Радиация и здоровье человека

Открытие явления радиоактивности и его сущность. Виды корпускулярного, электромагнитного и естественных источников излучения. Последствия влияния радиации на взрослый организм и развитие плода. Недостаточность знаний о влиянии малых доз радиации.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 15.12.2010
Размер файла 57,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

20

московский государственный

медикостоматологический университет

Кафедра гигиены

РЕФЕРАТ

Радиация и здоровье человека

Выполнила

студентка 30 группы 2 курса

стоматологического факультета

Румянцевой О.В.

Москва 2010

Оглавление

Введение

1. Радиация

1.1 Корпускулярное излучение

1.2 Электромагнитное излучение

2. Механизм передачи энергии радиации веществу

3. Воздействие радиации на ткани живого организма: фазы и биологическая эффективность различных видов излучений

3.1 Характер передачи энергии органам и тканям живого организма различными видами излучений

4. Дозы излучения и единицы измерения

5. Естественные источники радиации

5.1 Космическое излучение

5.2 Космогенные радионуклиды

5.3 Внешнее облучение от радионуклидов земного происхождения

5.4 Внутреннее облучение от радионуклидов земного происхождения

6. Радиация от источников, созданных человеком

7. Последствия влияния радиации на взрослый организм

8. Влияние радиации на развитие плода

8.1 Действие радиации на эмбрион и плод

9. Недостаточность современных знаний о влиянии малых доз радиации

10. Биологические эффекты радиации на клеточном уровне

11. Проблемы, связанные с нормированием воздействия радиации

12. Приемлемый уровень облучения

Заключение

Введение

Человек живет в условиях постоянного воздействия естественного радиационного фона, который, как температура и свет, является необходимым условием для его жизнедеятельности. Само зарождение жизни на Земле и ее последующая эволюция протекали в условиях постоянного воздействия радиации. В последние годы принципиально изменились представления о реакциях различных биологических систем (от клетки до популяции) на воздействие ионизирующего излучения.

Явление радиоактивности было открыто в 1896 году французским ученым Анри Беккерелем, В настоящее время оно широко используется в науке, технике, медицине, промышленности. Радиактивные элементы естественного происхождения присутствуют повсюду в окружающей человека среде. В больших объемах образуются искусственные радионуклиды, главным образом в качестве побочного продукта на предприятиях оборонной промышленности и атомной энергетики. Попадая в окружающую среду они оказывают воздействия на живые организмы, в чем и заключается их опасность. Для правильной оценки этой опасности необходимо четкое представление о масштабах загрязнения окружающей среды, о реальных механизмах действия радиации, последствиях и существующих мерах защиты.

В массовом сознании населения доминирует настороженное отношение к производствам, деятельность которых приводит к образованию радиоактивных изотопов и в первую очередь к предприятиям ядерного цикла. Этому способствуют как объективные (крупные аварии), так и субъективные (некомпетентность, искаженная картина в средствах массовой информации) факторы.

Работа предприятий ядерного цикла в режиме нормальной эксплуатации не наносит человеку сколько-нибудь заметного вреда и значительно безопаснее последствий других видов деятельности. Аварии на АЭС значительно увеличивают экологическую угрозу, но не в большей степени, чем аварии на крупных химических производствах, бесконтрольное использование пестицидов и минеральных удобрений, аварии на транспорте и т.д.

Радиация, связанная с нормальным развитием ядерной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека. Значительно большие дозы мы получаем от других источников, вызывающих меньше нареканий. Применение рентгеновских лучей в медицине, сжигание угля, использование воздушного транспорта, пребывание в хорошо герметизированных помещениях могут привести к значительному увеличению уровня облучения. Хорошее знание свойств радиации и ее воздействия позволяет свести к минимуму связанный с ее использованием риск и оценить те блага, которые приносит человеку применение достижений ядерной физики в различных сферах. Однако, рефреном многих тысяч научных статей и сотен книг, опубликованных на Западе и Востоке и написанных учеными, связанными с развитием атомной индустрии, служит тезис о принципиальной допустимости, приемлемости, а порой даже благотворности, влияния малых доз искусственной радиации на живое, включая человека.

В этом огромном потоке литературы для широкого читателя теряются крайне тревожные работы, говорящие об обратном, об опасности влияния искусственной, дополнительной к естественному радиационному фону, радиации на живое даже в малых дозах. Особое внимание именно к малым дозам радиации понятно: общество интуитивно защищается от возможных опасностей, и линия этой защиты выражается в установлении приемлемых уровней облучения - норм радиационной безопасности. Эти нормы отражают уровень общественного понимания и ощущения опасности.

Поскольку искусственная радиация самыми разными путями все активнее вторгается в жизнь человечества (кроме атомной энергетики это и медицина, и пищевая промышленность, и строительство, и транспорт, и оборона), то хотя бы из чувства самосохранения мы должны вовремя обнаруживать возможные опасности. Это особенно важно потому, что энтузиасты атомных технологий с помощью финансируемых ими институтов и экспертов вольно или невольно стараются приуменьшить такие опасности и убрать их вообще из поля зрения общества. Делается это под вполне благовидными требованиями "не нагнетать радиофобию и оставить решение вопросов специалистам". Однако именно для того, чтобы не распространялась радиофобия, общество должно знать реальные опасности и факты. Нельзя и оставить этот вопрос для решения специалистов. Ниже будет показано, как глубоко наше незнание в области воздействия малых доз радиации.

1. Радиация

Радиация - обобщенное понятие. Оно включает различные виды излучений, часть которых встречается в природе, другие получаются искусственным путем. Прежде всего следует различать корпускулярное и электромагнитное излучение.

1.1 Корпускулярное излучение

Корпускулярное излучение состоит из частиц с массой отличной от нуля, как заряженных, так и из нейтральных.

Альфа-излучение - представляет собой ядра гелия, которые испускаются при радиоактивном распаде элементов тяжелее свинца или образуются в ядерных реакциях. Бета-излучение - это электроны или позитроны, которые образуются при бета-распаде различных элементов от самых легких (нейтрон) до самых тяжелых. Космическое излучение состоит преимущественно из протонов и ядер гелия. Более тяжелые элементы составляют менее 1%. Проникая вглубь атмосферы, космическое излучение взаимодействует с ядрами, входящими состав атмосферы, и образует потоки вторичных частиц (мезоны, гамма-кванты, нейтроны и др.). Нейтроны. Образуются в ядерных реакциях (в ядерных реакторах и в других промышленных и исследовательских установках, а также при ядерных взрывах). Продукты деления. Содержатся в радиоактивных отходах переработанного топлива ядерных реакторов.

