изучению. Ортомиксовирусы, из которых наиболее известными являются вирусы гриппа человека, имеют сегментированным геном, состоящий из ряда отдельных минус-цепей РНК.
Вирион ВВС, подобно вирионам всех других тогавирусов, покрыт внешней оболочкой, но в отличие от них имеет характерную форму пули. Само название «рабдовирусы» происходит от греческого корня, означающего «палочка», и обусловлено асимметричностью этих частиц. Пулеобразная форма вириона отражает форму его нуклеокапсида, предоставляющего собой свернутую в цилиндр спираль и содержащего одну молекулу РНК с мол. Весом 4.106. Эта РНК не обладает ни одним из характерных признаков м РНК вирусов эукариот: на ее 3-м конце нет последовательности poly (А), а на 5-м конце нет «шапочки». Кроме того, она не обладает инфекционностью. Ее функция состоит в том, что она служит мартицей для синтеза вирусных м РНК и, следовательно, является минус - цепью РНК. Нуклеокапсид ВВС представляет собой очень стабильную структуру, и находящаяся в нем РНК полностью защищена от действия рибонуклеазы. Нуклеокапсид этого вируса инфекционен, но его удельная инфекционность очень мала. Вирион ВВС содержит пять различных белков, и других вирусных белков в зараженных клетках не обнаруживается. Белок, на долю которого приходится основная масса белков нуклеокапсида и вириона в целом, называется белком N. Нуклеокапсид содержит небольшое количество еще двух белков, называемых белками L и № 9. Они принимают участие в синтезе вирусной РНК. Пространство между нуклеокапсидом и липопротеидной оболочкой вириона заполнено молекулами еще одного вирусного белка, называемого белком М. Наконец, снаружи от двойного слоя липидов оболочки находится белок G, образующий упорядоченную систему расположенных на поверхности вириона шипов.
В отличие от рабдовирусов парамиксовирусы не имеют пулеобразной формы, а представляют собой неправильные сферы, что отражает менее упорядоченную укладку их нуклеокапсидов.
Внешние оболочки вирусов
Общим свойством тогавирусов, минус-РНК-вирусов и ретровирусов является наличие у них липопротеидной внешней оболочки, окружающей рибонуклеопротеидную сердцевину. Механизм образования такой оболочки у всех вирусов один и тот же: рибонуклеопротеид связывается с внутренней поверхностью измененного участка плазматической мембраны клетки и при выходе из клетки окружается этой измененной мембраной. Такой процесс называется почкованием, а образующаяся вирусная частица в тот период, когда она еще связана с плазматической мембраной, носит название почки. На электронных микрофотографиях ультратонких срезов клеток эти почки очень хорошо видны, ибо они представляют собой характерно измененные оболочки плазматической мембраны.
Строение вириона
В состав вирионов, имеющих внешнюю оболочку, входят три главных класса структурных белков: глинопротеиды, белки матрикса и белки нуклеокапсида. Макроструктура вириона определяется свойствами поверхности двойного слоя липидов, окружающего нуклеокапсид. Наружная поверхность двойного липидного слоя покрыта гликопротеидом, а внутренняя контактирует с белками матрикса или нуклеокапсида. Все липиды, содержащиеся во внешней оболочке вириона, имеют клеточное происхождение, так как не обнаружено какого-либо вирус-специфического обмена липидов. По своему составу липиды вириона очень сходны с липидами плазматической мембраны клетки-хозяина: в их число входят холестерин, гликолипиды и фосфолипиды. Клетки различных видов существенно различаются между собой по липидным компонентам плазматических мембран. Поэтому липидный состав вируса, формирующегося в данной клетке, точно соответствует липидному составу ее плазматической мембраны.
