Влияние наследственности на здоровье
Понятие наследственности, генетические карты хромосом. Основные положения нехромосомной теории наследственности. Влияние эволюции и окружающей среды на изменения организмов. Болезни, связанные с мутациями, их лечение. Значение генетической инженерии.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 04.09.2010 |
Размер файла | 382,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ГАЖК Узбекистон Темир йуллари
Ташкентский институт инженерского транспорта
Реферат
на тему: Влияние наследственности на здоровье
Выполнил: ст-т 2-го курса
группы IF - 9
Михайлидис В.В.
Ташкент - 2009
Оглавление
Предисловие
1. Наследственность
2. Генетические карты хромосом
3. Нехромосомная теория наследственности
4. Молекулярная генетика
5. Наследственность и эволюция
6. Генетика человека
7. Наследственность и среда
8. Болезни, связанные с мутациями
9. Лечение и профилактика наследственных болезней
10. Генетическая инженерия
10.1 Из истории генетической инженерии
10.2 Строение рекомбинантной ДНК
10.3 Этапы генного синтеза
10.4 Практические результаты генной инженерии
10.5 Теоретическое значение генетической инженерии
Заключение
Список используемой литературы
Предисловие
Испокон веков человек стремился узнать, почему от живых организмов рождаются им подобные? И при этом не отмечается абсолютной схожести родителей и потомства ни в физических признаках, ни в характере.
Теперь очевидно, что схожесть родителей и потомков организмов одного вида определяется наследственностью, а их отличительные особенности - изменчивостью. Два свойства - наследственность и изменчивость - характерны не только для человека, но и для всего живого на Земле. Изучением этих важнейших свойств живых существ занимается наука, называемая генетикой.
Конечно, на первый взгляд кажется, что все мы можем совершенно спокойно жить, не зная сущности секретов наследственности, и что все это неважно. Но так ли это на самом деле?
Как, не зная генетики, объяснить, почему обезьяна не превращается в белого медведя, если даже поселить ее на Крайнем Севере, и почему белый медведь, даже если он родился в зоопарке где-нибудь на юге, все равно остается белым? Сумеют ли работники сельского хозяйства в ближайшем будущем получать с каждого гектара сотни центнеров пшеницы? Скажутся через какие-нибудь 50-100 лет последствия атомных взрывов на потомках современных жителей Хиросимы и Нагасаки? Отчего дети похожи на своих родителей? Грозит ли человечеству вымирание, или мы находимся у начала развития земной цивилизации? Почему без вмешательства человека рожь остается рожью, а пшеница - пшеницей? Каковы причины наследственных заболеваний и как с ними бороться? Сколько способен прожить человек? Могут ли все люди на Земле быть гениями?
Есть еще тысячи и тысячи подобных вопросов, имеющих очень важное значение как для отдельных людей, так и для всего человечества, ответить на которые нельзя, не познав секреты наследственности и не научившись управлять ею. Когда же человек раскроет все эти тайны и поставит знания себе на пользу, он сможет участвовать в решении практических задач сельского хозяйства, медицины, научится управлять эволюцией жизни на нашей планете в целом.
Вместе с тем не надо забывать, что для духовной жизни и целенаправленной деятельности современного человека исключительно важное значение приобретает научное мировоззрение. Среди философских вопросов нового естествознания один из главных - понимание сущности жизни, ее места в мироздании. И только современная молекулярная генетика сумела показать, что жизнь - это поистине материальное, саморазвивающееся явление, отражающее влияние условий внешней среды.
Но она также доказала, что жизнь обладает системностью. которую невозможно разложить на составляющие ее физико-химические процессы. Однако, современная наука еще не знает полностью сущности жизни.
Еще один вопрос: от чего зависит настоящее и будущее человечества? Проблема эта интересовала людей много веков назад и в не меньшей степени волнует сегодня. Это и не удивительно, так как человек отличается от всего окружающего мира в первую очередь тем, что испытывает влияние не только биологических законов. Будущее его не в меньшей, если не в большей степени зависит от социального переустройства мира.
Наследственная информация человека передается от поколения к поколению. Все биологические особенности, послужившие основой для появления человека, обладающего сознанием, закодированы в наследственных структурах, и их передача поколениям является обязательным условием для существования на Земле человека как разумного существа. Человек как биологический вид - это самое высокое и при этом уникальное “ достижение “ эволюции на нашей планете. И пока еще никто не может сказать с уверенностью или представить неопровержимые доказательства того, что это не касается всей Вселенной.
