Определение понятия вирусов, их характеристики и разновидности

Открытие наличия в организме мельчайших представителей микромира, обладающих болезнетворными свойствами. Характеристика понятия "вирус" и его разновидностей, применение новейших методик в вирусологии. Нуклеиновая кислота - носитель инфекционности.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 15.01.2011
Размер файла 46,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Вирусы

1.1 Определение вирусов

1.2 Открытия в вирусологии

1.3 Общая характеристика вирусов

1.4 Прикрепление и проникновение

2. Природа и происхождение вирусов

2.1 Вирусы, как независимые генетические системы

2.2 Происхождение вирусов и происхождение клетки

2.3 Общий химический состав вирусов, строение вириона

3. Разновидности вирусов

3.1 Разнообразие вирусов

3.2 Компьютерные вирусы

Заключение

Список используемой литературы

Введение

Окружающий нас мир или, что будет справедливее, мир, к которому мы принадлежим, сложен и многообразен. Сложен он и строением отдельно взятых особей и системами взаимоотношений, связывающих каждое отдельно взятое существо с множеством других существ своего и других видов.

Реферат посвящён вирусам - этим удивительным творениям природы, для которых ещё не найдено точных определений[1].

Целью данного реферата является определение понятия вирусов, их характеристики и разновидности.

Для достижения данной цели необходимо поставить следующие задачи.

1. Дать определение и общую характеристику вирусам;

2. Выяснить природу и происхождение вирусов;

3. Рассмотреть разновидности вирусов.

С развитием науки под понятием «болезнь» стало подразумеваться наличие в организме мельчайших представителей микромира, обладающими болезнетворными свойствами - вирусов. Я считаю тему моего реферата весьма актуальной, так как понятие болезни и вирусов напрямую связаны со здоровьем. А что может быть важнее в нашей жизни, чем здоровье человечества и окружающей его среды.

Мир биологических вирусов был открыт Д.И. Ивановским в 1892 году, в то время как раз начинала бурно расцветать бактериология. Первым открытым вирусом стал возбудитель мозаичной болезни табака[4].

И всё же было бы ошибкой думать, что только болезнетворные свойства вирусов явились причиной повышенного внимания к ним учёных. Так было лишь на первых порах. По мере того как шаг за шагом открывались особенности их строения и размножения, всё яснее становилось, что вирусы могут сослужить науке хорошую службу. Как очень удобный и, по-видимому, единственный в своём роде инструмент познания. Надежды учёных полностью оправдались. Вирусы невидимы, капризны и плохо поддаются «дрессировке». Поймать их оказалось чрезвычайно сложно, а выведать их повадки - ещё сложнее. Остаётся поражаться тому, что меньше, чем за 100 лет учёные не только смогли разобраться в сложном хаосе, который представляет собой царство вирусов, но и научились «приручать» этих невидимок, превращать их из неприятелей в союзников[2].

Поразительна степень вирусного паразитизма, не сравнимая ни с чем способность вируса существовать только в другом. Ведь всё, чем располагает вирус, это всего лишь генетический код, заключённый в структуре молекуле нуклеиновой кислоты, окружённой белковым футляром, запись идеи о создании подобных себе. Но реализовать идею вирус не в состоянии, у него нет для этого никаких собственных ресурсов и возможностей, кроме… способности заставить работать на себя клетку.

Первое упоминание о самой грозной вирусной инфекции прошлого - оспе найдены в древнеегипетских папирусах. Эпидемия оспы в Египте за 12 веков до нашей эры описана древними арабскими учёными. На коже мумии фараона Рамзеса V(1085 г. до н.э.) обнаружены типичные оспенные поражения[2].

Еще каких-нибудь два десятка лет назад человечество пребывало в уверенности, что инфекционные болезни больше не представляют опасности для цивилизованного мира. Однако с появлением в начале 80-х годов синдрома приобретенного иммунного дефицита (СПИДа) эта уверенность существенно поколебалась. Вирусы, вызывающие СПИД, и вирусы бешенства - вирусного поражения центральной нервной системы - считаются летальными и внесены в книгу рекордов Гиннеса, как самая опасная болезнь.

Лихорадка Ласа, заболевание, вызываемое редким западно-африканским вирусом, в 50% случаев заканчивается смертью больного. Марбургская лихорадка (болезнь зелёной обезьяны) и вирус Эбола также связаны с очень высоким уровнем смертности. Самое большое количество жертв геморрагической лихорадки Эбола зарегистрировано в Демократической республике Конго: из предположительного числа заболевших - в 296 человек умерли 232. Болезнь вызывает сильное кровотечение и шок[4].

Всё вышеперечисленное ещё раз доказывает актуальность темы данного реферата.

1. Вирусы

1.1 Определение вирусов

Вирусы - это мельчайшие возбудители многочисленных болезней человека, животных, растений и даже своих родственников по микромиру - бактерий. Вирусы обладают основными свойствами живых организмов. Они размножаются, хотя способ их размножения весьма своеобразен и во многом отличается оттого, что нам известно о размножении других живых существ; их обмен веществ тесно связан с обменом веществ заражённых клеток. Вирусы обладают наследственностью, которые обусловлены теми же биологическими и химическими структурами, что и у других живых организмов, - нуклеиновыми кислотами. Наконец, вирусы, как и все другие существа, обладают изменчивостью и хорошо приспосабливаются к меняющимся условиям окружающей среды[2].

