Сущность апоптоза

Формообразовательные процессы в онтогенезе и описание процесса изменения ультраструктуры клеток животных при некрозе и апоптозе. Генетическая программа и механизм реализации программы старения человека. Кинетическая модель баланса апоптоза и аутофагии.

Рубрика Медицина
Вид контрольная работа
Язык русский
Дата добавления 06.04.2011
Размер файла 2,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Слайд 2.Термин"апоптоз", предложенный в 1972 г. английскими ученым Керром с соавторами состоит из двух греческих слов и означает в буквальном смысле "отделение лепестков от цветов", а применимо к клетке - особый тип смерти путем разделения ее на части (" апоптозные тельца "), которые впоследствии фагоцитируются соседними клетками разного типа.

Слайд 3.У многоклеточных организмов - животных, растений и грибов - генетически заложена программа гибели клеток. Формообразовательные процессы в онтогенезе, позитивная и негативная селекция Т- и В-лимфоцитов у животных, гиперчувствительный ответ растений на вторжение патогена, осенний листопад - лишь несколько примеров программируемой клеточной смерти (ПКС). ПКС способствует сохранению порядка и нормального функционирования биологической системы, очищая от невостребованных, больных, закончивших свой жизненный цикл или появившихся в результате мутаций потенциально опасных клеток.

Слайд 4. 7октября 2002 г. Нобелевский комитет по физиологии и медицине в Каролинском институте Стокгольма объявил о присуждении премии С.Бреннеру , X.P.Xopвицу и Дж.Салстону "за открытие в области генетической регуляции развития органов и запрограммированной смерти клетки".

Тот факт, что онтогенез находится под генетическим контролем, вряд ли мог кого-то удивить даже в далекие уже 70-е годы ушедшего XX в. Такой контроль должен был быть, и нашел его Бреннер Двое других "нобелевцев" открыли "гены смерти".

Давно уже было очевидно, что онтогенез невозможен без ликвидации отдельных клеток, участков тканей и даже целых органов, возникающих на определенных этапах индивидуального развития, чтобы затем исчезнуть при формировании взрослого организма. Неясно было лишь, происходит такая ликвидация посредством фагоцитоза или каким-то другим, пока неизвестным путем.

Слайд 5.Свои эксперименты ученые проводили на нематоде С. elegans.Этот объект огромные преимущества :

a)очень мала (длиной около 1 мм )

б) прозрачна

в) живет всего пару недель. По этому было просто проследить судьбу каждой из составляющих ее 959 от оплодотворенной яйцеклетки вплоть до взрослой особи. Бреннер использовали мутаген(метилэтансульфонат) и получил мутации, останавливающие развитие отдельны этапов онтогенеза, и идентифицировал гены, ответственные за них.

Салстон обратил внимание на то, что взрослая нематода должна была бы состоять из 1090кл. а не из 959 т. е. 131 кл. погибает в ходе онтогенеза встав на путь запрограммированной смерти (апоптоза). Салон идентифицировал первый ген клеточного самоубийства -- nuc--1, небходимый для деградации ДНК в умирающей клетке. В те же 70-е Хорвиц продол-ил исследование Бреннера он открыл гены ced-З и ced-4, необходимые для клеточного самоубийства. Впоследствии Хорвиц описал также ген ced-9, удерживающий клетку от апоптоза, пока не пришло время, и нашел соответствующие гены у высших животных и человека.

Слайд 6. Апоптоз и некроз - два варианта клеточной смерти

Признак

Апоптоз

Некроз

Индукция

Активируется физиологическими или патологическими стимулами

Различная в зависимости от повреждающего фактора

Распространенность

Одиночная клетка

Группа клеток

Биохимические изменения

Энергозависимая фрагментация ДНК эндогенными эндонуклеазами. Лизосомы интактные.

Нарушение или прекращение ионного обмена. Из лизосом высвобождаются ферменты.