Эволюция на Земле то идет медленно, то претерпевает скачки, каждый из которых возносит данную ветвь организмов на новый уровень. Среди многих скачков-революций в истории жизни на Земле два, по-видимому, следует считать основными. Во-первых, переход от неорганического мира к органическому, то есть появление жизни, и во-вторых, возникновение сознания, то есть появление человека. Оба эти явления связаны с накоплением количественных изменений. вызвавших изменения качественные.
“Как бы человечество ни ушло по пути прогресса, наш XX в. навсегда останется в его памяти. Люди всегда будут помнить, что этот век был отмечен тремя важнейшими достижениями; люди научились использовать энергию атома, вышли в космос и стали направленно изменять наследственность. Вот три великих успеха, которые наши отдаленные потомки будут помнить даже тогда, когда станут летать от звезды к звезде и победят старость и смерть”. А.А. Богданов, Б.М. Медников “Власть над геном”, Москва “Просвещение” 1989 г., стр. 3.
Но если перспективы ядерной физики преподаются в школе, если космонавтов благодаря телевидению мы знаем в лицо, с биологией дело обстоит хуже. Величайшие ее достижения еще не стали известными широким массам.
Основы генетики были заложены чешским ученым Грегором Менделем в экспериментах, результаты которых были опубликованы в 1865 г. С тех пор генетика не остановилась в своем развитии. И.М. Сеченов, А.П. Богданов, Н.К. Кольцов, Г. Шаде, Эвери, Мак-Леод, Мак-Карти, Д. Уотсон - вот одни из тех великих ученых, которые внесли огромный вклад в науку о наследственности.
В последние годы на фоне общего снижения заболеваемости и смертности увеличился удельный вес врожденных и наследственных болезней. В связи с этим роль генетики в практической медицине значительно возросла. «Без знания генетики нельзя эффективно проводить диагностику наследственных и врожденных заболеваний» В.А. Орехова, Т.А. Лашковская, М.П. Шейбак “Медицинская геенетика”,Минск, 1997 г., стр. 4.
1. Наследственность
Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью-возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.
Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность) или навыков обучения, образования, традиций (т. н. социальная, или сигнальная наследственность). Подобное расширение понятия наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно.
2. Генетические карты хромосом
Генетические карты хромосом - схемы относительного расположения сцепленных между собой наследств. факторов -- генов. Генетические карты хромосом отображают реально существующий линейный порядок размещения генов в хромосомах и важны как в теоретических исследованиях, так и при проведении селекционной работы, т. к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Генетические карты хромосом, можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать. передачу потомству генов, обусловливающих развитие трудно анализируемых признаков; напр., ген, определяющий сморщенный эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения. Многочисленные факты отсутствия (вопреки законам Менделя) независимого распределения признаков у гибридов второго поколения были объяснены хромосомной теорией наследственности. Гены, расположенные в одной хромосоме, в большинстве случаев наследуются совместно и образуют одну группу сцепления, количество которых, таким образом, соответствует у каждого организма гаплоидному числу хромосом. Американский генетик Т.X. Морган показал, однако, что сцепление генов, расположенных в одной хромосоме, у диплоидных организмов не абсолютное; в некоторых случаях перед образованием половых клеток между однотипными, или гомологичными, хромосомами происходит обмен соответствующими участками; этот процесс носит назв. перекреста, или кроссинговера. Обмен участками хромосом (с находящимися в них генами) происходит с различной вероятностью, зависящей от расстояния между ними (чем дальше друг от друга гены, тем выше вероятность кроссинговера и, следовательно, рекомбинации). Генетический анализ позволяет обнаружить перекрест только при различии гомологичных хромосом по составу генов, что при кроссинговере приводит к появлению новых генных комбинаций. Обычно расстояние между генами на Генетических картах хромосом выражают как процент кроссинговера (отношение числа мутантных особей, отличающихся от родителей иным сочетанием генов, к общему кол-ву изученных особей); единица этого расстояния -- морганида -- соответствует частоте кроссинговера в 1 %.
Итак, выделим основные положения хромосомной теории наследственности:
1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов каждой из негомологичных хромосом уникален.
2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).
3. Гены, расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.