Согласно Львову, «организм - некая независимая единица интегрированных и взаимосвязанных структур и функций». У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львова, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка.

В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами. Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей[7].

Вирус обретает относительно независимую эволюционную историю благодаря его способности к адаптации в направлении, ведущим к приобретению им способности передаваться от хозяина к хозяину. Он может пережить клетку или организм, в которых паразитирует; фактически вирус часто «эксплуатирует» клетку. Один вирус может встречаться в разных видах, родах и типах и также один и тот же вирус может передаваться от растений насекомым и размножаться в клетках тех и других. Вирус, обладающий соответствующей приспособляемостью, может использовать разнообразные эволюционные ниши. Таким образом, вирус, конечно, обладает большей независимостью, чем любая клеточная органелла. То есть, в эволюционном плане вирус в большей степени организм, чем хромосома или даже клетка многоклеточного животного, хотя функционально он значительно менее независим, чем любая такая клетка.

И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации. Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы «более живыми», чем какие либо фрагменты генетического материала, и «более организмами», чем любые клеточные органеллы, включая хромосомы и гены[6].

1.2 Открытия в вирусологии

Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов.

Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.

Так, например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А. М. Вудрофом и Е. Дж. Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа.

Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмуации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов.

В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях, поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы.

В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики.

Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс[2].

Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения. Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов[3].

В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж. Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином.

С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц).

В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными.

В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита.

В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики[2].

1.3 Общая характеристика вирусов

Стремительные темпы развития вирусологии во второй половине нашего столетия позволили получить важнейшие сведение о структуре и химическом составе разных вирусов в том числе их генома, а так же о характере взаимодействия с клетками хозяев.

Полученные материалы свидетельствуют о том, что вирусы существуют в двух качественно разных формах: внеклеточный - вирион и внутриклеточный - вирус. Вирион наиболее простого вируса представляет собой нуклеопротеид, в состав которого входит вирусный геном, защищённый белковой оболочкой - капсидом. В то же время внутриклеточный вирус есть самореплицирующаяся форма, не способная к бинарному делению. Тем самым в определении вируса закладывается принципиальное различие между клеточной формой микроорганизмов, размножающихся бинарным делением, и реплицирующееся формы, воспроизводящиеся только из вирусной нуклеиновой кислоты. Однако качественные отличие вирусов от про- и эукариот не ограничивается только одной этой стороной, а включает ряд других:

1) наличие одного типа нуклеиновой кислоты (ДНК или РНК);

2) отсутствие клеточного строение и белоксинтезирующих систем;

3) возможность интеграции в клеточный геном и синхронной с ним репликации.

А что говорит о вирусах биология и биохимия сегодня? Например, А. Ленинджер в «Биохимии» рассматривает вирусы как структуры, стоящие на пороге жизни и представляющие собой устойчивые надмолекулярные комплексы, содержащие молекулу нуклеиновой кислоты и большое число белковых субъединиц, уложенных в определенном порядке и образующих специфическую трехмерную структуру. Среди важнейших свойств вирусов им отмечаются:

1) неспособность к самовоспроизведению в виде чистых препаратов;

2) способность управления своей репликацией (зараженной клеткой);

3) широкие вариации вирусов по размерам, по форме и по химическому составу[6].

1.4 Прикрепление и проникновение

Прикрепление вирионов фага к бактериальной клетке является реакцией первого порядка и происходит обычно на клеточной поверхности. Последняя различна по своей структуре у разных типов бактерий. Некоторые фаги прикрепляются к особым выростам, так называемым F и L-ворсинкам, которые принимают участие в процессе конъюгации. Вирионы фагов группы х обратимо прикрепляются к жгутикам бактерий и затем соскальзывают вдоль них к поверхности клетки, причем этому процессу, по-видимому, способствует движение самих жгутиков (поскольку неподвижные бактериальные мутанты не бывают хозяевами этих фагов). На поверхности бактериальной клетки имеются специфические рецепторы для фагов, однако данные об их природе весьма ограничены. Тот факт, что фаг не способен адсорбироваться на бактериальном мутанте, не обязательно означает, что мутант утратил химические группы, выполняющие роль рецепторов фага, - последние могут быть просто скрыты другими компонентами клеточной оболочки. Рецепторы не всегда необходимы для самой клетки; например, при росте бактерий в определенных температурных условиях они могут утрачиваться.

Из оболочки бактерий, чувствительных к фагу, удается экстрагировать специфическое вещество, способное инактивировать фаг. Возможно, это вещество является самим рецептором или компонентом рецепторной структуры на поверхности бактерий. Сами по себе рецепторы, по-видимому, способствуют лишь первому обратимому этапу адсорбции. Не исключено, что они также участвуют в других процессах, частности в транспорте ионов железа. После прикрепления фага бактерия в течение некоторого времени (латентный период) не претерпевает заметных морфологических изменений даже и в том случае, если заражение, в конце концов, приведет к лизису клетки, поскольку лизис наступает всегда внезапно.

