Методы электрофизиологических исследований. Съем биопотенциалов

Задачи и методы электрофизиологических исследований. Источники возникновения биопотенциалов. Особенности исследования тонкой структуры биоэлектрических сигналов. Характеристика методов исследований низкоамплитудных составляющих электрокардиограммы.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 22.12.2010
Размер файла 19,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МЕТОДЫ ЭЛЕКТРОФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ. СЪЕМ БИОПОТЕНЦИАЛОВ

Введение

Объективность методов электрофизиологических исследований, их высокая информативность и хорошая воспроизводимость получаемых результатов в сочетании с минимально возможным воздействием на обследуемого определили их широкое распространение в клинической практике.

К настоящему времени в данной области деятельности накоплен значительный опыт, выделились самостоятельные направления исследований, достаточно хорошо разработана соответствующая методология.

Любое электрофизиологическое исследование можно представить тремя последовательными этапами: съем, регистрация и обработка сигналов биоэлектрической активности.

Специфические особенности, присущие конкретному методу реализации каждого из этапов, определяют комплекс требований и ограничений на возможную реализацию остальных.

На протяжении нескольких десятилетий достоверность получаемых результатов ограничивалась техническими возможностями средств регистрации и отображения информации. Это сдерживало развитие методов автоматической обработки биоэлектрических сигналов. Развитие микроэлектроники и средств вычислительной техники в последние десятилетия, позволяет, с одной стороны, практически исключить инструментальные искажения, а с другой - применять методы цифровой обработки сигналов, реализация которых была ранее невозможна.

Сравнение эффективности различных диагностических методов показывает, что наиболее полезная информация о функционировании внутренних органов и физиологических систем организма содержится в биоэлектрических сигналах, снимаемых с различных участков под кожным покровом или с поверхности тела.

Прежде всего это относится к электрической активности сердца, электрическому полю головного мозга, электрическим потенциалам мышц. Именно эти важнейшие электрофизиологические процессы требуют особого внимания и создания электронной аппаратуры для решения конкретных задач их анализа в диагностических целях.

Особое место среди электрофизиологических методов диагностики занимает измерение и обработка электрокардиосигнала. Это связано с тем, что электрокардиограмма является основным показателем, который в настоящее время позволяет вести профилактический и лечебный контроль за сердечно-сосудистыми заболеваниями.

Эффективности электрокардиографических методов диагностики способствует развитая и устоявшаяся система отведений и широкое использование количественных показателей ЭКГ.

В последнее время в электрокардиографии интенсивно развивается направление, связанное с регистрацией и анализом низкоуровневых составляющих кардиосигнала. Опыт исследований в этой области позволяет говорить о перспективности анализа тонкой структуры ЭКГ для диагностики различных патологий сердечно-сосудистой системы на стадии их возникновения.

В последние годы электропунктура привлекает все большее внимание врачей различных специализаций, существенно расширяя арсенал диагностических и лечебных приемов.

Базируясь на принципах традиционной восточной медицины, электропунктура позволяет по-новому взглянуть на причинно-следственные взаимозависимости многих заболеваний.

Развитие электрофизиологических методов диагностики требует совершенствования традиционных и создания новых методик исследования, разработки современных электронных приборов для их реализации.

1. Источники возникновения биопотенциалов

Электрофизиология - область физиологии, изучающая электрические явления в живом организме и действие электрического тока на организм. Электрофизиологические методы глубоко проникли в клиническую практику, являясь часто основными при оценке функционального состояния различных органов и тканей в процессе диагностики и лечения заболеваний.

Электрофизиология изучает электрическое проявление жизнедеятельности клеток, тканей и органов для выяснения их природы, возможного физиологического значения, а также использования в качестве точных показателей функционирования.

Известен целый ряд методов и средств диагностики, основанных на регистрации биоэлектрических сигналов, генерируемых различными органами и структурами человеческого организма.

Регистрация биопотенциалов, возникающих на поверхности тела, может производиться длительно и многократно без каких-либо болезненных ощущений или вредного действия на организм. Это важное достоинство наряду с большой информативностью явилось одной из причин, способствовавших развитию и широкому распространению биоэлектрических методов исследований.

В зависимости от вида органов, биоэлектрическая активность которых изучается, различают следующие основные методы электрофизиологических исследований:

электрокардиографию - исследование электрической активности сердца;

электроэнцефалографию - исследование электрической активности головного мозга;

электромиографию - исследование электрической активности мышц;

электроокулографию - исследование изменения потенциалов, обусловленных движением глазного яблока;

электрогастрографию - анализ электрических сигналов, вызванных деятельностью желудка и кишечника.