4. Сцепление не абсолютно, так как в профазе мейоза может происходить кроссинговер и гены, находящиеся в одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления. и наоборот. Расстояние между генами измеряется в процентах кроссинговера. 1% кроссинговера соответствует одной морганиде. В. А. Орехова, Т. А. Лашковская, М. П. Шейбак “Медицинская геенетика”,Минск, 1997 г.,стр. 49.
Генетические карты хромосом составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые назв. мутантных генов, их расстояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а также место центромеры. Составить Генетические карты хромосом можно только для объектов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локализованных в её 4 группах сцепления, у кукурузы -- около 400 генов, распределённых в 10 группах сцепления (рис. 1). У менее изученных объектов число обнаруженных групп сцепления меньше гаплоидного числа хромосом. Так, у домовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом.
У бактерий, которые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепления (рис. 2). При переносе генетического материала из клетки-донора в клетку-реципиент, например при конъюгации, кольцевая хромосома разрывается, и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин). Искусственно прерывая процесс конъюгации, можно по возникшим типам рекомбинантов установить, какие гены успели перейти в клетку-реципиент. В этом состоит один из методов построения Генетических карт хромосом бактерий, детально разработанных у ряда видов. Ещё более детализированы Генетические карты хромосом некоторых бактериофаг
3. Нехромосомная теория наследственности
Первенствующая роль ядра и хромосом в наследственности не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению. Единицы цитоплазматической (нехромосомной) наследственности отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной наследственности воспроизводит признаки только одного из родителей (чаще матери). Таким образом, различают ядерную наследственность, связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда ее называют хромосомной наследственностью), и внеядерную наследственность, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная наследственность реализуется и при вегетативном размножении, но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями.
4. Молекулярная генетика
Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному развитию молекулярной генетики. Впервые Н.К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения “наследственных молекул”. В 40-х гг. 20 в. была экспериментально доказана генетическая роль дизоксирибонуклеиновой кислоты (ДНК), а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация, заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов информация о составе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при половом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток -- гамет, единственная функция которых -- передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи. Генетическая информация заключена преимущественно в хромосомах, где она зашифрована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты -- ДНК (генетический код)
5. Наследственность и эволюция
Еще Дарвину было ясно значение наследственности для эволюции организмов. Установление дискретной природы наследственности устранило одно из важных возражений против дарвинизма: при скрещивании особей, у которых появились наследственные изменения, последние должны якобы “ разбавляться “ и ослабевать в своем направлении. Однако, в соответствии с законами Менделя, они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определенных условиях. В популяциях явления наследственности предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях, генетико-автоматических процессах и др. На это впервые указал С.С. Четвериков (1926 г.), экспериментально доказавший накопление мутаций внутри популяции. И.И.Шмальгаузен (1946 г.) выдвинул положение о “мобилизационном резерве наследственной изменчивости“ как материале для творческой деятельности естественного отбора при изменении условий внешней среды. Показано значение разных типов изменений наследственности в эволюции. Эволюция понимается как постепенное и многократное изменение наследственности вида. в то же время наследственность, обеспечивающая постоянство видовой организации, - это коренное свойство жизни, связанное с физико-химической структурой элементарных единиц клетки, прежде всего ее хромосомного аппарата, и прошедшее длительный период эволюции.
Принципы организации этой структуры (генетический код), по-видимому, универсальны для всех живых существ и рассматриваются как важнейший атрибут жизни.
Под контролем наследственности находится и онтогенез, начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях среды. Отсюда различие между совокупностью генов, получаемых организмом от родителей, -- генотипом и комплексом признаков организма на всех стадиях его развития -- фенотипом. Роль генотипа и среды в формировании фенотипа может быть различна.
Но всегда следует учитывать генотипически обусловленную норму реакции организма на влияния среды. Изменения в фенотипе не отражаются адекватно на генотипичной структуре половых клеток, поэтому традиционное представление о наследовании приобретённых признаков отвергнуто, как не имеющее фактические основы и неправильное теоретически. Механизм реализации наследственности в ходе развития особи, по-видимому, связан со сменой действия разных генов во времени и осуществляется при взаимодействии ядра и цитоплазмы, в которой происходит синтез тех или иных белков на основе программы, записанной в ДНК и передающейся в цитоплазму с информационной РНК.