Распад ДНК

Внутриядерная конденсация с расщеплением на фрагменты

Диффузная локализация в некротизированной клетке

Целостность клеточной мембраны

Сохранена

Нарушена

Морфология

Сморщивание клеток и фрагментация с формированием апоптотических телец с уплотненным хроматином

Набухание и лизис клеток

Воспалительный ответ

Нет

Обычно есть

Удаление погибших клеток

Поглощение (фагоцитоз) соседними клетками

Поглощение (фагоцитоз) нейтрофилами и макрофагами

Существует два различных вида клеточной смерти у животных - апоптоз и некроз.

Картина апоптоза у животных - это переход фосфатидилсерина из внутреннего монослоя цитоплазматической мембраны в наружный монослой, уменьшение объема клетки, сморщивание цитоплазматической мембраны, конденсация ядра (кариорексис и кариопикноз: кариорексис-маргинация гетерохроматина и образование кольца из отдельных глыбок ; пикноз-сжатие ядер), разрывы нити ядерной ДНК и последующий распад ядра на части, фрагментация клетки на мембранные везикулы с внутриклеточным содержимым (апоптозные тельца), фагоцитирующиеся макрофагами и клетками-соседями. Такая же участь постигает клетку, когда в ней произошла мутация, которая может привести к опухолевому разрастанию ткани, когда она становится ненужной для организма, например, в процессе онтогенетического развития или, применительно к лимфоцитам, на заключительных этапах инфекционного процесса, когда организм уже не нуждается в дальнейшей выработке антител .

Есть и другая, патологическая, форма клеточной смерти - некроз. Такая смерть постигает клетку, когда Т-киллер своевременно не распорядился судьбой инфицированной клетки, наставив ее на путь апоптоза. Вирус или иной паразит, размножившись в клетке, разрушает ее: клетка лизируется, ее содержимое изливается наружу, в межклеточное пространство. Некоторые внутриклеточные паразиты,

Слайд 7.включая простейшее Toxoplasma gondii (возбудитель токсоплазмоза), способны к подавлению апоптоза . Новое поколение паразитов устремляется в соседние клетки, нанося все больший и больший ущерб организму. Начинается воспалительный процесс, исходом которого может быть как выздоровление, так и гибель организма. Некротическую гибель могут вызывать физические или химические повреждения, например, обморожение или ожог, органические растворители, гипоксия, отравление, гипотонический шок и др. Наличие или отсутствие воспаления у животных используется как признак, позволяющий отличить апоптоз от некроза.

Слайд 8.Некроз характеризуется разрывом цитоплазматической и внутриклеточных мембран, что приводит к разрушению органелл, высвобождению лизосомальных ферментов и выходу содержимого цитоплазмы в межклеточное пространство (рис. 1). При апоптозе сохраняется целостность мембран, органеллы выглядят морфологически интактными, а продукты дробления клетки, апоптозные тельца (или везикулы) представляют собой отдельные фрагменты, окруженные мембраной (рис. 1).

Рис. 1. Изменение ультраструктуры клеток животных при некрозе и апоптозе. 1 - нормальная клетка, 2 - апоптотическое сморщивание клетки с образованием пузырчатых выростов, 3 - фрагментация клетки с образованием апоптотических везикул, 4 - фагоцитоз апоптотических телец окружающими клетками; 5 - набухание клетки при некрозе, 6 - некротическая дезинтеграция клетки

Слайд 9. Существуют и другие формы программируемой гибели, например, аутофагия. Процесс аутофагии заключается в том, что органеллы соединяются с лизосомами, где перевариваются лизосомальными ферментами. Затем остатки клетки поглощают макрофаги.