Гликопротеиды, содержащиеся в оболочках различных вирусов, обладают как специфическими свойствами, так и свойствами, общими для всех вирусных гликопротеидов. Все они находятся на внешней поверхности вириона и могут быть удалены под воздействием протеаз. Поскольку протеазы отщепляют от интактных вирионов только гликопротеиды, ясно, что наружу из двойного слоя липидов выступают лишь эти молекулы вирусных белков. Следует отметить, что протеазы удаляют лишь часть молекулы гликопротеида. Другая ее часть - «ножка», состоящая из высокогидрафобного полипептиада - по-видимому, погружена в двойной липидный слой и недоступна для протеазы.
Сборка вириона
На первой стадии формирования вириона происходит синтез его индивидуальных белков. Белки каждого из трех классов синтезируются, по-видимому, независимо друг от друга и часто на отдельных м РНК.
Гликопротеиды образуются на связанных с мембранами м РНК и в свободном состоянии в клетках никогда не встречаются. Молекулы белка «созревают» по мере их передвижения из шероховатого эндоплазматического ретикулума в гладкий, а затем, возможно, в аппарат Гольджи и, наконец, в плазматическую мембрану клетки. Присоединение углеводов к белкам происходит при перемещении последних по внутриклеточным мембранам. В конце концов они выходят на поверхность клетки, где, вероятно, свободно плавают в жидком двойном липидном слое плазматической мембраны.
Вирусы, содержащие двухцепочечную РНК (класс III)
Вирусы данного класса были обнаружены у плесеней, высший растений, насекомых и позвоночных животных. Ни один из этих вирусов не содержит липидов. Их капсиды состоят из двух слоев - внутреннего (сердцевины) и наружного, образующего оболочку вокруг сердцевины. В сердцевине находится множество сегментов двухцепочечной РНК и варьирующее число небольших олигонуклеотидов, не имеющих, по-видимому, никаких генетических функций. Наиболее тщательно изучены реовирусы человека, которые, как правило, не вызывают каких-либо явных патологических симптомов. Исключение составляют, по-видимому, реовирусоподобные агенты, выделяемые при гастроэнтеритах у детей. Тем не менее эти вирусы часто выделяют из организма человека, причем в лабораторных условиях они хорошо размножаются. Некоторые данные получены также об отдельных вирусах растений и насекомых, содержащих двухцепочечную РНК.
Размножение вирусов животных. ДНК-содержащие вирусы и ретровирусы
Поскольку в нормальных клетках нет никаких эквивалентов генетических систем РНК-содержащих вирусов, такие вирусы способны размножаться лишь в том случае, если они синтезируют ферменты, необходимые для транскрипции и репликации их генома. В случае ДНК-содержащих вирусов, напротив, синтез их м РНК происходит так же, как и м РНК нормальных клеток. Репликация их генома и генома клетки формально также весьма сходны. Более того, транскрипция и репликация ДНК большинства вирусов, так же как и клеточной ДНК происходит в ядре. Сходство основных процессов у клеток и ДНК-вирусов наводит на мысль, что для размножения последних нет никакой необходимости в индукции каких-то особых ферментов, отсутствующих в незараженной клетке. Отсюда следует, что для размножения ДНК-вируса достаточно присутствия белков его капсида, так что геном такого вируса вполне может состоять только из генов, кодирующих его капсид. Следует, однако, подчеркнуть, что, хотя такие простые ДНК-вирусы действительно существуют, жизненный цикл большинства ДНК-вирусов значительно сложнее. Различные ДНК-вирусы очень сильно отличаются друг от друга как по величине, так и по сложности их строения. Молекулярный вес ДНК наименьших из них составляет всего 1,5х106 дальтон, а самых крупных - в 100 раз больше. По мере увеличения вирусных геномов они становятся все сложнее и сложнее. Возрастает общее число генов и усложняется механизм репликации ДНК.
Поскольку мелкие ДНК-вирусы способны к интенсивному размножению, представляется удивительным сам факт возникновения крупных ДНК-вирусов. Одно из преимуществ, которое может получить вирус при увеличении его генома - это уменьшение зависимости от клетки.