Радионуклиды - радиоактивные атомы с данным массовым числом и атомным номером, а для изомерных атомов - и с данным определенным энергетическим состоянием атомного ядра. Радионуклиды (и нерадиоактивные нуклиды) элемента иначе называют его изотопами.

1.2 Электромагнитное излучение

Электромагнитное излучение имеет широкий спектр энергий и различные источники (табл.1):

- гамма-излучение атомных ядер,

- тормозное излучение ускоренных электронов,

- радиоволны.

Таблица 1.

Характеристики электромагнитных излучений.

Энергия,эВ

Длинаволны, м

Частота,Гц

Источник излучения

109

10-16

1024

Тормозное излучение

105

10-12

1020

Гамма излучение ядер

103

10-10

1018

Рентгеновское излучение

101

10-8

1016

Ультрафиолетовое излучение

10-1

10-6

1014

Видимый свет

10-3

10-4

1012

Инфракрасное излучение

10-5

10-2

1010

Микроволновое излучение

10-7

100

108

СВЧ

10-9

102

106

Радиоволны ВЧ

10-11

104

104

Радиоволны НЧ

2. Механизм передачи энергии радиации веществу

Различные виды радиации по разному взаимодействуют с веществом в зависимости от типа испускаемых частиц, их заряда, массы и энергии. Заряженные частицы ионизируют атомы вещества, взаимодействуя с атомными электронами. Нейтроны и гамма-кванты, сталкиваясь с заряженными частицами в веществе, передают им свою энергию, в случае гамма-квантов возможно также рождение электрон-позитронных пар. Эти вторичные заряженные частицы, тормозясь в веществе, вызывают его ионизацию.

Воздействие излучения на вещество на промежуточном этапе приводит к образованию быстрых заряженных частиц и ионов. Радиационные повреждения вызываются в основном этими вторичными частицами, так как они взаимодействуют с большим количеством атомов, чем частицы первичного излучения. В конечном итоге энергия первичной частицы трансформируется в кинетическую энергию большого количества атомов среды и приводит к ее разогреву и ионизации.

3. Воздействие радиации на ткани живого организма: фазы и биологическая эффективность различных видов излучений

В органах и тканях биологических объектов как и в любой среде при облучении в результате поглощения энергии идут процессы ионизации и возбуждения атомов. Эти процессы лежат в основе биологического действия излучений. Его мерой служит количество поглощенной в организме энергии. В реакции организма на облучение можно выделить четыре фазы. Длительность первых трех быстрых фаз не превышает единиц микросекунд, в течение которых происходят различные молекулярные изменения. В четвертой медленной фазе эти изменения переходят в функциональные и структурные нарушения в клетках, органах и организме в целом. Первая, физическая фаза ионизации и возбуждения атомов длится 10-13сек. Вo второй, химико-физической фазе, протекающей 10-10сек образуются высокоактивные в химическом отношении радикалы, которые, взаимодействуя с различными соединениями, дают начало вторичным радикалам, имеющим значительно большие по сравнению с первичными сроки жизни. В третьей, химической фазе, длящейся 10сек, образовавшиеся радикалы, вступают в реакции с органическими молекулами клеток, что приводит к изменению биологических свойств молекул. Описанные процессы первых трех фаз являются первичными и определяют дальнейшее развитие лучевого поражения. В следующей за ними, четвертой, биологической фазе химические изменения молекул преобразуются в клеточные изменения. Наиболее чувствительным к облучению является ядро клетки, а наибольшие последствия вызывает повреждение ДНК, содержащей наследственную информацию. В результате облучения в зависимости от величины поглощенной дозы клетка гибнет или становится неполноценной в функциональном отношении. Время протекания четвертой фазы очень различно и в зависимости от условий может растянуться на годы или даже на всю жизнь. Различные виды излучений характеризуются различной биологической эффективностью, что связано с отличиями в их проникающей способности (рисунок 1) и характером передачи энергии органам и тканям живого объекта, состоящего в основном из легких элементов (таблица 2).

Таблица 2.

Химический состав мягкой ткани и костей в организме человека

Элемент

Заряд, Z

Процентное отношение по;весу

Мягкая ткань

кости

Водород

1

10.2

6.4

Углерод

6

12.3

27.8

Азот

7

3.5

2.7

Кислород

8

72.9

41.0

Натрий

11

0.08

-

Магний

12

0.02

0.2

Фосфор

15

0.2

7.0

Сера

16

0.5

0.2

Калий

19

0.3

-

Кальций

20

0.007

14.7

3.1 Характер передачи энергии органам и тканям живого организма

различными видами излучений

Альфа-излучение имеет малую длину пробега частиц и характеризуется слабой проникающей способностью. Оно не может проникнуть сквозь кожные покровы. Пробег альфа-частиц с энергией 4 Мэв в воздухе составляет 2.5 см, а в биологической ткани лишь 31мкм. Альфа-излучающие нуклиды представляют большую опасность при поступлении внутрь организма через органы дыхания и пищеварения, открытые раны и ожоговые поверхности. Бета-излучение обладает большей проникающей способностью. Пробег бета-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так пробег электронов с энергией 4 Мэв в воздухе составляет 17.8м, а в биологической ткани 2.6см. Гамма-излучение имеет еще более высокую проникающую способность. Под его действием происходит облучение всего организма. Биологический эффект от действия тепловых нейтронов в основном обусловлен процессами: Н(n,)2H и l4N(n,p)l4C Сечения этих реакций составляют соответственно 0.33 и 1.76барн. Основной эффект воздействия на биологическую ткань происходит под действием протонов, образующихся в реакции (n,р) и теряющих всю свою энергию в месте рождения. Для медленных нейтронов сечения захвата нейтронов малы. Большая часть энергии расходуется на возбуждение и расщепление молекул ткани. Для быстрых нейтронов до 90% энергии в ткани теряется при упругом взаимодействии. При этом решающее значение имеет рассеяние нейтронов на протонах. Дальнейшее выделение энергии происходит в результате ионизации среды протонами отдачи.