апоптоз старение онтогенез аутофагия

а) - Кинетическая модель баланса апоптоза и аутофагии. Одно из летальных воздействий активирует в клетке программу и клетка "решает умереть". Если достаточно апоптотических эффекторов (молекул, задействованных в процессе апоптоза), то апоптоз является единственным ответом большинства клеток на летальное воздействие. Подавление апоптотических эффекторов запускает альтернативный путь- аутофагию. b) - Ингибиторная модель. Когда летальное воздействие активирует BAX/BAK- зависимый митохондриальный внемембранный путь (BAX/BAK-dependent mitochondrial outer-membrane permeabilization pathway) запускается апоптоз. BAX/BAK, так же как и каспазы, является активным ингибитором BCL2/BCL-XL, облегчающего аутофагию. Активный апоптоз подавляет аутофагию.

Большинство ученых сходятся в мнении, что апоптоз наступает в результате энзиматического распада хроматина в ядре клетки, при этом эндонуклеазы клетки начинают разрезать молекулу ДНК с образованием моно- и олигомеров. Нуклеазной атаке подвергаются не только эухроматиновые , но и спирализованные уплотненные гетерохроматиновые участки ядра. Для того чтобы запустить этот процесс клетка должна произвести ферменты - нуклеазы, а для этого, в свою очередь, в клетке происходит усиление процессов транскрипции (биосинтез РНК) и трансляции (биосинтез белка). Имеются данные, что ингибиторы белкового синтеза - циклогексамид и пуромицин - предотвращают энзиматический распад хроматина и могут предотвратить или отсрочить процесс апоптоза.

Слайд 10. Молекулярные механизмы апоптоза

Апоптоз - многоэтапный процесс. Первый этап - прием сигнала, предвестника гибели в виде информации, поступающей к клетке извне или возникающей в недрах самой клетки. Сигнал воспринимается рецептором и подвергается анализу.

Далее через рецепторы или их сочетания полученный сигнал последовательно передается молекулам-посредникам (мессенджерам) различного порядка и в конечном итоге достигает ядра, где и происходит включение программы клеточного самоубийства путем активации летальных и/или репрессии антилетальных генов. Однако существование ПКС (программируемая клеточная смерть) в безъядерных системах (цитопластах - клетках, лишенных ядра) показывает, что наличие ядра не является обязательным для реализации процесса ].

Слайд 11.Применительно к клеткам животных и человека апоптоз в большинстве случаев связан с протеолитической активацией каскада каспаз - семейства эволюционно консервативных цистеиновых протеаз, которые специфически расщепляют белки после остатков аспарагиновой кислоты .

На основе структурной гомологии каспазы подразделяются на подсемейства

а) каспазы-1 (каспазы 1, 4, 5),

б) каспазы-2 (каспаза-2) и

в) каспазы-3 (каспазы 3, 6-10) .

Слайд 12.

Цистеиновые протеазы, по-видимому, участвуют также в ПКС у растений . Однако апоптоз возможен и без участия каспаз: сверхсинтез белков-промоторов апоптоза Bax и Bak индуцирует ПКС в присутствии ингибиторов каспаз .

В результате действия каспаз происходит:

1.активация прокаспаз с образованием каспаз;

2.расщепление антиапоптозных белков семейства Bcl-2. Подвергается протеолизу ингибитор ДНКазы, ответственный за фрагментацию ДНК. В нормальных клетках апоптозная ДНКаза CAD (caspase-activated DNase) образует неактивный комплекс с ингибитором CAD, обозначаемым ICAD или . При апоптозе ингибитор ICAD с участием каспаз 3 или 7 инактивируется , и свободная CAD, вызывая межнуклеосомальные разрывы хроматина, ведет к образованию фрагментов ДНК с молекулярной массой, кратной молекулярной массе ДНК в нуклеосомных частицах - 180-200 пар нуклеотидов..Слайд 13. Апоптоз возможен и без фрагментации ДНК . Обнаружен ядерный белок Acinus, из которого при комбинированном действии каспазы-3 (протеолиз при Asp 1093) и неидентифицированной протеазы (протеолиз при Ser 987) образуется фрагмент Ser 987 - Asp 1093. Этот фрагмент в присутствии дополнительных неядерных факторов вызывает апоптотическую конденсацию хроматина и фрагментацию ядра (кариорексис) без фрагментации ДНК ;

Слайд14. 3. гидролиз белков ламинов, армирующих ядерную мембрану. Это ведет к конденсации хроматина;

4.разрушение белков, участвующих в регуляции цитоскелета;

5.инактивация и нарушение регуляции белков, участвующих в репарации ДНК, сплайсинге мРНК, репликации ДНК.