Парвовирусы
Самыми простыми из всех известных вирусов, вероятно, являются парвовирусы. Их геном представлен одноцепочечной ДНК с мол. Весом всего 1,5х106 дальтон. Однако для единственного кодируемого этим вирусом продукта - белка его капсида - даже эта малая молекула слишком велика. Размножение этого крошечного паразита, по-видимому, действительно полностью зависит от соответствующих систем клетки-хозяина. Существует два основных класса парвовирусов - автономные и дефектные. Все до сих пор известные автономные парвовирусы - это вирусы грызунов; для транскрипции, репликации и других функций эти вирусы используют соответствующие ферменты клетки-хозяина. Дефектные парвовирусы размножаются лишь в клетках, которые заражены одновременно аденовирусом, выполняющим некоторые необходимые функции. До сих пор не найдено нормальных клеток, в которых могли бы размножаться дефектные парвовирусы. В клетках, находящихся в стационарной фазе, автономные парвовирусы не размножаются, они размножаются лишь в клетках ДНК которых уже реплицируется, т.е. в клетках, находящихся в S-фазе клеточного цикла.
Это ограничение касается типа клеток, поражаемых данными вирусами. Парвовирусы вызывают аномалии развития у эмбрионов и дефекты растущих тканей у новорожденных. Они вызывают также нарушения функции кишечника, что, вероятно, является следствием их размножения в быстро делящихся клетках крипт.
Дефектные парвовирусы размножаются только в клетках, зараженных аденовирусом - помощником, и не зависят от фазы клеточного цикла. Их вирусом- помощником могут быть только аденовирусы. Герпесвирусы также способны выполнять некоторые из необходимых функций вируса - помощника, однако полные инфекционные частицы парвовирусов в этом случае не образуются. Именно по этой причине дефектные парвовирусы называют также «аденоассоциированными» вирусами (ААВ).
Одно из характерных различий между автономными и дефектными парвовирусами состоит в том, что геном первых представлен уникальной одиночной цепью ДНК, а геном дефектных парвовирусов - эквимолярными количествами одноцепочечных комплелянтарных друг другу молекул ДНК. При гибридизации одноцепочечные молекулы ДНК, выделенные из вирионов ААВ, легко превращаются в молекулы двухцепочечных ДНК. Вирионы парвовирусов близки по величине к рибососмам - их диаметр 20 нм. Не содержащие липидов капсиды этих вирусов состоят из трех полипептидов различной длины. Молекулярный вес самого большого из них 90000 дальтон. Судя по пептидной карте, малые полипептиды представляют собой части большого; поэтому полагают, что вирусная м РНК кодирует только полипептид с мол. весом 90000.
Паповавирусы
Паповавирусы известны лучше других благодаря принадлежащим к этой группе подробно исследованным онкогенным вирусам - вирусу полиомы и SV40, которые размножаются лишь в очень узком кругу клеток млекопитающих. Обычно при изучении онкогенных свойств этих вирусов, имеется в виду их способность трансформировать клетки in vitro - ими заражают клетки тех видов, которые они трансформируют, но в которых не размножаются, а следовательно, и не вызывают их лизис.
В состав группы паповавирусов, кроме вирусов полиомы и SV40, входит ряд других вирусов. Свое наименование паповавирусы - группа получила от названий трех вирусов: вируса кроличьей папилломы, вируса полиомы (по) и вакуолизирующего (ва) обезъянеьего вируса, тип 40 (SV40). У человека эти вирусы не вызывают заболеваний, хотя SV40 иногда заражает клетки человека. У людей широко распространены три других паповавируса - вирус JC, ВК и вирус бородавок. Предполагается, что вирус JC является этиологическим агентом прогрессирующего дегенеративного заболевания центральной нервной системы человека. Вирус ВК часто обнаруживают в моче лиц, принимавших иммунадепрессанты, однако пока его не связывают с какой-либо патологией у человека. Вирус бородавок человека, как и вирусы папиллом животных, вызывает лишь доброкачественную пролиферацию эпидермиса.