4. Дозы излучения и единицы измерения

радиация излучение радиоактивность

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 3 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Таблица 3.

Основные радиологические величины (понятия) и единицы для описания влияния ионизирующих излучений на вещество

Величина

Наименование и обозначение единицы измерения

Соотношения междуединицами

Внесистемные

Си

Активность нуклида, А

Кюри (Ки, Ci)

Беккерель (Бк, Bq)

1Ки=3.7*1010Бк1Бк=1расп/с1Бк=2.7*10-11Ки

Экспозицион-ная доза, X

Рентген (Р, R)

Кулон/кг(Кл/кг, C/kg)

1 Р=2.58*10-4Кл/кг1 Кл/кг=3.88*103 Р

Поглощенная доза, D

Рад (рад, rad)

Грей (Гр, Gy)

1 рад-10-2 Гр1 Гр=1 Дж/кг

Эквивалентная доза, Н

Бэр (бэр, rem)

Зиверт (Зв, Sv)

1 бэр=10-2 Зв 1 Зв=100 бэр

Интегральная доза излучения

Рад-грамм (рад*г, rad*g)

Грей- кг (Гр*кг, Gy*kg)

1 рад*г=10-5 Гр*кг1 Гр*кг=105 рад*г

Для описания влияния ионизирующих излучений на вещество используются следующие понятия и единицы измерения: Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt): A = dN/dt. Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц: X = dQ/dm. Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы. Поглощенная доза (D) - основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме: D = dE/dm. Единица поглощенной дозы - Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества. Эквивалентная доза (Н). Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы Dr, созданной облучением - r и усредненной по анализируемому органу или по всему организму, на весовой множитель wr (называемый еще - коэффициент качества излучения)(таблица 4).

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).

Таблица 4.

Весовые множители излучения

Вид излучения и диапазон энергий

Весовой множитель

Фотоны всех энергий

1

Электроны и мюоны всех энергий

1

Нейтроны с энергией < 10 КэВ

5

Нейтроны от 10 до 100 КэВ

10

Нейтроны от 100 КэВ до 2 МэВ

20

Нейтроны от 2 МэВ до 20 МэВ

10

Нейтроны > 20 МэВ

5

Протоны с энергий > 2 МэВ (кроме протонов отдачи)

5

а-частицы, осколки деления и другие тяжелые ядра

20

Влияние облучения носит неравномерный характер. Для оценки ущерба здоровью человека за счет различного характера влияния облучения на разные органы (в условиях равномерного облучения всего тела) введено понятие эффективной эквивалентной дозы Еэфф применяемое при оценке возможных стохастических эффектов - злокачественных новообразований. Эффективная доза равна сумме взвешенных эквивалентных доз во всех органах и тканях:

где wt - тканевый весовой множитель (таблица 5), а Ht -эквивалентная доза, поглощенная в ткани - t. Единица эффективной эквивалентной дозы - Зиверт.

Таблица 5.

Значения тканевых весовых множителей wt для различных органов и тканей.

Ткань или орган

wt

Ткань или орган

wt

Половые железы

0.20

Печень

0.05

Красный костный мозг

0.12

Пищевод

0.05

Толстый кишечник

0.12

Щитовидная железа

0.05

Легкие

0.12

Кожа

0.01

Желудок

0.12

Поверхность костей

0.01

Мочевой пузырь

0.05

Остальные органы

0.05

Молочные железы

0.05

Коллективная эффективная эквивалентная доза. Для оценки ущерба здоровью персонала и населения от стохастических эффектов, вызванных действием ионизирующих излучений, используют коллективную эффективную эквивалентную дозу S, определяемую как:

где N(E) - число лиц, получивших индивидуальную эффективную эквивалентную дозу Е. Единицей S является человеко-Зиверт (чел-Зв).

5. Естественные источники радиации

Избежать облучения ионизирующим излучением невозможно. Жизнь на Земле возникла и продолжает развиваться в условиях постоянного облучения. Радиационный фон Земли складывается из трех компонентов:

1) космическое излучение;

2) излучение от рассеянных в земной коре, воздухе и других объектах внешней среды природных радионуклидов;

3) излучение от искусственных (техногенных) радионуклидов. Облучение по критерию месторасположения источников излучения делится на внешнее и внутреннее. Внешнее облучение обусловлено источниками, расположенными вне тела человека. Источниками внешнего облучения являются космическое излучение и наземные источники. Источником внутреннего облучения являются радионуклиды, находящиеся в организме человека.

5.1 Космическое излучение

Космическое излучение складывается из частиц, захваченных магнитным полем Земли, галактического космического излучения и корпускулярного излучения Солнца. В его состав входят в основном электроны, протоны и альфа-частицы. Это так называемое первичное космическое излучение, взаимодействуя с атмосферой Земли, порождает вторичное излучение. В результате на уровне моря излучение состоит почти полностью из мюонов (подавляющая часть) и нейтронов. Поглощенная мощность дозы космического излучения в воздухе на уровне моря равна 32нГр/час и формируется в основном мюонами. Для нейтронов на уровне моря мощность поглощенной дозы составляет 0.8 нГр/час и мощность эквивалентной дозы составляет 2.4нЗв/час. За счет космического излучения большинство населения получает дозу, равную около 0.35мЗв в год. Космическому внешнему облучению подвергается вся поверхность Земли. Однако облучение это неравномерно. Интенсивность космического излучения зависит от солнечной активности, географического положения объекта и возрастает с высотой над уровнем моря. Наиболее интенсивно оно на Северном и Южном полюсах, менее интенсивно в экваториальных областях. Причина этого - магнитное поле Земли, отклоняющее заряженные частицы космического излучения. Наибольший эффект действия космического внешнего облучения связан с зависимостью космического излучения от высоты. Солнечные вспышки представляют большую радиационную опасность во время космических полетов. Космические лучи, идущие от Солнца, в основном состоят из протонов широкого энергетического спектра (энергия протонов до 100 МзВ), Заряженные частицы от Солнца способны достигать Земли через 15-20 мин после того, как вспышка на его поверхности становится видимой. Длительность вспышки может достигать нескольких часов.