Мишенью каспаз является поли(ADP-рибозо)полимераза (ПАРП). Этот фермент участвует в репарации ДНК, катализируя поли(ADP-рибозилирование) белков, связанных с ДНК. Донором ADP-рибозы является NAD+. Активность ПАРП возрастает в 500 раз и более при связывании с участками разрыва ДНК. Апоптотическая гибель клетки сопровождается расщеплением ПАРП каспазами. Чрезмерная активация ПАРП при массированных разрывах ДНК, сильно снижая содержание внутриклеточного NAD+, ведет к подавлению гликолиза и митохондриального дыхания и вызывает гибель клетки по варианту некроза.

Слайд 15. Существует несколько путей реализации программы ПКС .

Слайд 16. Клетка узнает, что должна покончить собой, получив "извещение о предстоящей смерти". Роль таких извещений выполняют специальные сигнальные белки, в число которых входит и фактор некроза опухолей, выделяемый макрофагами. Приемниками сигнальных молекул служат рецепторные белки, расположенные на поверхности клеток и называемые "рецепторами смерти". Это рецепторный путь апоптоза.

Рецепторный путь апоптоза.

Сигнальная молекула (1) связывается с "рецептором смерти" (2) и далее через адаптерный белок (3) - с прокаспазой-8 (4), после чего она превращается в активный фермент каспазу-8 (5). Она активирует в свою очередь прокаспазу-3 (6), которая, став действующим ферментом (7), расщепляет клеточные белки, и клетка погибает.

У млекопитающих семейство каспаз состоит из 14 постоянно синтезируемых белков. Неактивная каспаза, или прокаспаза, построена из четырех частей: N-концевого домена, большой и малой субъединиц и короткой связующей области между ними. Чтобы прокаспаза превратилась в активный фермент, связующая область и N-концевой домен отщепляются, и образуется гетеродимер из большой и малой субъединиц. Из двух таких димеров и формируется активная каспаза. При апоптозе сначала активируются инициаторные каспазы (-2, -8, -9, -10, -12), а затем, с их помощью, эффекторные (-3, -6, -7). Эти последние расщепляют опорно-двигательные структуры клетки, подавляют биосинтез белков и приводят в действие эндонуклеазу - фермент, расщепляющий ДНК. Остальные каспазы (-1, -4, -5, -11, -13, -14) принимают участие в развитии воспалительных процессов, а также, наряду с эффекторными каспазами, в формировании эпителиальных клеток хрусталика, кератиноцитов (клеток верхнего слоя кожи) и т.д. После того как сигнальная молекула связалась с "рецептором смерти", с помощью адаптерного белка к ним присоединяется прокаспаза-8. Став в результате этого работающим ферментом, она активирует прокаспазу-3, стоящую на пересечении двух путей запуска апоптоза - рецепторного и митохондриального. Роль каспазы-3 - расщепление опорных клеточных структур.

Слайд 17. Митохондриальный путь

Схема строения митохондрии.

Митохондрии обеспечивают всю клеточную жизнь, поскольку служат энергетическими станциями: здесь энергия питательных субстратов запасается в доступной для клетки форме, в виде аденозинтрифосфата (АТФ). Он синтезируется за счет энергии, высвобождающейся при переносе электронов с атомов водорода, образовавшихся при переработке субстратов, на конечный акцептор - кислород. Белки, переносящие электроны, встроены во внутреннюю мембрану митохондрий и образуют электронтранспортную цепь (ЭТЦ). Ее конечный элемент - цитохром с-оксидаза - и передает электроны от цитохрома с на кислород (это клеточное дыхание).