Вирусы паполломы плохо размножаются в клеточных культурах, поэтому до сих пор изучены в основном, лишь их физические свойства. Установлено, что их ДНК несколько крупнее, чем ДНК вирусов SV40 и полиомы.
Аденовирусы
Хотя в вирионах аденовирусов содержится в 608 раз больше ДНК, чем в паповавирусах, и геном аденовирусов кодирует соответственно большее число белков, циклы репродукции этих вирусов в основном сходны. Так, у аденовирусов, как и у паповавирусов, имеется механизм, контролирующий переключение синтеза ранних макромолекул на синтез поздних, а их м РНК. Также считываются с обеих цепей вирусной ДНК. Однако ДНК аденовирусов - линейная молекула, и поэтому механизм ее репликации должен отличаться от механизма репликации ДНК паповавирусов. В отличие от ДНК паповавирусов частота рекомбинации ДНК аденовирусов достаточно велика, благодаря чему последние можно изучать и методами формальной генетики.
Разнообразие аденовирусов
Аденовирусы выделены от самых разнообразных видов животных. Более того, от каждого из этих видов выделено много различных аденовирусов. Так, среди аденовирусов человека идентифицирован 31 серологический тип. Однако в молекулярно-биологическом аспекте аденовирусы весьма сходны, поэтому при дальнейшем обсуждении мы не будем проводить между ними различий. Аденовирусы в основном вызывают острые респираторные заболевания; некоторые серотипы аденовирусов человека при введении хомячкам вызывают у них опухоли. Почти все штаммы аденовирусов способны вызывать трансформацию фибробластов крысы в культуре, но ни один из этих вирусов не имеет отношения к злокачественным опухолям у человека. Из сказанного ясно, что аденовирусы представляют интерес и как инфекционные агенты, вызывающие респираторные заболевания у человека, и как вирусы, способные вызывать опухоли, и как объекты молекулярно-биологических исследований.
Вирионы аденовирусов отличаются изяществом структуры. В синтезе вирусных частиц участвуют 14 видов белков, а быть может, и больше. В это число входят и белки, из которых построены компоненты поверхности вириона - гексоны, пентоны и фибриллы.
Герпесвирусы
Герпесивирусы, столь различные по характеру репродукции, но весьма сходные морфологически и по содержанию ДНК, составляют часть биохимически гомогенной группы. Наиболее детально изучены герпесвирусы, вызывающие лизис зараженных клеток. К их числу относятся вирусы простого герпеса, типы 1 и 2 и ряд быстро размножающихся герпесвирусов животных. Из вирусов этой группы, не вызывающих лизиса, наиболее изучен вирус Эпштейна-Барр, вызывающий инфекционный мононуклеоз - этот вирус постоянно выделяют из клеток двух видов опухолей человека - лимфомы Беркитта и карциномы носоглотки. В отличие от вирусов простого герпеса типов 1 и 2, размножающихся в культурах многих клеток и вызывающих лизис, вирус Эпштейна-Барр заражает только В-лимфоциты приматов и размножается не во всех из них.
ДНК герпесвирусов кодирует не менее 49 различных белков, для синтеза которых используется почти вся кодирующая способность вирусного генома. Изучение физиологии столь сложной системы - задача далеко не легкая.
Поксвирусы
У всех ДНК-содержащих вирусов, о которых речь шла выше, ДНК синтезируется в ядре зараженной клетки, там же и созревают их вирионы. Все стадии размножения поксвирусов происходят только в цитоплазме. Следовательно, репродукция поксвирусов происходит в совершенно иных условиях по сравнению с «ядерными» ДНК-содержащими вирусами. Известно большое разнообразие поксвирусов. Наиболее важным из них для человека является вирус натуральной оспы. Однако наиболее детально изучен вирус осповакцины и родственные ему вирусы кроличьей оспы и коровьей оспы. Все поксвирусы имеют общий антиген.