Величина дозы радиоактивного облучения, получаемая человеком, зависит от географического местоположения, образа жизни и характера труда. Например, на высоте 8 км мощность эффективной дозы составляет 2 мкЗв/час, что приводит к дополнительному облучению при авиаперевозках. При трансконтинентальном перелете на обычном турбовинтовом самолете, летящем со скоростью ниже скорости звука (Тполета7.5 часа), индивидуальная доза, получаемая пассажиром (50мкЗв), на 20 % больше, чем доза, полученная пассажиром сверхзвукового самолета (Тполета2.5 часа) (40мкЗв), хотя последний подвергается более интенсивному облучению из-за большей высоты полета. Коллективная эффективная доза от глобальных авиаперевозок достигает 104чел-Зв, что составляет на душу населения в мире в среднем около 1 мкЗв за год, а в Северной Америке около 10мкЗв.

5.2 Космогенные радионуклиды

В результате ядерных реакций, идущих в атмосфере (а частично и в литосфере) под влиянием космических лучей, образуются радиоактивные ядра - космогенные радионуклиды. Например,

n + 14N 3H + 12C , p + 14N n + 14C

В создание дозы наибольший вклад вносят 3H, 7Be, 14C и 22Na которые поступают вместе с пищей в организм человека. Взрослый человек потребляет с пищей 95 кг углерода в год при средней активности на единицу массы углерода 230 Бк/кг. Суммарный вклад космогенных радионуклидов в индивидуальную дозу составляет около 15 мкЗв/год.

5.3 Внешнее облучение от радионуклидовземного происхождения

В настоящее время на Земле сохранилось 23 долгоживущих радиоактивных элемента с периодами полураспада от 107 лет и выше. В трех радиоактивных семействах: урана (238U), тория (232Th) и актиния (235АС) в процессах радиоактивного распада постоянно образуется 40 радиоактивных изотопов. Средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников, составляет около 0.35мЗв, т.е. чуть больше средней индивидуальной дозы, обусловленной облучением из-за космического фона на уровне моря. Однако уровень земной радиации неодинаков в различных районах. Так, например, в 200 километрах к северу от Сан-Пауло (Бразилия) есть небольшая возвышенность, где уровень радиации в 800 раз превосходит средний и достигает 260мЗв в год. На юго-западе Индии 70 000 человек живут на узкой прибрежной полосе, вдоль которой тянутся пески, богатые торием. Эта группа лиц получает в среднем 3.8мЗв в год на человека. Как показали исследования, во Франции, ФРГ, Италии, Японии и США около 95% населения живут в местах с дозой облучения от 0.3 до 0.6мЗв в год. Около 3% получает в среднем 1 мЗв в год и около 1.5% более 1.4мЗв в год. Если человек находится в помещении, доза внешнего облучения изменяется за счет двух противоположно действующих факторов: 1) Экранирование внешнего излучения зданием. 2) Облучение за счет естественных радионуклидов, находящихся в материалах, из которого построено здание. В зависимости от концентрации изотопов 40К, 226Ra и 232Th в различных строительных материалах мощность дозы в домах изменяется от 4 10-8 до 12 10-8 Гр/ч. В среднем в кирпичных, каменных и бетонных зданиях мощность дозы в 2-3 раза выше, чем в деревянных.

5.4 Внутреннее облучение от радионуклидов земного происхождения

В организме человека постоянно присутствуют радионуклиды земного происхождения, поступающие через органы дыхания и пищеварения. Наибольший вклад в формирование дозы внутреннего облучения вносят 40К, 87Rb, и нуклиды рядов распада 238U и 232Th Средняя доза внутреннего облучения за счет радионуклидов земного происхождения составляет 1.35мЗв/год. Наибольший вклад (около 3/4 годовой дозы) дают не имеющий вкуса и запаха тяжелый газ радон и продукты его распада. Поступив в организм при вдохе, он вызывает облучение слизистых тканей легких. Радон высвобождается из земной коры повсеместно, но его концентрации в наружном воздухе существенно различается для различных точек Земного шара. Однако большую часть дозы облучения от радона человек получает, находясь в закрытом непроветриваемом помещении. В зонах с благоприятным климатом концентрация радона в закрытых помещениях в среднем примерно в 8 раз выше, чем в наружном воздухе. Источниками радона являются также строительные материалы. Так, например, большой удельной радиоактивностью обладают гранит и пемза, кальций-силикатрий, шлак и ряд других материалов. Радон проникает в помещение из земли и через различные трещины в межэтажных перекрытиях, через вентиляционные каналы и т.д. Источниками поступления радона в жилые помещения являются также природный газ и вода.

Доля домов, внутри которых концентрация радона и его ядерных продуктов равна от 103 до 104Бк/см3, составляет от 0.01 до 0.1% в различных странах. Это означает, что значительное число людей подвергаются заметному облучению из-за высокой концентрации радона внутри домов, где они живут. В качестве удобрений ежегодно используются несколько десятков млн. тонн фосфатов. Большинство разрабатываемых в настоящее время фосфатных месторождений содержит уран, присутствующий в довольно высокой концентрации. Содержащиеся в удобрениях радиоизотопы проникают из почвы в пищевые продукты, приводят к повышению радиоактивности молока и других продуктов питания. Таким образом, эффективная доза от внутреннего облучения за счет естественных источников (1.35 мЗв/год) в среднем примерно в два раза превышает дозу внешнего облучения от них (0.65 мЗв/год). Следовательно, суммарная доза внешнего и внутреннего облучения от естественных источников радиации в среднем равна 2 мЗв/год. Для отдельных контингентов населения она может быть выше. Причем максимальное превышение над средним уровнем может достигать одного порядка.

6. Радиация от источников, созданных человеком

В результате деятельности человека во внешней среде появились искусственные радионуклиды и источники излучения. В природную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из недр Земли вместе с углем, газом, нефтью, минеральными удобрениями, строительными материалами. Сюда относятся геотермические электростанции, создающие в среднем выброс около 4·1014 Бк изотопа 222Rn на 1 ГВт выработанной электроэнергии; фосфорные удобрения, содержащие 226Ra и 238U (до 70 Бк/кг в кольском апатите и 400 Бк/кг в фосфорите); уголь, сжигаемый в жилых домах и электростанциях, содержит естественные радионуклиды 40К 232U и 238U в равновесии с их продуктами распада. Роль различных искусственных источников излучений в создании радиационного фона иллюстрируется табл. 6.

Таблица 6.

Среднегодовые дозы, получаемые от естественного радиационного фона и различных искусственных источников излучения.

Источник излучения.