Проникновение фагового генома в клетку сопровождается физическим отделением нуклеиновой кислоты от большей части капсидных белков, которые остаются снаружи.

Кроме фаговой нуклеиновой кислоты внутрь бактериальной клетки инъецируется также небольшое количество белка и некоторые другие вещества, в том числе олигопептиды и полиамины. Роль этих веществ в процессе развития фага неизвестна, некоторые из них являются остатками протеолиза капсидных белков при сборке вирионов. Если бактериальные клетки способны поглощать свободную ДНК из среды, то и геном фага может проникнуть в них в виде свободных молекул ДНК. Это явление называют трансфекцией. Способность бактерий поглощать молекулы ДНК может возникнуть как нормальное явление на некоторых этапах роста, что наблюдается, например, у В subtilis.

В некоторых случаях такое состояние вызывается искусственно, как, например, у Е coli.

Процесс развития фага после трансфекции принципиально не отличается от происходящего при нормальной фаговой инфекции, за исключением того, что в этих случаях не наблюдается резистентности, вызываемой отсутствием рецепторов или другими свойствами оболочки клетки.

Проникновение генома фага в чувствительную к нему бактерию приводит либо к лизогенной, либо к литической инфекции, в зависимости от природы фага (а иногда и бактерии) и от окружающих условий, например температуры. При лизогенном типе взаимодействия геном фага в неинфекционной форме передается бактериальными клетками из поколения в поколение, причем время от времени в некотором количестве клеток синтезируются соответствующие вирионы, лизирующие эти клетки и выходящие затем во внешнюю среду. Лизогенные клетки, повторно зараженные этими вирионами, не лизируются (ибо они иммунны к этому фагу), так что лизогенная культура продолжает нормально расти. Присутствие свободных вирионов можно выявить путем воздействия на клетки каких-либо иных, нелизогенных штаммов бактерий, лизируемых данным фагом. Фаги, способные лизогенизировать заражаемые ими бактерии, называются умеренными, а фаги, у которых такая способность отсутствует, - вирулентными. Следует, однако, помнить, что даже умеренные фаги при первой инфекции чувствительных к ним бактерий вызывают продуктивную инфекцию у многих или даже у всех клеток. Возникновение лизогении и предупреждение созревания вирионов и лизиса клеток требуют серии определенных событий, которые вовсе не всегда случаются со всякой зараженной бактерией. Вероятность появления лизогении или продуктивной инфекции варьирует от фага к фагу и зависит от условий культивирования[6].

2. Природа и происхождение вирусов

2.1 Вирусы как независимые генетические системы

Какое место занимают вирусы в биологическом мире? Каково их происхождение и кто их ближайшие родственники? Сведения о вирусах, изложенные в этой книге, четко подтверждают положение, высказанное в самом ее начале: вирусы нельзя уподоблять очень мелким клеткам. Вирусы - это элементы генетического материала, у которых есть своя собственная эволюционная история, ибо в них имеется все необходимое для их передачи от одного хозяина другому.

В этом смысле вирусы представляют собой независимые генетические системы. Это не случайно отделившиеся фрагменты генома какой-то клетки. Вирусам присуща генетическая непрерывность и способность мутировать, они содержат набор генов, в результате согласованного действия которых образуются новые частицы того же вируса. И, наконец, вирусы имеют свою эволюционную историю, по крайней мере, отчасти независимую от эволюции организмов, в которых они репродуцируются. В то же время вирусы не стоят в стороне от эволюционной истории клеток и организмов. Их генетический материал в химическом отношении сходен с генетическим материалом всех клеток, хотя у многих вирусов он состоит из РНК - кодирующего полимера, оттесненного в процессе эволюции клеток на второстепенную роль, в клетках РНК служит подсобным переносчиком генетической информации, а не ее первичным носителем. Если сравнить ДНК с Солнцем, то клеточные РНК будут планетами, которые светят отраженным светом; однако в РНК - содержащих вирусах эти планеты вновь стали самостоятельными светилами.

Между тем независимость вирусов как генетических систем сама подвержена эволюционным изменениям. Например, геном умеренного фага может как физически, так и функционально интегрироваться с геномом бактерии. Он может существовать в двух формах - в виде вируса и в виде группы хромосомных генов клетки - хозяина. Когда в результате мутации умеренный фаг теряет способность превращаться в профаг, он утрачивает одну из своих форм существования - становится в большей степени клеточным компонентом, набором генов клетки. И наоборот, когда профаг мутирует, превращаясь в дефектный профаг (т.е. в профаг, неспособный осуществлять все функции, необходимые для собственной репродукции и заражения другой бактериальной клетки), он как бы, становится в меньшей степени вирусом и в большей - клеточным компонентом, теперь его дальнейшее существование зависит от сохранения данной клеточной линии или же от “помощи” со стороны другого, недефектного вируса.