Закономерности наследственности имеют огромное значение для практики сельского х-ва и медицины. На них основываются выведение новых и совершенствование существующих сортов растений и пород животных. Изучение закономерностей наследственности привело к научному обоснованию применявшихся ранее эмпирически методов селекции и к разработке новых приёмов (экспериментальный мутагенез, гетерозис, полиплоидия и др.).
6. Генетика человека
Генетика человека - это отрасль генетики, тесно связанная с антропологией и медициной. Генетика человека условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и генетику медицинскую, которая изучает его наследственную патологию (болезни, дефекты, уродства и др.). Генетика человека связана также с эволюционной теорией, так как исследует конкретные механизмы эволюции человека и его место в природе, с психологией, философией, социологией. Из направлений Генетика человека интенсивно развиваются питогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.
В генетике человека вместо классического гибридологического анализа применяют генеалогический метод, который состоит в анализе распределения в семьях (точнее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип наследования, частоту и интенсивность проявления признака и т. д. При анализе семейных данных получают также цифры эмпирического риска, т. е. вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогическим методом уже показано, что более 1800 морфологических, биохимических и др. признаков человека наследуется по законам Менделя. Например, тёмная окраска кожи и волос доминирует над светлой; пониженная активность или отсутствие некоторых ферментов определяется рецессивными генами, а рост, вес, уровень интеллекта и ряд др. признаков -- «полимерными» генами, т. е. системами из мн. генов. Мн. признаки и болезни человека, наследующиеся сцеплено с полом, обусловлены генами, локализованными в Х- или У- хромосоме. Таких генов известно ок. 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюкозо-6-фосфат-дегидрогеназы, цветовой слепоты и др. Др. метод генетики человека-- близнецевый метод. Однояйцовые близнецы (ОБ) развиваются из одной яйцеклетки, оплодотворённой одним спермием; поэтому набор генов (генотип) у ОБ идентичен. Разнояйцевые близнецы (РБ) развиваются из двух и более яйцеклеток, оплодотворённых разными спермиями; поэтому их генотипы различаются так же, как у братьев и сестёр.
7. Наследственность и среда
Гены проявляют свои функции не в пустоте, а в такой высокоорганизованной системе, как клетка, которая сама находится в определенном окружении - среди других клеток или во внешней среде. Каков бы ни был генотип, его свойства проявляются лишь в той степени, в какой это позволяют окружающие условия.
Растение, выращиваемое в темноте, остается белым и хилым ; оно неспособно извлекать из углекислого газа энергию, необходимую для обмена веществ, даже в том случае, когда все его клетки содержат генетическую информацию. необходимую для развития хлоропластов, а также синтеза и деятельности хлорофилла. В равной мере генетические потенции, определяющие цвет глаз, проявляются только в особых условиях, которые создаются в клетках радужной оболочки; эти потенции реализуются при условии, если предварительно благодаря действию многочисленных генов сам глаз достаточно развился.
Наконец, фенотип организма представляет собой результат взаимодействий между генотипом и средой в каждый данный момент его жизни и на каждом этапе его индивидуального развития.
Действия среды могут быть отнесены к двум типам, хотя в реальной обстановке они часто налагаются друг на друга. С одной стороны, это сильные воздействия, приводящие к полному или частичному подавлению выражения генетических потенций с другой - слабые влияния, выражающиеся лишь в небольших изменениях степени их выражения. Первый тип воздействий зависит от случайных обстоятельств. второй - обычен и неразрывно связан с функционированием живой материи.
Индивидуальное развитие высшего организма начинается со стадии зиготы. Наследственные потенции, получаемые им от родителей, проявляются лишь постепенно, в ходе длительного и сложного процесса развития. и начиная с первых делений дробления яйца, в их реализации принимает участие среда.
Для генов будущего организма исходной средой служит цитоплазма яйца, происходящего от материнского организма и воплощающего в себе клеточную непрерывность. Этого может оказаться достаточно, чтобы ориентировать развитие эмбриона в направлении, не совпадающем с его собственным генотипом.
Сравнение внутрипарных различий между однояйцевыми и разнояйцевыми близнецами позволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близнецовых исследованиях особенно важен показатель конкордантности, выражающий (в % ) вероятность обладания данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминирован преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови, которые детерминированы только генетически, у ОБ равна 100%. При шизофрении конкордантность у ОБ достигает 67%, в то время как у РБ -- 12,1%; при врождённом слабоумии (олигофрении) -- 94,5% и 42,6% соответственно. Подобные сравнения проведены в отношении ряда заболеваний. Таким образом, исследования близнецов показывают, что вклад наследственности и среды в развитие самых разнообразных признаков различен и признаки развиваются в результате взаимодействия генотипа и внешней среды. Одни признаки обусловлены преим. генотипом, при формировании др. признаков генотип выступает в качестве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).