Доза, мбэр/год

Природный радиационныйый фон

200

Стройматериалы

140

Атомная энергетика

0.2

Медицинские исследования

140

Ядерные испытания

2.5

Полеты в самолетах

0.5

Бытовые предметы

4

Телевизоры и мониторы ЭВМ

0.1

Общая доза

500

За последние несколько десятилетий человек создал несколько тысяч радионуклидов и начал использовать их в научных исследованиях, в технике, медицинских целях и др. Это приводит к увеличению дозы облучения, получаемой как отдельными людьми, так и населением в целом. Иногда облучение за счет источников, созданных человеком, оказывается в тысячи раз интенсивнее, чем от природных источников. В настоящее время основной вклад в дозу от источников, созданных человеком, вносит внешнее радиактивное облучение при диагностике и лечении. В развитых странах на каждую тысячу населения приходятся от 300 до 900 таких обследований в год не считая массовой флюорографии и рентгенологических обследований зубов. Для исследования различных процессов, протекающих в организме и для диагностики опухолей используются также радиоизотопы, вводимые в организм человека. В промышленно развитых странах ориентировочно проводится 10 - 40 обследований на 1 млн. жителей в год. Коллективные эффективные эквивалентные дозы составляют 20 чел-Зв на 1 млн. жителей в Австралии и 150 чел-Зв в США. Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине, в промышленно развитых странах составляет 1 мЗв в год на каждого жителя, т.е. примерно половину средней дозы от естественных источников.

7. последствия влияния радиации на взрослый организм

Классическая радиобиология как самостоятельная наука начала быстро развиваться с 1896 года и в основном базировалась на данных, полученных при остром облучении биологических объектов в больших дозах. В основном эти данные были получены в экспериментальных условиях, а также в результате наблюдений за несколькими группами людей, которые подверглись облучению в результате атомных бомбардировок японских городов Хиросима и Нагасаки, испытаний ядерного оружия, радиационных аварий (авария на Чернобыльской АЭС, ПО «Маяк» и др.), наблюдений за персоналом ядерных предприятий, больными, которые получали лучевую терапию для лечения различных заболеваний. Огромное количество новых фактов, касающихся воздействия радиации, дали трагические последствия двух грандиозных радиационных катастроф: южно-уральской 1957 г. и чернобыльской 1986 г., затронувших жизни в первом случае нескольких сот тысяч человек, а во втором - многих миллионов... Таким образом, к концу 20-го века наиболее хорошо были изучены биологические эффекты действия больших доз радиации.

До 50-х годов основным фактором непосредственного воздействия радиации на взрослый организм млекопитающих, включая человека, считалось прямое радиационное поражение некоторых особо радиочувствительных органов и тканей - кожи, костного мозга и центральной нервной системы, желудочно-кишечного тракта (так называемая лучевая болезнь). Вскоре выяснилось, что огромную роль в лучевом поражении играет не только общее внешнее облучение организма, но и внутреннее облучение, связанное с концентрированном в отдельных органах и тканях так называемых инкорпорированных радионуклидов, поступивших в организм с пищей, водой, атмосферным воздухом и через кожу и задержавшихся в каких-то органах или тканях. Для оценки влияния этих радионуклидов были введены специальные понятия "поглощенной" и (для разных видов излучения) "эквивалентной" доз, измеряемых особыми условными единицами: грей (Гр) и зиверт (Зв).

В 60-70-х гг. большое внимание стали уделять не только прямым (острым), но и опосредованным и отдаленным эффектам облучения. Среди них:

· воздействие на наследственность;

· возникновение лейкозов и злокачественных опухолей;

· иммунодепрессия и иммунодефицит;

· повышение чувствительности организма к возбудителям инфекционных заболеваний;

· нарушение обмена веществ и эндокринного равновесия;

· возникновение катаракты;

· временная или постоянная стерильность;

· сокращение средней ожидаемой продолжительности жизни;

· задержка психического развития.

Среди других известных проявлений действия радиации на организм человека: появление рака в более молодом возрасте (акселерация или омоложение рака), физиологические расстройства (нарушение работы щитовидной железы и др.), сердечно-сосудистые заболевания, аллергии, хронические заболевания дыхательных путей. С течением времени список радиационно-стимулированных заболеваний не сокращается, а только растет. При этом оказывается, что весьма малые дозы способны вызвать негативные последствия для здоровья. В таблице 7 приведена общая схема влияния средних и малых доз радиации на организм человека.

Таблица 7.Воздействие средних и малых доз ионизирующей радиации на здоровье человека (Bertell, 1985).

Доза на всё тело, Гр

Немедленный результат

Отдалённый результат

0.1 - 0.5

У большинства нет реакции. У чувствительных развивается лучевая болезнь

Поражение лимфоцитов и нейтрофилов. Преждевременное старение. Генетическое поражение потомства. Увеличение риска возникновения рака.

До 0.1

Нет реакций

Преждевременное старение. Увеличение числа небольших мутаций (связанных с астмой, аллергиями и т.п.) в потомстве. Дополнительный риск возникновения рака. Возникновение уродств в потомстве.

Выяснилось также, что действие радиации на здоровье может зависеть от продолжительности воздействия: одна и та же доза радиации, получаемая за короткий промежуток времени, вызывает меньшие поражения, чем доза, полученная за длительный период (Nussbaum, 1996).

Считается общепринятым, что при превышении определенного порога дозы облучения могут развиваться так называемые детерминированные (предопределенные) эффекты облучения: лучевая болезнь, разнообразные формы лучевого повреждения кожи, лучевая катаракта и другие. Частота и степень тяжести этих патологических состояний определяются, в первую очередь, мощностью дозы облучения. Чем больше мощность дозы и доза облучения, тем больше облученных индивидуумов будут иметь проявления лучевой патологии, и тем тяжелее она будет протекать. Среди множества факторов, вызывающих детерминированные эффекты, главным является гибель клеток (летальные радиационные повреждения).