Слайд 18. Схема окислительного фосфорилирования (слева), в ходе которого синтезируется АТФ. Высокоэнергетические электроны проходят по переносящей их цепи, и часть высвобождаемой при этом энергии используется для откачивания протонов из матрикса. На внутренней мембране возникает электрохимический протонный градиент, благодаря чему Н+ снова возвращаются в матрикс через АТФ-синтетазу. Этот фермент использует энергию протонного тока для синтеза АТФ из АДФ и неорганического фосфата (P). На рисунке приведены также схема строения АТФ-синтетазы (в середине) и модель действия этого фермента.

Протоны, оставшиеся после отрыва электронов от атомов водорода, за счет энергии электронного транспорта выталкиваются из матрикса в межмембранное пространство. Возникающая при этом разность концентраций (градиент) ионов Н+ создает мембранный потенциал митохондрий (Dym), энергия которого и используется для фосфорилирования аденозиндифосфата (АДФ).

В матриксе протоны соединяются с кислородом, восстановленным в ходе работы электронтранспортной цепи, и образуется вода. Но если он восстанавливается не полностью, появляются активные формы кислорода (АФК): супероксидный радикал (О2·-), перекись водорода (Н2О2) и гидроксильный радикал (ОН·). В митохондриях образование АФК, этого побочного продукта, усиливается при повышении скорости потока электронов, увеличении концентрации кислорода и разобщении дыхания и окислительного фосфорилирования веществами, которые вызывают проницаемость внутренней мембраны.

Органеллы, обеспечивающие жизнедеятельность клетки, обеспечивают и ее смерть. При сильном стрессовом воздействии (переохлаждении; нагревании; стимуляции образования АФК другими структурами клетки, помимо митохондрий; перекисном окислении липидов плазматической мембраны - чаще всего при облучении) в цитоплазме резко повышается концентрация ионов кальция. Если кальциевые депо клетки не справляются с его утилизацией, открывается так называемая митохондриальная пора диаметром 2.6-2.9 нм. Она представляет собой канал, проходящий через обе митохондриальные мембраны и состоящий из трех белков: транслокатора адениновых нуклеотидов, потенциалзависимого анионного канала (порина) и бензодиазепинового рецептора. Когда этот комплекс связывается с Са2+, через мембранную пору могут проходить вещества с небольшой молекулярной массой. Это приводит к падению мембранного потенциала и набуханию матрикса, целостность внешней мембраны неизбежно нарушается, и из межмембранного пространства в цитоплазму выходят белки апоптоза. Их несколько: фактор, индуцирующий апоптоз (APOptosis-inducing factor - AIF), вторичный митохондриальный активатор каспаз (second mitochondria-derived activator of caspases - Smac) и некоторые прокаспазы. Индуцирующий фактор направляется прямо в ядро, где вызывает деградацию ДНК.

Слайд 19. Наряду со специфически апоптозными белками, из митохондрии через открытую пору выходит цитохром с, который в норме служит конечным звеном электронтранспортной цепи. В цитоплазме этот белок связывается с белком Apaf-1 (APOptotic protease activating factor-1 - активирующий протеазу фактор-1) и формирует апоптосомный комплекс. Он с помощью Smac и еще одного фактора (Omi/HtrA2) активирует прокаспазу-9, та, став каспазой-9, превращает два других профермента в каспазы-3 и -7; а они уже расщепляют структурные белки, приводя к появлению биохимических и морфологических признаков апоптоза. В числе первых можно назвать, в частности, переход фосфатидилсерина в наружный мембранный слой и фрагментацию ДНК. Из вторых признаков наиболее характерны "отшелушивание" клетки от матрикса, сморщивание мембраны, сжатие ядра и формирование пузырьков с клеточным содержимым - апоптозных телец.