Хотя физическая интеграция генома вируса с хромосомой клетки - хозяина детально изучена только в системе фаг - бактерия, известно, что многие опухолеродные вирусы тоже включают свой геном в хромосому клетки. Во всех группах вирусов известны также дефектные вирусы, нуждающиеся в помощнике. И это не только варианты, изредка возникающие в лабораторных экспериментах : такие вирусы существуют в природе и, несомненно, имеют значение для эволюции. Превращение обычного вируса в дефектный, включившийся в геном клетки - хозяина, формально можно рассматривать как превращение группы вирусных генов в подгруппу генов клетки. И наоборот, группы клеточных генов могут превращаться в геномы вирусов, и это относится не только к генам, внесенным в клетку вирусами. Не исключено, что вирусные геномы могут возникать из невирусных генетических элементов клетки. И мы должны поставить вопрос: какие события играют важную роль в возникновении вирусов как организмов и в эволюционной истории их генетического материала?

Само существование РНК-вирусов ставит ряд трудно разрешимых вопросов. Ни у бактерий, ни у других организмов нет ничего достаточно похожего на репликацию генетического материала в форме РНК. Правда, данные о том, что РНК - содержащие фаги, относящиеся к одной и той же группе, обладают разными специфичными для каждого фага механизмами репликации, заставляют воздерживаться от окончательных выводов. Если эти данные верны, то не исключено и существование пока еще не выявленных клеточных РНК - реплицирующих систем. Такую возможность действительно постулировали, но большей частью без достаточных оснований.

Если же клеточных аналогий не окажется, нам придется выбирать одну из ряда других альтернатив. Например, мы может рассматривать РНК - содержащие вирусы как уникальную группу, представляющую особое направление эволюции. Можно также предположить, что эти вирусы произошли от ДНК - вирусов, информационная РНК которых приобрела способность прямой репликации, так что транскрипция ее с ДНК стала излишней. Но если считать это возможным, то нет причин ограничиваться гипотезой возникновения РНК - вирусов на основе вирусной информационной РНК: столь же серьезно мы должны рассмотреть и возможность происхождения таких вирусов от клеточных информационных РНК.

Необходимым для этого этапа было бы приобретение соответствующего механизма репликации и способности к образованию вирионов. Существование вирусов, кодирующих обратную транскрптазу - фермент, транскрибирующий РНК вириона в соответствующую ДНК, - показывает еще одну возможность: некоторые вирусы могли бы приобрести РНК - репликазу, что позволило бы им обойтись без обратной транскрипции, а заодно исключило бы возможность их интеграции с хромосомой клетки. Перечисленные выше возможности, взятые в целом, иллюстрируют ряд путей, которые могли бы при участии механизмов репликации РНК вести к превращению сегментов хромосомного генетического материала вирусные гекомы и наоборот. К сожалению, слишком большие пробелы в наших знаниях пока не позволяют построить обоснованную модель такого рода.

Еще одну загадку составляет существование вирусов с генами из нескольких фрагментов двухцепочечной РНК. Среди таких вирусов есть паразиты самых различных организмов - бактерий, грибов, растений, насекомых и позвоночных. Произошли ли все эти вирусы от общего предка? Или разные группы их возникали независимо на разных путях эволюции вследствие каких-то преимуществ, связанных с подобным строением генома? Ответов на эти вопросы пока нет[7].

2.2 Происхождение вирусов и происхождение клетки

Проблема происхождения вирусов - это, по существу проблема независимости генетических элементов в репродуктивном и эволюционном отношении. Основные вопросы здесь касаются того, насколько длинный путь прошли вирусы в своей независимой эволюции и в какой точке разошлись пути эволюционного развития вирусов и тех генетических элементов, которые мы находим в настоящее время в клетках. Вирус, проникнув в клетку, может оставаться в ней либо в течение какой-то доли клеточного цикла, либо на протяжении многих клеточных генераций. У организмов, размножающихся половым путем некоторые вирусы могут передаваться последующим поколениям через гаметы. Вирус, долго сохраняющийся в клетке, практически не отличим от клеточного компонента. Такую частицу мы могли бы счесть вирусом, плазмидой или геном в зависимости от типа воздействия, благодаря которому ее удалось обнаружить. Таким образом, проблема происхождения вирусов включает:

1) вопрос об отношении между вирусами и клеточными компонентами,

2) вопрос о происхождении клеточных компонентов,

3) вопрос о родстве между различными генами вирусов.

Довольно широко распространено представление о “монофилетическом” происхождении клетки - о том, что набор ее генов, то есть геном создавался в результате дифференциации одного исходного самовоспроизводящегося элемента, копии которого иногда не разделялись и благодаря мутациям приобрели различные формы и функции. Из таких групп генов должны были затем образоваться хромосомы, ибо наличие какого-то организованного механизма, обеспечивающего равное распределение генетического материала, дает большое преимущество - помогает сохранять благоприятные комбинации генов.