Другой группой радиационных эффектов являются стохастические эффекты. Данные эффекты не имеют порога дозы, т.е. сколь угодно малое повышение дозы может приводить к развитию этих эффектов. Предполагается, что вероятность развития таких эффектов линейно зависит от дозы облучения, т.е. чем выше доза облучения, тем выше риск развития стохастических эффектов. В основе развития стохастических эффектов радиации лежат нелетальные мутационные изменения в облученной клетке, которые не приводят ее к гибели, но которые могут привести к генетической трансформации клетки. Если такие изменения развиваются в соматических клетках организма, то у облученного индивидуума в первую очередь повышается риск развития злокачественных опухолей и лейкоза. Если подобные изменения имеют место в половых клетках облученных индивидуумов, то повышается вероятность развития неблагоприятных эффектов у их потомства. Отдельно рассматриваются эффекты облучения эмбриона и плода, которые определяются особенностями формирования организма в эти периоды и их высокой радиочувствительностью. Наиболее важными эффектами внутриутробного облучения являются антенатальная летальность, развитие врожденных пороков развития, умственная отсталость, задержка роста и развития организма.

8. Влияние радиации на развитие плода

Дополнительное к природному продолжительное облучение даже в небольших дозах влияет на развитие плода у млекопитающих: вызывает преждевременные роды, увеличивает процент мертворожденных, отрицательно сказывается на младенческой и детской смертности и общей заболеваемости.

Некоторые последствия облучения плода млекопитающих (по Ярмоненко, 1988):

· Гибель: плода, новорожденных или младенцев;

· Поражения нервной системы:

o отсутствие (анцефалия) и\или уменьшение размеров

o головного мозга (микроцефалия) и черепно-мозговых нервов;

o умственная отсталость;

o идиотия;

o заболевания мозга (нейробластома, водянка);

· Поражения органа зрения:

o отсутствие одного или обоих глаз (анофтальмия);

o недоразвитие глаз (микрофтальмия);

o поражение (вплоть до отсутствия) хрусталика;

o деформация радужной оболочки;

o поражение (вплоть до отсутствия) сетчатки;

o незакрывающиеся веки;

o косоглазие;

o дальнозоркость;

o врожденная глаукома;

· Нарушения роста и формы тела:

o карликовость ;

o задержка роста и снижение массы тела;

o изменение формы черепа;

o воронкообразная грудь;

o врожденный вывих бедра;

o деформация и атрофия конечностей;

· Нарушения в развитии зубной системы;

· Нарушения в развитии внутренних органов (сердца, почек, яичников, семенников и др.).

Первые данные об опасном влиянии малых доз радиации при внутриутробном облучении были получены еще в 1956 г.: факты, приведенные А. Стьюарт в журнале "Ланцет" (одном из наиболее серьезных медицинских журналов в мире), свидетельствовали, что дети, умершие от рака в Англии в 1953-1955 гг., получили внутриутробно вдвое большую дозу радиации при рентгеновском исследовании матерей, чем не заболевшие раком (Schneider, 1990).

Недавно на основании наблюдений в Челябинске-65 - печально знаменитом ПО "Маяк" - было выяснено, что дети матерей, получивших во время беременности сравнительно небольшие дозы (около 0.05 Зв), имели устойчивые отклонения в соотношении роста, объема грудной клетки и веса (Ларин, 1994. С.8). Эти данные вполне соответствуют давно отмеченным в научной литературе фактам большей радиочувствительности ранних стадий развития организма млекопитающих.

В таблице 8 приведены расчетные данные по влиянию дозы облучения на возникновение лейкемии (рака крови) в зависимости от возраста облученных (по данным для переживших атомные бомбардировки Хиросимы и Нагасаки).

Из этих данных видно, что вероятность заболеть раком крови при облучении эмбриона или плода еще в утробе матери почти в четыре раза выше, чем при таком же уровне облучения молодого человека в возрасте 11- 24 лет. Вероятность для малыша родиться с какими-либо уродствами начинается при получении матерью всего лишь 0.002 Зв (2 мЗв) за время беременности на область живота (Principles, 1993).

Облучение матери в определенный период беременности дозой в 0.001 Зв удваивает вероятность рождения ребенка с умственными дефектами (Корогодин, 1990). Но эти вероятности (стохастический эффект облучения) превращаются в неизбежность (детерминированный эффект облучения) при разовом получении плодом 0.25 Зв после 28-го дня беременности (Bertell, 1985).

8.1 Действие радиации на эмбрион и плод

Период наибольшей радиочувствительности эмбриона человека... начинается с зачатия и кончается примерно 38 сутками облучение эмбриона человека в период первых двух месяцев ведет к 100%-ному поражению, в период от 3 до 5 мес. - к 64%, в период от 6 до 10 мес. - к 23% поражения. Облучение на ранних стадиях (до имплантации и в начале органогенеза), как правило, заканчивается внутриутробной гибелью или гибелью новорожденного фракционированное облучение приводит к более тяжелым повреждениям, так как воздействие захватывает разнообразные типы зародышевых клеток, что вызывает повреждение большого количества зачатков органов, находящихся на критических стадиях развития. В этот период максимальное поражение может быть спровоцировано очень малыми дозами ионизирующего излучения; для получения аномалий в более поздний период эмбрионального развития требуется воздействие больших доз.

Почти у половины (45%) детей, родившихся от матерей, подвергшихся облучению при сроках беременности 7-15 нед., имелись признаки умственной отсталости. Кроме того, у потомства женщин, перенесших облучение в первой половине беременности, отмечены микроцефалия, задержка роста, монголизм и врожденные пороки сердца. Следует иметь в виду, что облучение эмбриона в малых дозах может вызвать функциональные изменения которые невозможно зарегистрировать современными методами исследования, но которые способствуют развитию болезненного процесса через много лет после облучения....анализ опубликованных материалов об опухолях у детей выявил повышенную частоту лейкемии и злокачественных опухолей у детей, рожденных от матерей, прошедших радиографическое обследование. По данным касающимся заболеваемости в первые 10 лет жизни, у наблюдавшихся 15 млн. одиночных детей и 350 тыс. близнецов относительный риск заболевания лейкемией или солидными опухолями при облучении во внутриутробном состоянии возрастает в 1.5 раза для одиночных детей и соответственно в 2.2 и 1.6 раза для близнецов радиочувствительность плода в 10 - 300 раз больше по сравнению со взрослым организмом."