Для выхода цитохрома с в цитоплазму одного лишь нарушения целостности митохондриальной мембраны недостаточно. Электростатически связанный цитохром с может оторваться от кардиолипина, если изменяется ионная сила, плотность поверхностного заряда или рН, а связанный гидрофобно - за счет окислительной модификации митохондриальных липидов. Последнюю реакцию как раз и вызывают активные формы кислорода, которые неизбежно образуются при любых сильных воздействиях (стрессах), а открывание поры усиливает этот процесс.

Однако цитохром с не всегда нужен для запрограммированной смерти. Апоптоз в сердечной ткани, например, вообще протекает без этого фермента, он так и не выходит из межмембранного пространства.

Фрагмент схемы апоптоза, протекающего по митохондриальному пути.

Слайд 20. Под действием избытка ионов кальция митохондрия разбухает, через пору из нее выходит цитохром с и два белка - AIF и Smac. Первый белок индуцирует апоптоз, а второй активирует некоторые прокаспазы.

Цитохром с может высвобождаться в ответ на повышение концентрации ионов Са2+, которое вызывает открывание поры. Но выход фермента "на свободу" может и не зависеть от этих ионов, тогда процесс контролируют белки семейства Bcl-2-слайд 21. (B-cell leukaemia-2 - лейкемия В-клеток-2). Именно они регулируют апоптоз на уровне митохондрий. Одни из белков этого большого семейства (Bcl-2, а также Bcl-xL, Bcl-w, Mcl-1, Al и Boo) предотвращают апоптоз; другие (Вах, Bad, Bok, Bcl-xS, Bak, Bid, Bik, Bim, Krk, и Mtd) способствуют самоубийству.

Слайд 22. Вот один пример работы белков этого семейства регуляторов. Цитозольный белок Bid расщепляется каспазой-8, активируемой через "рецепторы смерти", и лизосомными протеазами катепсинами, чей выход из лизосом стимулирует эта же каспаза. Образовавшийся активный белок - усеченный Bid (truncated Bid - t-Bid) - изменяет конформацию другого проапоптозного белка, Вах, после чего тот встраивается во внешнюю мембрану митохондрий, где формирует комплекс с порином. Вместе они выстилают канал, по которому из межмембранного пространства выходят цитохром с и проапоптозные белки. Но если в дело вмешивается Bcl-2, действующий как антиоксидант, выход цитохрома блокируется.

Фрагмент схемы апоптоза, протекающего под контролем белков семейства Bcl-2, а также с участием p53.

В запуске апоптоза, вызванного повреждениями ДНК, активацией онкогенов и гипоксией, принимает участие белок-53 (р53), взаимодействуя с Вах, стимулируя "рецепторы смерти" и апоптозные гены. р53 активирует модулятор суицида PUMA (p53 upregulated modulator of APOptosis), который затем связывает Bcl-2 и выводит из строя этот препятствующий апоптозу белок. Тем самым выход цитохрома с из митохондрий уже ничем не сдерживается.

Слайд 23. Некоторые белки, связывающие ионы кальция, например ALG-2, кодируемый одноименным геном (APOptosis-linked gene-2), тоже принимают участие в запрограммированной смерти. Так, взаимодействием ALG-2 и белка Alix (ALG-interacting protein X, известный и как AIP1) осуществляется регуляция апоптоза. Часть сложной молекулы ALG-2 представляет собой еще один апоптозный белок кальпоин.

Кальпоины специфически расщепляют белки, содержащие области, называемые PAST-мотивами и богатые остатками четырех аминокислот - пролина (P), аспарагиновой кислоты (A), серина (S) и треонина (T). (Среди этих белков - фермент ДНК-лигаза, у которого такой мотив находится в N-концевой области.) Кроме того, кальпоины освобождают каспазы от связанных с ними ингибиторов апоптозных белков (inhibitors of APOptosis proteins, IAPs).

Есть и другой эндогенный ингибитор каспаз - FLIP (FLICE-inhibitory protein). Он взаимодействует с пособниками суицида - сигнальными комплексами, блокируя активацию прокаспазы-8 и передачу проапоптического сигнала от "рецепторов смерти".