Приведенный перечень может быть значительно расширен, в том числе в направлении изучения электрической активности групп и даже отдельных клеток живых тканей. Однако при решении диагностических задач в клинической практике наибольшее распространение получили названные методы исследований.

Каждый класс электрофизиологических исследований обычно включает несколько разновидностей, различающихся методически. Например, выделяют скалярную и векторную электрокардиографию, электро-кардиотопографию. Электроэнцефалография может быть дополнена методами регистрации на поверхности и в глубинных структурах головного мозга.

Исследование механизма возникновения биопотенциалов с позиций теории электролитической диссоциации позволило установить ряд факторов, объясняющих биогенез в живых тканях. Важнейшим обстоятельством является существенное отличие химического состава цитоплазмы клеток от жидкости межклеточного пространства.

Например, в цитоплазме нервных и мышечных клеток концентрация ионов калия в 30-40 раз больше, а концентрация ионов натрия в 10 раз меньше, чем в межклеточной жидкости.

Разность ионных концентраций создает условия для выравнивания содержания ионов внутри и вне клетки. Этому препятствует клеточная мембрана. Мембранные процессы обуславливают их избирательную проводимость для разных ионов.

Вследствие этого диффузия катионов и анионов через клеточные мембраны протекает с неодинаковой скоростью, что при наличии градиентов концентрации служит непосредственной причиной возникновения мембранных потенциалов.

Расчетные и экспериментальные данные свидетельствуют, что все клетки организма в условиях покоя характеризуются определенной степенью поляризации. Клеточная мембрана всегда заряжена, при этом ее внутренняя поверхность отрицательна относительно межклеточной среды. Эта разность потенциалов для разных клеток различна, но всегда составляет десятки милливольт.

Потенциал покоя создается за счет более быстрой диффузии через клеточную мембрану катионов калия по сравнению с анионами органических полимеров, содержащихся в цитоплазме. Избирательная проницаемость мембраны обеспечивает возникновение разности потенциалов, которая препятствует полному выравниванию концентрации ионов между клеткой и средой.

Потенциал покоя характеризует возбудимость живых тканей, т. е. способность их изменять свойства и состояние под действием раздражителя.

Признаком возбуждения ткани является возникновение потенциала действия вследствие изменения ионной проницаемости клеточной мембраны. Согласно предположениям, при возбуждении ткани на доли секунды изменяется соотношение значений проницаемости мембраны для ионов калия и натрия. Такое изменение приводит к ускорению диффузии через мембрану катионов натрия внутри клетки и изменению разности потенциалов между внутренней и внешней ее стенками.

Возникает скачок потенциала - потенциал инверсии. Величина его различна для различных тканей, но всегда имеет положительный знак относительно потенциала покоя и достигает нескольких десятков милливольт. В момент появления потенциала действия на мембране наблюдается инверсия поляризации - внутренняя поверхность заряжается положительно относительно межклеточной среды.

Это состояние называется деполяризацией. Возврат к исходной поляризации называется реполяризацией.

Характерной особенностью потенциала действия является его способность распространяться вдоль клеточной мембраны из области локального возбуждения, вследствие чего происходит распространение возбуждения по тканям. Параметром, определяющим распространение волны возбуждения вдоль волокон, является скорость ее распространения, на которую существенно влияют емкость мембраны и сопротивление цитоплазмы волокна.

Особое место среди процессов передачи возбуждения в клеточных популяциях занимает синаптическая передача возбуждения между клетками. При тесном контакте между взаимодействующими клетками возможно возникновение электрической передачи за счет локальных токов мембраны возбужденной клетки.

При больших расстояниях между ними возбуждение распространяется при помощи органических химических веществ, синтезируемых в организме, -медиаторов.

Мембранные потенциалы, возбудимость клеточных структур и тканей могут изменяться под влиянием ничтожных изменений физических и биохимических факторов. Поэтому значения биопотенциалов являются очень тонким индикатором состояния клеток и клеточных структур, тканей, органов.

Однако большинство методов электрофизиологических исследований предназначены для изучения биопотенциалов не одной клетки или процессов возбуждения группы клеток.

Например, с помощью электрокардиографии изучаются электрические процессы, протекающие в самом сердце. При этом отображается биоэлектрогенез сердца и регистрируются суммарные потенциалы действия сердечной мышцы, причем отведение этих потенциалов осуществляется с поверхности тела на значительном расстоянии от генератора.