Появление полового процесса в ходе дальнейшей эволюции усложнило эту схему, однако у организмов, у которых еще не было полового процесса, все гены должны были возникнуть в пределах одной клеточной линии. Согласно самой простой гипотезе, цитоплазма целиком является продуктом деятельности генов. Таким образом, все генетические компоненты клеток, относящихся к одной линии, должны иметь единое происхождение. Передача генетического компонента - гена или хромосомы - другой клетке была бы уже слиянием части генетического материала одной линии с геномом другой линии. С другой стороны, не исключена возможность и полифилетического происхождения нормальной клетки. Несколько первичных самореплицирующихся молекул могли, объединившись, создать благоприятную комбинацию и сформировать в дальнейшем клеточный геном. Или же, наконец, какие-то генетические элементы могли проникнуть в уже образовавшуюся клетку. Слияние генетического материала разных линий могло бы произойти на относительно раннем этапе эволюции клетки, и тогда приобретение геном, хромосомой или плазмидой способности переходить из одной клетки в другую было бы возвращением к исходной независимости и повторением исходного процесса слияния.

Таким образом, все теории происхождения вирусов сводятся к рассмотрению различных возможностей слияния двух или большего числа генетических элементов и образования из них функционирующей генетической системы. В случае вирусов, вызывающих быстрое разрушение клетки, такое слияние может не быть очевидным, и фундаментальное значение этого процесса не было замечено ранними вирусологами, для которых вирус, размножающийся в клетке, был подобен бактерии, растущей в культуре. На самом же деле даже клетка, зараженная вирулентным вирусом и обреченная на быструю гибель, представляет собой функциональную систему, чья конечная судьба - полная дезинтеграция - это лишь побочный результат главного события, а именно генетической и биохимической интеграции вирусных и клеточных механизмов. Слияние может приводить к длительной интеграции клетки с вирусом, которая сохраняется в течение нескольких клеточных генераций, иногда даже при половом процессе. В случае профагов, а возможно, и некоторых опухолеродных вирусов интеграция может стать почти постоянной. Некоторые плазмиды и, быть может, даже сегменты хромосом могли сформироваться именно таким путем. С другой стороны, эволюция механизмов, реализующих передачу генетического материала, могла привести к превращению отдельных генов и групп генов в плазмиды и вирусы.

Из всех живых существ, быть может именно для вирусов монофилетическое происхождение наименее вероятно, ибо вирусы всегда реплицируются в окружении больших количеств невирусных нуклеиновых кислот, способных включаться в их геном. К какой категории мы отнесем данный генетический элемент - к генам, плазмидам, или вирусам, - в конечном счете будет зависеть от того, насколько длительным был период общности его эволюционной истории с историей других компонентов генома. Способность к возвращению независимости может определяться не только мутабельностью, но длительностью совместного существования, которая может приводить ко все большей взаимозависимости между различными компонентами клетки. Экзогенный элемент внесенный в клеточную линию, вероятно, подвергнется столь же выраженным эволюционным изменениям, как и любой другой генетический компонент клетки, и будет не более похож на своего первичного предка, чем похожи на своих предков эти компоненты.

Передаваемые генетические элементы, быстро разрушающие новую для них клеточную систему, должны были бы в большинстве случаев исчезать, так как они могли бы сохраниться только при доступности для них бесчисленного множества клеток - хозяев. Часто, однако, слияние могло быть долговременным. При этом остается важный вопрос, на который пока нельзя ответить: является ли такое слияние новой и необычной особенностью, ведущей в основном к образованию аномальных комплексов, не имеющих значительной эволюционной ценности, то есть больных клеток, или же это один из процессов, который играл и все еще играет существенную роль в эволюции (а возможно и в онтогенезе)?

Вирус может быть и регрессировавшим паразитом, и фрагментом клеточного генома, ставшим инфекционным, в зависимости от того, какую фазу его эволюционной истории мы наблюдаем. В различное время он может быть и тем и другим. Подобно тому как изучение структуры и размножения вирусов в конце концов всегда приводит нас к клетке как системе, в которой имеют место проявления жизни, так и проблема происхождения вирусов возвращает нас к вопросу о происхождении клеток как интегрированного целого[7].

2.3 Общий химический состав вирусов, строение вириона

Общим свойством тогавирусов, минус-РНК-вирусов и ретровирусов является наличие у них липопротеидной внешней оболочки, окружающей рибонуклеопротеидную сердцевину. Механизм образования такой оболочки у всех вирусов один и тот же: рибонуклеопротеид связывается с внутренней поверхностью измененного участка плазматической мембраны клетки и при выходе из клетки окружается этой измененной мембраной. Такой процесс называется почкованием, а образующаяся вирусная частица в тот период, когда она еще связана с плазматической мембраной, носит название почки. На электронных микрофотографиях ультратонких срезов клеток эти почки очень хорошо видны, ибо они представляют собой характерно измененные оболочки плазматической мембраны.

Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные двалипоиды и углеводы - входят в состав далеко не всех вирусов.

Вирусы, состоящие только из белка нуклеиновой кислоты и зольных элементов, чаще всего принадлежат к группе простых, так называемых минимальных, вирусов, лишенных дифференциации, собственных ферментов или каких-либо специализированных структур. К такого рода вирусам принадлежат вирусы растений, некоторые вирусы животных и насекомых. В то же время практически все бактериофаги, которые по химическому составу, безусловно принадлежат к группе минимальных вирусов, на самом деле являются очень сложными и высокодифференцированными структурами. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Большая часть вирусов этой группы паразитирует на животных[3].