Слайд 24.Как видим, клетка никогда не бросается в апоптоз без "раздумий". Ответ на него зависит от соотношения про- и антиапоптозных белков; между ними идет борьба, и побеждает та сторона, которая успевает навесить на другую "черную метку" - убиквитин. А протеазам совершенно все равно, на ком эта метка - они беспристрастно расщепляют меченые белки. Таким образом, выбор клетки между жизнью и смертью зависит не столько от внешних обстоятельств, сколько от ее собственного внутреннего состояния. Даже если организм приказывает клетке погибнуть, она подчиняется ему только в том случае, когда сама расположена к такому исходу. Бывают мутанты, которые категорически не хотят умирать, при том что все внешние обстоятельства побуждают их к суициду - как правило, это раковые клетки.

Общая схема "классического" апоптоза млекопитающих.

Мы перечислили все виды орудий самоубийства, которыми клетка многоклеточного организма пользуется, когда он приказывает и когда она сама того хочет. Но следует понимать, что их действие неоднозначно. Например, кальций и активные формы кислорода участвуют во всех без исключения процессах жизнедеятельности как вторичные посредники в передаче сигналов и регулируют все функции клетки: размножение, дыхание, обмен веществ, движение, рост. Тот же кальций способен, в частности, активировать антиоксидантные ферменты, защищающие клетку от окислительного стресса. АФК в микромолярных концентрациях необходимы для пролиферации клеток, их подвижности и хеморецепции; более того, некоторые виды (например, NO) даже блокируют апоптоз посредством избирательного нитрозилирования эффекторных каспаз. Да и каспазы тоже могут выполнять вполне "мирные" функции - управлять дифференцировкой некоторых типов клеток.

Таким образом, лишь немногие из орудий самоубийства служат только этой цели: большинством из них клетка пользуется и в "домашнем быту".

Слайд 25. 7. Особую форму апоптоза претерпевают эритроциты млекопитающих. Биогенез эритроцитов из плюрипотентной стволовой клетки в костном мозге включает ряд промежуточных этапов. На этапе эритробласта ядро изгоняется (выталкивается) из клетки и пожирается макрофагом . Альтернативный вариант: кариорексис (деструкция ядра) с образованием телец Жолли и их последующий распад и лизис внутри клетки . Безъядерная клетка, называемая ретикулоцитом, в дальнейшем теряет митохондрии и рибосомы и превращается в эритроцит. Потерю ядра эритробластом можно рассматривать как особую форму ядерного апоптоза. Выяснение его механизма позволило бы применить его для обезвреживания опухолевых клеток.

На втором этапе запрограммированной смерти клеток внутриклеточные регуляторы, получив важные инструкции, вносят поправки в работу отдельных генов. Работа эта, как известно, заключается в образовании РНК, а затем и белков. Таким образом, в результате срабатывания генетической программы, первоначально запущенной сигналом с рецептора, происходит изменение набора внутриклеточных РНК и белков. В конечном счете появляются или активируются ферменты - протеазы и нуклеазы. Ферменты расщепляют содержимое клетки, которое затем поглощается фагоцитами.

Слайд 26. Генетический контроль.

Существует две альтернативные точки зрения на генетический контроль апоптоза. Согласно первой из них апоптоз представляет собой вариант реализации генетических программ пролиферации и дифференцировки клетки. Об этом, в частности, свидетельствует участие в апоптозе серинтреониновой киназы, фактора транскрипции NF-kB, протоонкогена c-myc и других регуляторов клеточного цикла. Согласно другой апоптоз имеет собственную генетическую программу и механизм ее реализации.