9. Недостаточность современных знаний о влиянии малых доз радиации

Насколько наука далека от познания многих существенных особенностей действия радиации, свидетельствует, например, тот факт, что лишь сравнительно недавно стало ясно, что доза радиации, поглощенная организмом в течение длительного периода времени, может привести к существенно более сильному поражению, чем такая же доза, полученная сразу или за более короткий период (так называемый эффект Петко). В то же время в отношении ряда раковых заболеваний установлено, что отмеченная выше закономерность не всегда действует: фракционное, растянутое во времени, облучение иногда дает меньший канцерогенный эффект, чем разовое (Goldman, 1996). Это связано, по-видимому, с репарационными (восстановительными) свойствами живого организма, в котором при размножении клеток всегда существует некий механизм исправления (репарации) возможных генетических ошибок, могущих нарушить последующее развитие организма. Восстановительные процессы имеют предел, но какие то мелкие повреждения они могут "залечивать".

В то же время известно, что при уменьшении дозы облучения риск заболеть раком не просто уменьшается в той же пропорции - просто латентный период перед проявлением заболевания становится большим (Goldman, 1996).

Несомненно, в области выяснения влияния малых доз нас ждут новые открытия. Одно из направлений таких открытий становится ясным сейчас: эффекты взаимодействия радиации с другими факторами риска, порознь не так опасными. Оказалось, например, что малые количества пестицидов могут усиливать действие радиации. То же самое происходит при действии радиации в присутствии небольших количеств ртути (Mercury..., 1994). Недостаток селена в организме усиливает тяжесть радиационного поражения. Известно, что у курильщиков, подвергающихся облучению в 15 мЗв/год, риск заболеть раком легких возрастает более чем в 16 раз по сравнению с некурящими (Anderson, 1991). Известно также, что на фоне небольшого по величине хронического облучения разовое кратковременное дополнительное облучение дает эффект, много более значимый, чем при простом суммировании этих доз (Москалев, Стрельцова, 1987).

Другое быстро развивающееся направление изучения влияния малых доз облучения - работы школы профессора Е.Б.Бурлаковой, убедительно доказавшие на многих объектах резкое нарушение монотонной зависимости "доза - эффект": в зоне сверхмалых доз облучения происходит до конца непонятное по механизмам, но устойчиво повторяющееся резкое возрастание чувствительности организмов облучению (рис.2) . Оказывается, при облучении до 0.1 Зв (10 бэр) число смертельных лейкозов оказывается столь же значительным, как при облучении многократно большем (Бурлакова, 1995).

Оказалось также, что повреждения хромосом и злокачественная трансформация клеток при малых дозах примерно на порядок выше, чем можно было бы ожидать при экстраполяции влияния от высоких доз (Корогодин, 1990. С.51). Возможно, эффект такого взаимодействия радиации с другими факторами риска основан на сенсибилизации (повышении чувствительности) организма, испытавшего воздействие малых доз облучения к химическим мутагенам и канцерогенам (Корогодин, 1990).

Среди других поставленных современной наукой вопросов о негативном воздействии малых доз радиации на живой организм, которые, по всей вероятности, расширят в ближайшем будущем наши представления об опасности облучения человеческого организма, надо, по крайней мере, перечислить следующие (Корогодин, 1990; Шевченко, 1990):

· влияние так называемых малых мутаций, не учитываемых пока в должной мере при исследовании генетических эффектов радиации (таких мутаций может быть многократно больше, чем изучаемых в экспериментах на животных и учитываемых при ярко выраженных наследственных заболеваниях человека);

· влияние повышенной радиочувствительности некоторых этапов развития половых клеток и некоторых ранних этапов эмбрионального развития человека;

· влияние облучения в малых дозах на возникновение наследуемых раковых заболеваний;

· отдаленные последствия локального и внутреннего (например, в виде "горячих частиц", попавших внутрь организма) облучения.

Однако важно отметить, что степень тяжести стохастических эффектов не зависит от дозы облучения. Более того, стохастические эффекты радиации не отличаются клинически, морфологически, биохимически, иммунологически от аналогичных заболеваний нерадиационной природы. Например, невозможно выделить среди облученного населения опухоли или лейкозы радиационной природы, так как они не отличаются от спонтанных новообразований. Результаты многолетних эпидемиологических исследований, проводимых в Японии и на Южном Урале, показали, что вклад радиационных злокачественных опухолей (атрибутивный риск) составляет 3-5%. Это значит, что из каждых 100 случаев рака, который регистрируется среди облученного населения, только 3-5 вызваны радиацией. Оценки радиационного риска на Южном Урале представляют особый интерес, так как позволили отметить повышение уровня заболеваемости и смертности у хронически облученных индивидуумов (в т.ч. при малых дозах) от канцерогенных эффектов. Принимая во внимание все возрастающее использование различных источников ионизирующего излучения в энергетике, промышленности, медицине, науке, сельском хозяйстве наиболее вероятным является хроническое воздействие на человека малых доз радиации. Возможность получения прямых оценок радиационного риска стохастических эффектов при хроническом облучении в диапазоне малых доз в эпидемиологических исследованиях методологически ограничена, так как для этого необходимы когорты, насчитывающие миллионы облученных индивидуумов. Предполагалось, что риск малых доз радиации можно оценить, используя фактор мощности дозы (ФМД), путем экстраполяции с величин рисков при больших дозах. Предпосылкой для оценки ФМД стали экспериментальные данные, которые показали, что эффекты хронического облучения могут быть на порядок меньше эффектов острого облучения такой же дозы. В настоящее время Международная Комиссия по Радиологической Защите рекомендовала использовать ФМД, равный 2.