В состав вирионов, имеющих внешнюю оболочку, входят три главных класса структурных белков: глинопротеиды, белки матрикса и белки нуклеокапсида. Макроструктура вириона определяется свойствами поверхности двойного слоя липидов, окружающего нуклеокапсид. Наружная поверхность двойного липидного слоя покрыта гликопротеидом, а внутренняя контактирует с белками матрикса или нуклеокапсида. Все липиды, содержащиеся во внешней оболочке вириона, имеют клеточное происхождение, так как не обнаружено какого-либо вирус-специфического обмена липидов. По своему составу липиды вириона очень сходны с липидами плазматической мембраны клетки-хозяина: в их число входят холестерин, гликолипиды и фосфолипиды. Клетки различных видов существенно различаются между собой по липидным компонентам плазматических мембран. Поэтому липидный состав вируса, формирующегося в данной клетке, точно соответствует липидному составу ее плазматической мембраны.

Гликопротеиды, содержащиеся в оболочках различных вирусов, обладают как специфическими свойствами, так и свойствами, общими для всех вирусных гликопротеидов. Все они находятся на внешней поверхности вириона и могут быть удалены под воздействием протеаз. Поскольку протеазы отщепляют от интактных вирионов только гликопротеиды, ясно, что наружу из двойного слоя липидов выступают лишь эти молекулы вирусных белков. Следует отметить, что протеазы удаляют лишь часть молекулы гликопротеида. Другая ее часть - «ножка», состоящая из высокогидрафобного полипептиада - по-видимому, погружена в двойной липидный слой и недоступна для протеазы.

На первой стадии формирования вириона происходит синтез его индивидуальных белков. Белки каждого из трех классов синтезируются, по-видимому, независимо друг от друга и часто на отдельных м РНК.

Гликопротеиды образуются на связанных с мембранами м РНК и в свободном состоянии в клетках никогда не встречаются. Молекулы белка «созревают» по мере их передвижения из шероховатого эндоплазматического ретикулума в гладкий, а затем, возможно, в аппарат Гольджи и, наконец, в плазматическую мембрану клетки. Присоединение углеводов к белкам происходит при перемещении последних по внутриклеточным мембранам. В конце концов они выходят на поверхность клетки, где, вероятно, свободно плавают в жидком двойном липидном слое плазматической мембраны[6].

3. Разновидности вирусов

3.1 Разнообразие вирусов

Вирусы являются возбудителями многих острых и хронических инфекционных заболеваний, несмотря на существенные различия между ними, вирусные инфекции характеризуются рядом общих закономерностей.

Разнообразие вирусов - возбудителей отдельных заболеваний - требует их рассмотрения в порядке систематического положения, хотя патогенетические и клинические признаки некоторых из этих болезней довольно схожи. Однако для вирусов гепатита сделано исключение. Они рассмотрены в одной группе, несмотря на то, что относятся не только к разным видам, но и разным семействам.

1. РНК-содержащие вирусы:

- семейство пикорнавирусов;

- семейство калицивирусов;

- семейство реовирусов;

- семейство ретровирусов;

- семейство тогавирусов;

- семейство флавивирусов;

- семейство буньявирусов;

- семейство аренавирусов;

2. ДНК- содержащие вирусы:

- семейство аденовирусов;

- семейство парвовирусов;

- семейство герпесвирусов;

- семейство поксивирусов.

3. Вирусы гепатита:

- вирус гепатита А;

- вирус гепатита В;

- вирус гепатита С;

- вирус гепатита Е.

4. Онкогенные вирусы:

- онковирусы;

- ДНК-содержащие вирусы[6].

С.П. Расторгуев разделяет вирусы на:

- биологические (табл.1);

- социальные (табл.3);

- психические (табл.4);

- компьютерные (табл.2).

Инфекции, приводящие организм к заболеванию и гибели, можно попытаться классифицировать следующим образом[8].

Таблица 1

Размещено на http://www.allbest.ru/

Таблица 2

Размещено на http://www.allbest.ru/

Таблица 3

Размещено на http://www.allbest.ru/

Таблица 4

Размещено на http://www.allbest.ru/

3.2 Компьютерные вирусы

вирус нуклеиновый кислота инфекционность

Вирус - это программа (как ни абсурдно это звучит, но некоторые до сих пор об этом не знают). И, следовательно, вредить она может лишь программно, но никак не аппаратно - страшные сказки о вирусах, убивающих и сводящих с ума пользователей при помощи вывода на экран смертельной цветовой гаммы, были и остаются всего лишь сказками. Далее - вирус является программой, способной к размножению. Мы совсем не случайно не упомянули о наносимом ущербе - существуют вирусы, которые не занимаются ничем, кроме самораспространения.

Все вирусы можно объединить в следующие основные группы.

Загрузочные вирусы - инфицируют загрузочные секторы жестких дисков и дискет.

Файловые вирусы - заражают файлы. Эта группа в свою очередь подразделяется на вирусы, инфицирующие исполняемые файлы (сом-, ехе-вирусы); файлы данных (макровирусы); вирусы-спутники, использующие имена других программ; вирусы семейства Dir, использующие информацию о файловой структуре. Причем два последних типа вообще не модифицируют файлы на диске.