Слайд 27. СТАРЕНИЕ И АПОПТОЗ

Известный американский ученый Л. Хейфлик [2] в Медицинском центре детской больницы Северной Каролины впервые доказал, что естественная продолжительность жизни человека обусловлена числом митозов, которое могут совершить клетки данного организма. Он брал кусочки кожи от эмбриона, новорожденного и взрослого человека, разбивал их на отдельные клетки и культивировал в специальной питательной среде. Оказалось, что клетки эмбриона могут совершить около 50 делений, а затем в них наблюдаются все признаки апоптотической смерти. У взрослого человека клетки могли совершить уже не 50 а гораздо меньше делений, в зависимости от возраста обследуемого пациента. Впоследствии было показано, что механизм старческого апоптоза запускается и находиться в ядре.

Слайд 28.Сейчас по всему миру идут интенсивные исследования апоптоза. В основном это связано с онкологией- индукция апоптоза раковых клеток. Но этим все не ограничивается. В настоящее время идет разработка методов подавления возрастзависимого апоптоза в постмитотических и слабопролиферирующих тканях.Размещено на Allbest.ru


Подобные документы

  • Апоптоз - генетическая клеточная гибель: цитологические признаки, молекулярные процессы. Механизм умирания клетки: причины, стадии. Морфологические проявления апоптоза, заболевания, связанные с его нарушением, роль в защите от онкологических заболеваний.

    презентация [2,9 M], добавлен 25.12.2013

  • Морфология апоптоза - физиологической гибели клеток в живом организме. Структура и функции белков, участвующих в его регуляции. Цитопротекторы - лекарственные средства, защищающие здоровые клетки от цитотоксического действия лекарственных препаратов.

    презентация [1,5 M], добавлен 14.03.2017

  • Факторы и регуляция дифференцировки. Стволовая клетка и дифферон. Особенности протекания и характерные признаки апоптоза и некроза. Причины и факторы опухолевой трансформации клеток. Описание стадий превращения нормальной клетки в трансформированную.

    лекция [28,0 K], добавлен 27.07.2013

  • Прижизненное омертвление клеток и тканей организма. Основные механизмы апоптоза. Основные стадии некротического процесса. Микроскопические признаки некроза. Изменения ядра, цитоплазмы, межклеточного вещества. Травматический и токсический некрозы.

    презентация [765,5 K], добавлен 07.04.2016

  • Апоптоз как физиологическая смерть клетки, представляющая собой своеобразную генетически запрограммированную самоликвидацию, история исследования, механизм действия. Роль апоптоза в процессах старения, его фазы и причины патологического усиления.

    реферат [380,2 K], добавлен 04.05.2015

  • Создание анимации и визуализаций процесса апоптоза с использованием качественных (описательных) моделей. Описание рабочего прототипа программы симуляции молекулярных процессов, описываемых моделями на языке CellML. Визуализация биологических моделей.

    статья [28,4 K], добавлен 13.09.2015

  • Возрастная периодизация функционирования организма человека. Общая характеристика процесса старения и его влияние на нейроэндокринные механизмы регуляции в гипоталамусе. Рассмотрение типических возрастных изменений клеток: внутриклеточных и адаптивных.

    презентация [107,7 K], добавлен 29.08.2013

  • Воздействие алкоголя на желудок и поджелудочную железу, сосудистую и нервную систему, мозг. Печень в условиях алкогольной интоксикации. Общая математическая модель старения Б. Гомперца. Построение модели влияния алкоголя на механизм старения человека.

    курсовая работа [850,0 K], добавлен 02.04.2012

  • Основы биологии старения человека, физиологические особенности достигшего периода старости организма, его реакции на болезнетворные и лечебные факторы внешней среды. Первичные механизмы старения, их взаимосвязь в процессе жизнедеятельности организмов.

    реферат [40,4 K], добавлен 18.07.2014

  • Понятие геронтологии в жизнедеятельности человека. Особенности процесса старения человеческого организма и его причины. Основные группы процесса старения. Проблемы геронтологии. Продление жизни. Основные подходы в изучении старения и задачи геронтологии.

    реферат [27,5 K], добавлен 02.10.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.