10. Биологические эффекты радиации на клеточном уровне

В последние годы в радиобиологии сделан целый ряд открытий, которые показывают, что механизмы биологических эффектов малых и больших доз облучения могут принципиально отличаться. При действии малых доз радиации установлены такие специфические эффекты, как адаптивный ответ, эффект свидетеля, радиационно-индуцированная нестабильность генома, апоптоз, эффект сверхчувствительности к малым дозам. Адаптивный ответ является одним из проявлений радиационного гормезиса, который характеризует стимулирующий эффект малых доз радиации. В настоящее время установлено, что адаптивный ответ представляет собой универсальную реакцию клеток на облучение в малых дозах, выражающуюся в приобретении устойчивости к поражающему действию излучения в большой дозе или других агентов нерадиационной природы. B пocлeдние гoды установлено, что радиация может привести к мутациям не только в самих облученных клетках, но и в клетках-потомках, что проявляется в их oтcpoчeнной peпpoдyктивной гибeли, дecтaбилизaции xpoмocoм, в формировании coмaтичecких мyтaций, aмплификaции гeнoв. Радиационно-индуцированная нестабильность генома пepeдaeтcя мнoгим пoкoлeниям клeтoк, пpи этом гeнeтичecкиe измeнeния, нaблюдaeмыe в клeткax дoчepниx пoкoлeний, oтличaютcя oт вoзникшиx в caмoй oблyчeннoй клeткe. Из этого следует, что рaдиaция yвeличивaeт чacтoтy, c кoтopoй у потомков выжившиx oблyчeнныx клeток пpи нopмaльнoм фyнкциoниpoвaнии вoзникaют cпoнтaнныe гeнeтичecкиe измeнeния. Важно отметить, что в случае облучения половых клеток нестабильность генома может передаваться через плаценту потомству. Общепринятое мнение: биологические эффекты ионизирующего излучения связаны с не восстановленными или неправильно восстановленными повреждениями ДНК в облученных клетках. Однако, последние исследования (преимущественно in vitro при б-облучении) показали, что радиация может вызвать повреждения ДНК по механизмам, независимым от прохождения трека через ядро или от действия активных радикалов. В настоящее время установлено, что клетки, соседние к облученным клеткам, или клетки, находящиеся в питательной среде от облученных клеток, также могут реагировать на радиационное воздействие. Они нaчинaют пpoявлять все пpизнaки радиационного воздействия, словно caми подверглись облучению. Данное явление получило название эффект свидетеля.Биологическое значение апоптоза (программируемая гибель клеток), состоит в элиминации из облученного организма клеток, имеющих не восстановленные или неправильно восстановленные повреждения ДНК. Установлено, что малые дозы радиации активируют апоптоз. Сверхчувствительность к малым дозам радиации определяется первичностью процессов альтерации (повреждений) ДНК и клеточных мембран, по достижении определенного числа и качества которых включаются разнообразные механизмы их репарации (восстановления). При определенных значениях малых доз возникают условия, когда имеющихся повреждений недостаточно для запуска процессов репарации. Все вышеуказанные эффекты крайне важны для понимания природы cтoxacтичecкиx paдиaциoнныx эффeктoв, так как проясняют мexaнизмы радиационного мyтaгeнeза, кaнцepoгенеза и cтapения - глaвныx oтдaлeнныx пocлeдcтвий дeйcтвия иoнизиpyющиx излyчeний. К сожалению, вышеуказанные феномены не могут быть уже сегодня учтены при регламентации облучения, так как описывают эффекты преимущественно на клеточном уровне, в то время как действующая концепция радиационной безопасности населения базируется только на оценке клинически значимых биологических эффектов радиации.

При обсуждении проблемы влияния малых доз радиации необходимо иметь в виду так называемое правило пропорционального риска (Шевченко, 1990), которое в нашем случае можно сформулировать так: облучение большого числа людей малыми дозами эквивалентно (с точки зрения влияния радиации на всю популяцию) облучению небольшого числа людей большими дозами. Генетический риск для 100 человек, получивших дозу 0.01 Зв, эквивалентен, с точки зрения поражения популяции, риску для 10 человек, получивших дозу 0.1 Зв, и риску для одного человека, получившего дозу 1.0 Зв. На самом деле зависимость, конечно сложнее, поскольку эквивалентность результатов облучения многих малыми дозами и немногих - большими, подразумевает линейную зависимость доза - эффект, которая (линейность) нарушается, как говорилось выше, в области сверхмалых доз.


Подобные документы

  • Механизм действия на организм ионизирующей радиации. Теория липидных радиотоксинов (первичных радиотоксинов и цепных реакций). Опосредованное действие радиации. Особенности патогенетического действия на организм различных видов лучистой энергии.

    презентация [262,5 K], добавлен 28.09.2014

  • История открытия радиоактивности. Виды ионизирующего излучения. Последствия облучения для здоровья. Радиоактивные лечебные препараты. Аспекты применения радиации для диагностики, лечения, стерилизации медицинских инструментов, исследования кровообращения.

    презентация [883,2 K], добавлен 30.10.2014

  • Последствия сидячего положения в течение длительного времени. Воздействие электромагнитного излучения. Перегрузка суставов кистей рук, ее профилактика. Меры по снижению воздействия компьютера на организм беременной женщины. Правила гигиены зрения.

    реферат [117,2 K], добавлен 29.08.2014

  • Накопление электромагнитного излучения в организме человека, его влияние на центральную нервную систему. Основные последствия регулярного использования мобильного телефона. Ключевые правила использования сотовой связи. Особо уязвимые категории людей.

    статья [164,9 K], добавлен 12.03.2015

  • Прямое и косвенное действие ионизирующего излучения. Воздействие ионизирующего излучения на отдельные органы и организм в целом, мутации. Действие больших доз ионизирующих излучений на биологические объекты. Виды облучения организма: внешнее и внутреннее.

    реферат [27,4 K], добавлен 06.02.2010

  • Применение радиоактивного излучения в медицине и промышленности. История открытия радиоактивности французским физиком А. Беккерелем. Использование радиации для диагностики и лечения различных заболеваний. Сущность и особенности радиационной стерилизации.

    презентация [883,2 K], добавлен 28.10.2014

  • Факторы, влияющие на здоровье человека по данным Всемирной Организации Здравоохранения. Составляющие здорового образа жизни. Влияние курения на организм человека: легкие, мозг, внутренние органы. Последствия вдыхания табачного дыма для беременной и плода.

    реферат [4,2 M], добавлен 20.05.2015

  • Обобщение основных атмосферных факторов, которые влияют на организм человека. Понятие атмосферного давления и особенностей его влияния на здоровье человека. Патологические явления, развивающиеся в организме при попадании в атмосферу пониженного давления.

    реферат [658,7 K], добавлен 03.06.2013

  • Основные функциональные и морфологические изменения в клеточных структурах, происходящие под воздействием ионизирующего излучения, степень данных изменений на иммунную систему организма. Клинические признаки облучения и протекание лучевой болезни.

    реферат [18,3 K], добавлен 23.01.2010

  • Фетоплацентарная недостаточность как один из основных механизмов, ответственных за формирование условий, адекватных для нормального развития плода. Причина нарушений состояния плода во время беременности - плацентарная недостаточность. Схема лечения.

    контрольная работа [25,1 K], добавлен 25.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.