Загрузочно-файловые вирусы - способны поражать как код загрузочных секторов, так и код файлов.

Вирусы делятся также на резидентные и нерезидентные - первые при получении управления загружаются в память и могут действовать, в отличие от нерезидентных, не только во время работы зараженного файла.

В последнее время все большее распространение получают полиморфные вирусы, шифрующие свое тело и поэтому не имеющие неизменного набора символов, т. е. сигнатуры. Их появление поставило перед разработчиками антивирусов проблему создания совершенно нового алгоритма работы.

Stealth-вирусы фальсифицируют информацию, читаемую с диска, так, что активная программа получает неверные данные. Вирус перехватывает вектор прерывания int 13h и поставляет читающей программе ложную информацию, которая показывает, что на диске "все в порядке". Эта технология используется как в файловых, так и загрузочных вирусах.

Рeтровирусами называются обычные файловые вирусы, которые пытаются заразить антивирусные программы, уничтожая их или делая неработоспособными. Поэтому практически все антивирусы в первую очередь пверяют свои собственные размер и контрольную сумму.

Multipartition-вирусы могут поражать одновременно исполняемые файлы, boot-сектор, MBR, FAT и директории. Если они к тому же обладают пол и моренными свойствами и элементами невидимости, то становится понятно, что такие вирусы - одни из наиболее опасных.

В классификации вирусов Dr.Solomon's присутствуют также "троянские программы" (Trojans), которые производят вредоносные действия вместо объявленных легальных функций или наряду с ними. Они не способны на самораспространение и передаются только при копировании пользователем.

Интересное явление представляет собой вышедший из строя вирус - как результат порчи реального вируса либо просто плохого программирования со стороны вирусописателей. Такой вирус практически ничего не делает - или "зависает" при выполнении, или оказывается не в состоянии заражать файлы. Иногда происходит обратный процесс - вирус выполняет непредусмотренные действия, которые ведут к порче информации. Что поделаешь, среди авторов вирусов нередко встречаются слабые программисты.

Всего на сегодняшний день существуют тысячи пирусоп. нп только в нескольких десятках из них реализованы ориптппльные идеи, остальные являются лишь "вариациями на тему". Средства защиты от вирусов подразделяются на такие группы, как детекторы, фаги, ревизоры, сторожа и вакцины.

Детекторы (сканеры). Их задачей является постановка диагноза, лечением же будет заниматься другая антивирусная программа или профессиональный программист-"вирусолог".

Фаги (полифаги). Программы, способные обнаружить и уничтожить вирус (фаги) или несколько вирусов (полифаги). Современные версии полифагов, как правило, обладают возможностью проведения эвристического анализа файлов - они исследуют файлы на предмет наличия кода, характерного для вируса (внедрения части этой программы в другую, шифрования кода и т. п.).

Ревизоры. Этот тип антивирусов контролирует все (по крайней мере, все известные на момент выпуска программы) возможные способы заражения компьютера. Таким образом, можно обнаружить вирус, созданный уже после выхода программы-ревизора.

Сторожа. Резидентные программы, постоянно находящиеся в памяти компьютера и контролирующие все операции (не пользуются особой популярностью главным образом из-за большого количества ложных срабатываний, которые в отдельных случаях способны если не парализовать, то уж наверняка серьезно застопорить работу).

Вакцины. Используются для обработки файлов и загрузочных секторов с целью предотвращения заражения известными вирусами (в последнее время этот метод применяется все реже - вакцинировать можно только от конкретного вируса, причем некоторые антивирусы такую вакцинацию вполне могут спутать с самой болезнью, поскольку отличие вируса от вакцины на самом деле исчезающе мало).

Как известно, ни один из данных типов антивирусов не обеспечивает стопроцентной защиты компьютера, и их желательно использовать в связке с другими пакетами. Вообще, выбор только одного, "лучшего", антивируса крайне ошибочен. Теперь о некоторых характеристиках антивирусных пакетов. Первое, на что пользователи обращают внимание, это количество распознаваемых сигнатур - последовательностей символов, однозначно определяющих вирус. Следует отметить, что производители применяют разные системы подсчета сигнатур: если у одних различные версии или близкие по характеристикам версии вирусов считаются за одну сигнатуру, то другие подсчитывают все вариации. Лучшие из пакетов определяют более 10 тысяч вирусов, что несколько меньше общего числа существующих сегодня вредоносных программ. Второй параметр - наличие эвристического анализатора неизвестных вирусов; его присутствие очень полезно, но существенно замедляет время работы программы.

Среди российских разработок наиболее известными являются комплект программ от "ДиалогНаука" и AntiViral Toolkit Pro by Eugene Kaspersky от НТЦ KAMI. Начнем обзор с продуктов "ДиалогНаука", поскольку эти программы уже стали некоторым стандартом, и подавляющее большинство компьютеров в нашей стране укомплектовано именно их антивирусами (мы не будем сейчас гадать, какое количество этих программ является лицензионным) [5].