8. Болезни, связанные с мутациями
Геном человека включает несколько миллионов генов, способных к тому же по-разному влиять на развитие признаков. В результате мутаций и перекомбинации генов возникает присущее человеку разнообразие по самым разным признакам. Гены человека мутируют каждый с частотой от 1 на 100 000 до 1 на 10 000 000 гамет на поколение. Распространение мутаций среди больших групп населения изучает популяционная генетика человека, позволяющая составить карты распространения генов, определяющих развитие нормальных признаков и наследственных болезней. Особый интерес для популяционной генетики человека представляют изоляты -- группы населения, в которых по каким-либо причинам (географич., экономич., социальным, религиозным и др.) браки заключаются чаще между членами группы. Это приводит к повышению частоты кровного родства вступающих в брак, а значит, и вероятности того, что рецессивные гены перейдут в гомозиготное состояние и проявятся, что особенно заметно при малочисленности изолята.
Исследования в области Генетики человека продемонстрировали наличие естественного отбора в человеческих популяциях. Однако отбор у человека приобретает специфические черты: он интенсивно действует только на эмбриональной стадии (например, самопроизвольные аборты -- отражение такого отбора). Отбор в человеческом обществе осуществляется посредством дифференциальной брачности и плодовитости, то есть в результате взаимодействия социальных и биологических факторов. Мутационный процесс и отбор обусловливают огромное разнообразие (полиморфизм) по ряду признаков, присущее человеку, что делает его с биологической точки зрения необычайно пластичным и приспособленным видом.
Широкое использование в генетике человека цитологических методов способствовало развитию цитогенетики, где основной объект исследования - хромосомы, т. е. структуры клеточного ядра, в которых локализованы гены. Установлено (1946), что хромосомный набор в клетках тела человека (соматических) состоит из 46 хромосом, причём женский пол определяется наличием двух Х-хромосом, а мужской -- Х-хромосомы и У-хромосомы. В зрелых половых клетках находится половинное (гаплоидное) число хромосом. Митоз, мейоз и оплодотворение поддерживают преемственность и постоянство хромосомного набора как в ряду клеточных поколений, так и в поколениях организмов. В результате нарушений указанных процессов могут возникать аномалии хромосомного набора с изменением числа и структуры хромосом, что приводит к возникновении хромосомных болезней, к-рые нередко выражаются в слабоумии, развитии тяжёлых врождённых уродств, аномалий половой дифференцировки или обусловливают самопроизвольные аборты.
История изучения хромосомных болезней берет начало с клинических исследований, проводившихся задолго до описания хромосом человека и открытия хромосомных аномалий. Хромосомные болезни - болезнь Дауна, синдромы: Тернера, Клайнфелтера, Патау, Эдвардса.
С разработкой метода авторадиографии стала возможной идентификация некоторых индивидуальных хромосом, что способствовало открытию группы хромосомных болезней, связанных со структурными перестройками хромосом. Интенсивное развитие учения о хромосомных болезнях началось в 70-х годах 20 в. после разработки методов дифференциального окрашивания хромосом.
Классификация хромосомных болезней основана на типах мутаций вовлеченных в них хромосом. Мутации в половых клетках приводят к развитию полных форм хромосомных болезней, при которых все клетки организма имеют одну и ту же хромосомную аномалию.
В настоящее время описано 2 варианта нарушений числа хромосомных наборов - тетраплоидия и триплодия. Другая группа синдромов обусловлена нарушениями числа отдельных хромосом - трисомиями (когда имеется добавочная хромосома в диплоидном наборе) или моносомия (одна из хромосом отсутствует). Моносомии аутосом несовместимы с жизнью. Трисомии - более часто встречающаяся патология у человека. Ряд хромосомных болезней связан с нарушением числа половых хромосом.
Самая многочисленная группа хромосомных болезней - это синдромы, обусловленные структурными перестройками хромосом. Выделяют хромосомные синдромы так называемых частичных моносомий (увеличение или уменьшение числа отдельных хромосом не на целую хромосому, а на ее часть).