Автономность размножения поксвирусов
Электронная микроскопия зараженных клеток показывает, что процесс размножения поксвирусов ограничен цитоплазмой. Наиболее убедительно об этом свидетельствует тот факт, что почти весь цикл размножения вирусов этой группы может реализоваться в клетках, которые в результате воздействия на них цитохалазина В лишены ядра. Заражение таких фрагментов приводит к синтезу в них вирусной ДНК и многих вирусных белков: вирионы же в безъядерных клетках не синтезируются. Следовательно, поксвирусы переносят центр функциональной активности клетки из ядра в цитоплазму. Можно ожидать, что для этого вирус должен обладать обширной специфической информацией, и поксвирусы действительно такой информацией обладают, что выражается в числе кодируемых и синтезируемых ими белков. В полном соответствии с этим является то, что молекулярный вес ДНК таких вирусов больше, чем у любого другого вируса животных, и что репродукция данного вируса связана с инициацией активности самых разнообразных ферментов. Размножаясь в цитоплазме, поксвирусы во многом ближе к РНК-вирусам, чем к «ядерным» ДНК-вирусам. И действительно, подобно некоторым РНК-вирусам, размножение поксвирусов как таковое начинается с транскрипции ДНК вириона РНК-полимеразой, содержащейся в самом вирионе, вирион содержит все ферменты, необходимые для превращения РНК-предшественника в функционально активные м РНК.
Ретровирусы
Ретровирусы обладают свойствами как РНК, так и ДНК-содержащих вирусов. В вирионе ретровирусов содержится РНК, однако внутри клетки они существуют в виде ДНК, интегрированной с геномом клетки-хозяина. По существу, РНК этих вирусов, проникая в клетку, превращается в ее гены, которые могут передаваться потомкам в виде стабильных интегрированных молекул ДНК. ДНК-вирусов, которые наследовались бы подобным образом, не обнаружено, так как все ДНК- содержащие вирусы вызывают продуктивную инфекцию и убивают клетки, в которых они размножаются. Включаться в геном клетки-хозяина ДНК-содержащие вирусы могут только в случаях «непродуктивных» вирусных инфекций. Ретровирусы, напротив, размножаясь путем почкования, подобно многим другим РНК- вирусам, поддерживают продуктивную инфекцию, не вызывая гибели клетки-хозяина. Из сказанного ясно, что центральная проблема, без решения которой нельзя понять механизм репродукции этих вирусов, состоит в том, каким образом они превращаются из РНК-вирусов в ДНК-гены; этот процесс был назван обратной транскрипцией, ибо здесь направление потока биологической информации изменено на обратное.
Обнаружено много самых разнообразных ретровирусов. Некоторые из них способны вызывать злокачественные опухоли. Лучше других изучены вирус саркомы Рауса и вирусы, вызывающие лейкозы у кур и мышей. Из всех известных РНК-содержащих вирусов злокачественные опухоли могут вызвать только ретровирусы. Именно поэтому их принято называть общим термином «опухолеродные РНК-вирусы», хотя многие ретровирусы не вызывают ни злокачественных, ни каких-либо иных клинически выраженных заболеваний. Поэтому в единую классификационную группу их объединяет лишь способ репродукции. Подобно другим группа вирусов, различные виды ретровирусов также отличаются друг от друга по размеру и морфологическим особенностям вирионов, числу белков, а также по кругу чувствительных хозяев.