Заключение

Вирусы были открыты более ста лет назад, но до сих пор среди специалистов не утихают споры по самым основным проблемам вирусологии - о происхождении вирусов, о том, к живым существам или неживым веществам они относятся, а главное - какова их роль в биосфере, необходимое ли они её звено или их можно безнаказанно уничтожать.

Напомним, что целью данного реферата являлось определение понятия вирусов, их характеристики и разновидности.

Для достижения данной цели были поставлены и решены задачи.

Охарактеризовав понятие, рассмотрев разновидности, природу и происхождение вируса,

Можно сделать следующие выводы:

- мир вирусов весьма многообразен, их влияние на организмы может быть, как отрицательным, так и положительным;

- точку в этом вопросе ставить рано, мир вирусов достоин дальнейшего изучения, так как вирус с течением времени трансформируется быстрее, чем движется наука.

Вирус - это, по существу, часть клетки. Мы считаем вирусами те компоненты клетки, которые достаточно независимы для того, чтобы передаваться другим клеткам, и сравниваем их с другими клеточными компонентами, более прочно связанными со всей системой. И именно эти свойства вирусов делают их бесценными для биологов, предоставляя им уникальную возможность наблюдать в относительно изолированном виде активные детерминанты биологической специфичности - по истине те кирпичики, из которых построено все живое.

Список литературы

1. Голубев Д.Б.,Солоухин В.З.//Размышление и споры о вирусах//изд.1989г.

2. Жданов В.М., Ершов Ф.И.//Укрощение строптивых, рассказы о вирусах и вирусологии//изд.1988г.

3. Информация из интернета

4. Книга рекордов Гиннеса// изд. 2000г.

5. «Компьютерное Обозрение» №108.--Киев: ООО «ITC», 1997.

6. Медицинская микробиология, вирусология, иммунология// учебное пособие //изд.1994г.

7. Общая и частная вирусология//руководство том 2//изд.1982г.

8. Расторгуев С.П.// Инфицирование как способ защиты жизни. Вирусы: биологические, социальные, психические, компьютерные// изд.1996г.

Размещено на Allbest.ru


Подобные документы

  • Открытие первого вируса, поражающего человека, его проникновение в клетку. Этапы развития вирусологии. Использование лабораторных мышей и куриных эмбрионов для культивирования вирусов. Строение и химический состав вириона. Выход вирионов из клетки.

    презентация [7,3 M], добавлен 17.01.2014

  • Сущность понятия "вирус", история изучения. Схематическое строение вируса. Классификация вирусов: дезоксивирусы, рибовирусы. Схематичное изображение расположения капсомеров в капсиде вирусов. Вирус иммунодефицита человека, трехмерное изображение.

    презентация [496,1 K], добавлен 19.10.2011

  • Открытие вируса синдрома приобретённого иммунного дефицита (СПИД) — состояния, развивающееся на фоне ВИЧ-инфекции. Типы вирусов ВИЧ (вирус иммунодефицита человека). Пути передачи ВИЧ-инфекции, стадии развития заболевания. Симптомы болезни, ее диагностика.

    реферат [18,3 K], добавлен 11.09.2019

  • Определение понятия вируса иммунодефицита человека. Изучение обусловленности данного заболевания у детей. Характеристика поведения вируса в организме человека, культуральные свойства. Эпидемиология и патогенез болезни. Клиника внутриутробной инфекции.

    презентация [1,8 M], добавлен 28.12.2015

  • Свойства вирусов и плазмид, по которым они отличаются от остального живого мира. Морфология вирусов. Исходы взаимодействия вирусов с клеткой хозяина. Методы культивирования вирусов. Вирусы бактерий (бактериофаги). Этапы взаимодействия фагов и бактерий.

    реферат [25,6 K], добавлен 21.01.2010

  • История возникновения вирусов, простые и сложные вирусы. Содержание теории регрессивного происхождения вирусов. Основания для выдвижения эндогенного происхождения вирусов. Основные недостатки теории происхождения вирусов из доклеточных форм жизни.

    презентация [5,7 M], добавлен 10.10.2019

  • Общая характеристика и классификация ДНК-геномных вирусов как вирусов, геном которых представлен дезоксирибонуклеиновой кислотой. Характеристика, виды, онкогенность, репликация и лабораторная диагностика вируса папилломы и вируса полиомы человека.

    реферат [295,0 K], добавлен 10.12.2010

  • Характеристика вирусов – неклеточных форм жизни, изучаемых с помощью микроскопа. Основные свойства вирусов: поражение вирусами лимфоцитов, особенность образовывать включения Оспа, бешенство, корь. Виды вирусных болезней: продуктивные, персистирующие.

    презентация [186,2 K], добавлен 12.12.2011

  • Классификация мочегонных средств, их разновидности и функциональные особенности. Преимущества растительных лекарственных средств перед синтетическими препаратами. Лекарственные растения и препараты растительного происхождения, применяемые в нефрологии.

    курсовая работа [108,6 K], добавлен 06.10.2015

  • Проблемы борьбы с вирусами - возбудителями заболеваний. История открытия вирусов, их формы. Многообразие строения вирусов. Особенности вирусов, их классификация и этапы жизнедеятельности. Анализ строения бактериофага. Вирусные заболевания человека.

    презентация [576,5 K], добавлен 12.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.