В связи с тем, что подавляющая часть хромосомных аномалий относится к категории летальных мутаций, для характеристики их количественных параметров используются 2 показателя - частота распространения и частота возникновения. Выяснено, что около 170 из 1000 эмбрионов и плодов погибают до рождения, из них около 40% - вследствие влияния хромосомных нарушений. Тем не менее, значительная часть мутантов (носителей хромосомной аномалии) минует действие внутриутробного отбора.
Но некоторые из них погибают в раннем, до достижения пубертатного возраста. Больные с аномалиями половых хромосом из-за нарушений полового развития, как правило, не оставляют потомства. Отсюда следует все аномалии можно отнести к мутациям. Показано, что в общем случае хромосомные мутации почти полностью исчезают из популяции через 15 - 17 поколений.
Для всех форм хромосомных болезней общим признаком является множественность нарушений (врожденные пороки развития). Общими проявлениями хромосомных болезней являются: задержка физического и психомоторного развития, умственная отсталость, костно-мышечные аномалии, пороки сердечнососудистой, мочеполовой, нервной и др. систем, отклонение в гормональном, биохимическом и иммунологическом статусе и др.
Степень поражения органов при хромосомных болезнях зависит от многих факторов - типа хромосомной аномалии, недостающего или избыточного материала индивидуальной хромосомы, генотипа организма, условий среды, в которой развивается организм.
Этиологическое лечение хромосомных болезней в настоящее время не разработано.
Разработка методов пренатальной диагностики делает этот подход эффективным в борьбе не только с хромосомными, но и с др. наследственными болезнями.
9. Лечение и профилактика наследственных болезней
Успехи в развитии генетики человека сделали возможными предупреждение и лечение наследственных заболеваний. Один из эффективных методов их предупреждения -- медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической генетике человека раскрыли первопричину (молекулярный механизм) множество наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения мн. прежде неизлечимых наследств, болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофонда человечества, осуществляются через систему медико-генетических консультаций. Основная цель медико-генетического консультирования -- информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, т. к. это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положит, наследств, задатков и предотвращение вредных воздействий среды на наследственность человека.
Генетика человека представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы -- это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Генетика человека показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас. Данные генетики человека показали, что довольно часты гены, определяющие развитие разнообразных уродств и наследственных заболеваний: наследственных болезней обмена, психических и др. Уменьшению вероятности появления в семьях наследственно больных детей призваны способствовать медико-генетические консультации. Ранняя диагностика наследственных заболеваний позволяет применить необходимые методы лечения. Существенно важен учёт наследственности в реакции разных людей на лекарства и другие химические вещества, а также в иммунология, реакциях. Бесспорна роль молекулярно-генетических механизмов в этиологии злокачественных опухолей.
Явления наследственности предстают в разной форме в зависимости от уровня жизни, на котором они изучаются (молекула, клетка, организм, популяция). Но, в конечном счёте наследственность обеспечивается самовоспроизведением материальных единиц наследственности (генов и цитоплазматических элементов), молекулярная структура которых известна. Закономерный матричный характер их ауторепродукции нарушается и мутациями отдельных генов или перестройками генетических систем в целом. Всякое изменение в ауторепродуцирующемся элементе наследуется константно.
10. Генетическая инженерия
Что такое генетическая инженерия? Генетическая инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генетической инженерии - теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.
10.1 Из истории генетической инженерии
Генетическая инженерия возникла в 1972 году, в Станфордском университете, в США. Тогда лаборатория П. Берга получила первую рекомбинатную (гибридную) ДНК или (рекДНК). Она соединяла в себе фрагменты ДНК фага лямбда, кишечной палочки и обезьяньего вируса SV40.
10.2 Строение рекомбинантной ДНК
Гибридная ДНК имеет вид кольца. Она содержит ген (или гены) и вектор. Вектор - это фрагмент ДНК, обеспечивающий размножение гибридной ДНК и синтез конечных продуктов деятельности генетической системы - белков. Большая часть векторов получена на основе фага лямбда, из плазмид, вирусов SV40, полиомы, дрожжей и др. бактерий. Синтез белков происходит в клетке-хозяине. Наиболее часто в качестве клетки-хозяина используют кишечную палочку, однако применяют и др. бактерии, дрожжи, животные или растительные клетки. Система вектор-хозяин не может быть произвольной: вектор подгоняется к клетке-хозяину. Выбор вектора зависит от видовой специфичности и целей исследования. Ключевое значение в конструировании гибридной ДНК несут два фермента. Первый - рестриктаза - рассекает молекулу ДНК на фрагменты по строго определенным местам. И второй - ДНК-лигазы - сшивают фрагменты ДНК в единое целое. Только после выделения таких ферментов создание искусственных генетических структур стало технически выполнимой задачей.