Влияние вирусной инфекции на клеточном уровне
Различают три вида воздействий, оказываемых вирусами животных на клетки. Легче всего выявляется деструктивный, или цитолитический, эффект, для которого характерно обширное повреждение множества различных клеточных органелл. Вероятно, вирус - специфические макромолекулы вызывают первичное повреждение, влекущее за собой цепь вторичных деструктивных процессов, в которых участвуют уже продукты метаболизма самой клетки. На другом конце спектра возможных последствий находится явление трансформации, когда зараженная вирусом клетка приобретает способность к неограниченному делению. По-видимому, это результат устойчивой интеграции вирусного генома или его части с геномом клетки, которая не приводит к ее гибели. Трансформированная клетка часто выходит из-под контроля механизмов, регулирующих клеточное деление. Действие некоторых вирусов, геном которых не включается в хромосомы клеток, занимает промежуточное положение между резко выраженным деструктивным эффектом и трансформирующим действием. В этих случаях зараженные клетки еще некоторое время функционируют и по меньшей мере в одном случае - при заражении парамиксовирусами - продолжают расти и делиться, одновременно продуцируя вирус («персистентная инфекция»). Возможна еще одна категория реакции клеток, при которой можно говорить об индуктивном действии вируса. Многие вирусы способны индуцировать образование в зараженной клетке белков, кодируемых не вирусным, а клеточным геномом, но, по-видимому, синтезируемых клетками в ответ на вирусную инфекцию. Этот тип реакции не обязательно связан с тем или иным конечным результатом взаимодействия вируса с клеткой.
Цитолическое действие вирусов: биохимические данные.
Зная, что многие вирусы вызывают резкие деструктивные изменения клеток-хозяев, биохимики заинтересовались вопросом, прекращается ли при этом синтез всех клеточных белков РНК и ДНК, и если да, то в какой последовательности. Ответы сводятся к следующему:
Вероятно, различные вирусы подавляют синтез клеточных белков, используя разные механизмы. Степень и время этого подавления тоже неодинаковы.
Нередко вирус блокирует накопление клеточной РНК, приостанавливая процессинг пре-р РНК, но никак не влияя на ее синтез. Образование клеточной т РНК часто не снижается. Во многих случаях бывает нарушен синтез клеточных м РНК, но механизм этого нарушения совершенно неясен.
Нередко бывает подавлена инициация синтеза клеточной ДНК, однако при некоторых вирусных инфекциях клетки, уже вошедшие в фазу S, могут завершить цикл синтеза ДНК, а клетки, прошедшие через фазу S, могут пройти и через митоз. Ингибирование синтеза клеточной ДНК- это вероятно, вторичное следствие прекращение синтеза белка, так как синтез ДНК идет лишь в том случае, если одновременно продолжается синтез белка.
Интерферон
Рассматривая здесь интерферон только как белок, синтезируемый клеткой в ответ на вирусную инфекцию и придающий устойчивость к инфекции другим клеткам, это значило бы игнорировать историю открытия интерферона и связь его с давно известным явлением интерференции вирусов.
Уже давно было известно, что животное часто приобретает защиту от вирулентного действия одного вируса в результате одновременного или предшествующего заражения менее вирулентным штаммом того же вируса или каким-либо другим, неродственным вирусом. Впервые это явление было подвергнуто количественному анализу при изучении тормозящего действия ненейротропных штаммов вируса гриппа на размножение нейратропного штамма. Такое действие оказывает не только живой вирус: образование инфекционного вируса гриппа в куриных эмбрионах вирусом гриппа, облученным ультрафиолетом.
Айзекс и Линдеман обнаружили, что аллантоисная жидкость куриных эмбрионов, в которые был введен облученный вирус, тоже обладает интерферирующей активностью. Вещество, ответственное за эту активность, было названо интерфероном. Оно блокирует репродукцию самых различных РНК- и ДНК- вирусов как в куриных эмбрионах, так и в культурах клеток. Интерферон образуется и в организме многих животных. Это также синтезирует in vitro клетки самых различных типов, как нормальные, так и злокачественные, хотя и в весьма разных количествах. Особенно хорошими продуцентами интерферона могут служить клетки Lмыши и специально выведенная линия фибробластов человека. Большие количества интерферона вырабатывают также циркулирующее в крови лейкоциты. Наконец, некоторые ткани, по-видимому, накапливают интерферон, так как введение в организм различных неспецифических токсичных веществ, например бактериального эндотоксина, быстро приводит к появлению в сыворотке крови больших количеств вещества, тормозящего размножение вирусов - скорее всего интерферона.