Распространение волны возбуждения по сердцу находит отражение в форме электрокардиограммы. Естественно, что каждому положению отводящих электродов на поверхности тела соответствуют определенные форма и амплитуда сигналов.

Еще более сложная ситуация возникает в электроэнцефалографии, так как головной мозг характеризуется большим разнообразием клеточных структур и сложным характером взаимодействия между ними. Электрическую активность мозга в функциональном отношении делят на спонтанную (фоновую), наблюдаемую при отсутствии специальных внешних раздражителей, и активную, появляющуюся на фоне спонтанной активности при прямом раздражении нервных клеток мозга.

Различие причин появления активности порождает разнообразие методов регистрации биопотенциалов, способов их интерпретации и диагностического использования.

Сложность и многообразие форм биоэлектрических сигналов, задач исследования и методов регистрации, неоднозначность и нелинейность зависимости параметров сигналов от внешних условий затрудняют использование электрофизиологических методов диагностики.

Поэтому при изучении биоэлектрических процессов в организме необходимо тщательно контролировать как способ отведения биопотенциалов, подбирая адекватную решаемой задаче систему отведений и тип электрода, так и способ обработки сигналов с целью наиболее полного извлечения из них физиологической информации.

2. Особенности исследования тонкой структуры биоэлектрических сигналов

Общей тенденцией современного этапа развития методов диагностики функционального состояния органов и систем человека является извлечение максимума информации при минимальном воздействии на организм пациента.

Наиболее распространенной методикой неинвазивных исследований в биологии и медицине является регистрация и анализ сигналов электрической активности, сопровождающей протекание физиологических процессов в живых тканях.

Развитие средств обработки электрических сигналов и совершенствование вычислительной техники создают условия для совершенствования диагностических методов, при этом возможно два принципиально различных подхода.

Первый направлен на автоматизацию традиционных алгоритмов врачебного анализа, освобождая медицинский персонал от утомительной работы, устраняя субъективизм при получении результатов. Второй подход предполагает использование специальных вычислительных процедур, позволяющих извлекать из сигнала информацию, которую в принципе невозможно получить при визуальном анализе записи.

При этом класс применяемых алгоритмов весьма обширен - от стандартных процедур статистической обработки до сложных процедур распознавания образов.

Некоторые ограничения соответствующих алгоритмов обусловлены неоднозначностью медицинской интерпретации получаемых результатов и требуют набора статистики с целью верификации и их клинического обоснования.

Важным аспектом, требующим внимания при синтезе алгоритмов обработки электрофизиологических процессов, является многоуровневость их структуры, что предполагает последовательную многоступенчатую обработку.

При этом извлеченная на начальных этапах обработки информация используется на последующих этапах, а во многих случаях открывает возможности для применения итерационных процедур уточнения результатов.

электрофизиологический исследование кардиограмма биопотенциал

3. Методы, проблемы и перспективы исследований низкоамплитудных составляющих ЭКГ

Теория обнаружения и оценивания параметров низкоамплитудных сигналов к настоящему времени является достаточно хорошо разработанной, однако прямое применение ряда классических решений к исследованию биоэлектрических сигналов затруднено, а часто невозможно.

В первую очередь это обусловлено значительной степенью априорной неопределенности относительно свойств сигналов и помех, определяемой, в основном, индивидуальными особенностями пациентов. Существует ряд подходов и рекомендаций к количественному описанию и преодолению априорной неопределенности.

Низкоамплитудные составляющие ЭКГ могут иметь как стационарный, так и нестационарный характер. Задача исследования нестационарных составляющих может быть сформулирована и решена как задача обнаружения при сложной гипотезе и минимальных априорных сведениях о сигналах и помехах. Более неопределенна постановка задачи исследования стационарных низкоамплитудных компонент ЭКГ.

Основным звеном метода является процедура вычисления сигнал-усредненной ЭКГ. Проблемы метода заключаются в интерпретации «всплесков» СУ-ЭКГ (выделение из полного сигнала информативных составляющих - микропотенциалов) и стандартизации методик. Рассмотрим основные подходы к анализу.

Метод временного анализа. Наиболее распространенной к настоящему времени методикой исследований потенциалов замедленной деполяризации желудочков сердца стала методика, предложенная американским ученым М. Симеоном в 1981 г. и принятая в качестве соответствующего стандарта обработки сигнала ЭКГ организацией American Heart Association в 1991 г.