Одно время полагали, что интерфероны строго водоспецифичны, однако это неверно. Например, интерфероны человека и обезьяны защищают от вирусов как клетки человека, так и клетки обезьян, позднее было обнаружено, что это относится и к интерферонам более далеких друг от друга видов, например человека и различных грызунов. Однако эффективность гетерологичных интерферонов сильно варьирует.
Степень защиты того или иного вируса определяется типом клеток, а не интерферона. Интерферон человека защищает клетки человека от вируса везикулярного стоматита лучше, чем от вируса леса Семлики, и такое же соотношение наблюдается при защите клеток человека интерфероном обезьяны. Напротив, клетки обезьяны получают большую защиту от второго из этих вирусов, чем от первого, независимо от того, какой из двух интерферонов к ним добавляют.
Подобные документы
История открытия бактериофагов, особенности их строения. Взаимодействие фага с бактериальной клеткой. Методы культивирования бактериальных вирусов и их индикация. Выделение фага из объектов окружающей среды, определение спектра его литического действия.
курсовая работа [2,8 M], добавлен 21.02.2011Понятие о репродукции. Первая фаза репродукции. Адсорбция вириона на поверхности клетки. Проникновение вируса в клетку. Формирование зрелых вирионов. Процесс "сборки" вируса. Выход зрелых вирионов из клетки. Механизм действия вирусных ингибиторов.
реферат [520,7 K], добавлен 12.10.2015Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.
реферат [25,6 K], добавлен 21.01.2010Открытие первого вируса, поражающего человека, его проникновение в клетку. Этапы развития вирусологии. Использование лабораторных мышей и куриных эмбрионов для культивирования вирусов. Строение и химический состав вириона. Выход вирионов из клетки.
презентация [7,3 M], добавлен 17.01.2014Краткая характеристика вирусов. Роль изучения вирусов в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Характеристика вирусных заболеваний. Классификация противовирусных препаратов и их фармакологическое действие.
реферат [36,0 K], добавлен 31.10.2011Патогенез вирусных гепатитов А и В. Характеристика заражения и проникновения вируса в ткань печени. Особенности повышения проницаемости клеточных мембран гепатоцитов (синдром цитолиза). Интоксикационный синдром и поражение ЦНС. Синтез вирусных белков.
презентация [791,9 K], добавлен 07.05.2015Теории происхождения, история изучения и открытия вирусов. Их жизненный цикл, роль в заболеваниях человека, биосфере и эволюции. Морфологические типы капсидов. Формирование липидной оболочки вируса. Виды вирусных инфекций человека, растений, бактерий.
курсовая работа [2,3 M], добавлен 18.05.2016Описание стадий адсорбции вириона на поверхности клетки. Особенности процесса проникновения вируса в чувствительные к нему клетки. Специфика скрытой фазы инфекционного вируса. Синтез компонентов и формирование зрелых вирионов. Репродукция вирусов.
реферат [17,8 K], добавлен 26.12.2011Этапы проникновения инфекционных агентов в клетку. Присоединение вирионов к рецепторам клеточной мембраны. Взаимодействие с корецепторами посредниками проникновения вируса в клетку. Механизмы перемещения его генома и сопутствующих белков в мембране.
курсовая работа [384,1 K], добавлен 14.02.2011Современная диагностика острых респираторно-вирусных инфекций. Общие клинические и биохимические исследования вирусов. Определение содержания белковых фракций, фибриногена, креатинина, мочевины и аминотрансферазы в сыворотке крови при заболевании.
курсовая работа [435,6 K], добавлен 20.07.2015