Регистрация сигналов осуществляется в ортогональных отведениях X, Y, Z по системе Франка. Вычисление сигнал-усредненной ЭКГ производится раздельно в каждом канале в соответствии с формулой.

Обнаружение кардиокомплексов осуществляется корреляционным методом с использованием статистики. Усреднение продолжается до тех пор, пока уровень шума в СУ-ЭКГ не уменьшится до значения 0,7 мкВ, что практически достигается при накоплении нескольких сотен кардиокомплексов.

Усредненные сигналы каждого из отведений фильтруются полосовым фильтром Баттерворта 4-го порядка, значения частот среза по уровню -3 дБ составляют 40 и 250 Гц для выделения именно высокочастотных составляющих сигнала ЭКГ.

Метод спектрального анализа. Спектральный анализ низкоамплитудных сигналов ЭКГ основан на предположении об их высокочастотном спектральном составе и использует соответствующие критерии для измерения содержания ВЧ-компонент в СУ-ЭКГ. В простейшем случае вычисляется спектр анализируемого участка сигнала (сегмента ST) посредством дискретного преобразования Фурье. Для уменьшения эффектов утечки используется одно из распространенных сглаживающих окон.

Достоинство временного подхода - возможность оценки момента возникновения сигнала, спектрального - хорошая физическая интерпретация свойств сигнала на определенном участке. В самые последние годы развиваются методы, основанные на синтезе этих двух подходов.

Размещено на Allbest.ru


Подобные документы

  • Клинико-лабораторная гематология (гемоцитология и коагулогия). Клиническая микробиология (бактериология, микология, вирусология). Цитология и диагностическая генетика. Токсикология и паразитология. Лабораторный контроль (мониторинг) лекарственной терапии.

    реферат [28,2 K], добавлен 24.01.2011

  • Распределение типов медицинских исследований. Обзор первичных исследований, использующих точные и воспроизводимые методы. Основные мотивы для проведения мета-анализа, его особенности на примере влияния антибиотикотерапии на течение острого бронхита.

    презентация [1,3 M], добавлен 12.11.2013

  • История проведения рандомизированных контролируемых клинических исследований, являющихся фундаментом доказательной медицины. Неконтролируемое клиническое испытание, применяемое для оценки новых методов лечения и диагностики. Основные формы рандомизации.

    презентация [855,7 K], добавлен 25.05.2015

  • Методы экстирпации и подсадки. Двусторонняя овариоэктомия. Методы введения фармацевтических препаратов лабораторным животным. Методы биологического тестирования. Биохимические методы в физиологии. Электрофизиологические методы.

    курс лекций [84,1 K], добавлен 02.04.2007

  • Понятие инфектологии и инфекционного процесса. Основные признаки, формы и источники инфекционных болезней. Виды болезнетворных микроорганизмов. Периоды инфекционной болезни у человека. Методы микробиологических исследований. Методы окраски мазков.

    презентация [3,2 M], добавлен 25.12.2011

  • Рентгенологические, эндоскопические, радиоизотопные, ультразвуковые и функциональные методы исследования. Использование разных контрастных веществ для различных органов человека. Последовательность действий при различных методах исследований пациентов.

    презентация [1,8 M], добавлен 07.11.2013

  • Особенности клинической диагностики сердечно-сосудистой системы спортсменов. Методы исследования электрической и механической деятельности сердца и сосудов. Систолическое давление в легочной артерии. Обработка результатов диагностических исследований.

    курсовая работа [1,5 M], добавлен 06.04.2015

  • Факторы, определяющие уровень доказательности рекомендаций. Выявление исследований, данных, оценка их качества по оценочным таблицам. Число исследований и количество включенных больных. Иерархия типов исследований. Алгоритм проведения мета-анализа.

    презентация [54,2 K], добавлен 23.09.2015

  • Автоматические методы анализа клеток крови. Основные источники ошибок при подсчете эритроцитов и лейкоцитов в камере. Особенности влияния различных факторов на результаты исследования крови. Информативность и достоверность гематологических тестов.

    реферат [44,1 K], добавлен 20.12.2012

  • Долевое и сегментарное строение легких. Рентгеноанатомия органов дыхания и грудной клетки. Схема деления легочных артерий. Методы исследований органов грудной клетки. Лимфатическая система легких. Лучевые методы исследований при патологии органов дыхания.

    презентация [2,4 M], добавлен 06.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.