10.3 Этапы генного синтеза
Гены, подлежащие клонированию, могут быть получены в составе фрагментов путем механического или рестриктазного дробления тотальной ДНК. Но структурные гены, как правило, приходится либо синтезировать химико-биологическим путем, либо получать в виде ДНК-копии информационных РНК, соответствующих избранному гену. Структурные гены содержат только кодированную запись конечного продукта (белка, РНК), и полностью лишены регуляторных участков. И поэтому не способны функционировать в клетке-хозяине.
При получении рекДНК образуется чаще всего несколько структур, из которых только одна является нужной. Поэтому обязательный этап составляет селекция и молекулярное клонирование рекДНК, введенной путем трансформации в клетку-хозяина. Существует 3 пути селекции рекДНК: генетический, иммунохимический и гибризационный с мечеными ДНК и РНК.
10.4 Практические результаты генной инженерии
В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.
На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.
Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.
10.5 Теоретическое значение генетической инженерии
За короткий срок генная инженерия оказала огромное влияние на развитие молекулярно-генетических методов и позволила существенно продвинуться по пути познания строения и функционирования генетического аппарата. Генная инженерия имеет большие перспективы в лечении наследственных болезней, которых на сегодняшний день зарегистрировано около 2000. Г.и. призвана помогать исправлять ошибки природы.
Достигнуты большие успехи в клонировании. Клон, или группа клеток, образуется делением первой клетки. Каждая соматическая клетка человека несет один и тот же набор ген, всю наследственную информацию. Если она начнет делиться, то вырастет новый организм, т.е. с таким же генотипом. В 1997 г. доктор Ян Вилмут в Шотландии в г. Эддинбурге получил с группой ученых ягненка Долли (искусственным путем). Этот ягненок не имеет отца, так как клетка была взята у матери. Возникло опасение, что эксперименты по генной инженерии могут быть опасны для человечества. В 1974 г. спец. Комиссия американских биологов опубликовала сообщение генетикам мира, в котором рекомендовала воздержаться от экспериментов с некоторыми видами ДНК, пока не будут разработаны меры безопасности. Но все-таки необходимо было разработать ограничительные меры. 30 июля 1997 г. комитет по науке в Конгрессе США проголосовал за полный запрет экспериментов, связанных с клонированием людей. Президент еще раньше запретил выделение денег на эти эксперименты.
В России в 1996 г. Государственная Дума приняла закон о государственном регулировании в области ген. инженерии.
Заключение
Все что мы знаем сегодня о механизмах наследственности, действующих на всех уровнях организации живого (особь, клетка, субклеточная структура, молекула), удалось установить благодаря теоретическому и техническому вкладу многих дисциплин - биохимии, кристаллографии, физиологии, бактериологии, вирусологию, цитологии... и, наконец, генетики. В этой кооперации генетика выступала в качестве ведущего начала исследований, унифицировавшего получаемые результаты. Генетическое истолкование биологических явлений имеет в сущности объединяющее значение, как это хорошо выражено в ставшем уже классическим афоризме Ж. Моно: “Все, что верно для бактерии, верно и для слона”. На современном этапе биологических знаний вполне обоснованно считать, что все свойства организмов, включая человека, могут быть всецело объяснены (если уже не объяснены) особенностями их генов и тех белков, которые ими кодируются. Поэтому к какой бы отрасли биологии ни относилось изучаемое явление - будь то эмбриология, физиология, патология или иммунология, теперь уже невозможно не учитывать его генетические основы. За каждым явлением скрывается его строгая детерминация- группа работающих генов и белков, осуществляющих свои функции.
Эти факты и представляют собой в совокупности солидный вклад генетики в понимание первичных механизмов жизни. Но значение генетики этим не исчерпывается, оно связано также с внутренними особенностями генетического метода.
Генетик имеет дело с мутациями, которые служат для него рабочим материалом. Действительно, мутация, выражающаяся в наследственном изменении какого-то свойства, обнаруживает известную долю генетического материала организма, о существовании и функции, которой иначе было бы трудно догадаться. Генетический анализ (состоящий в прослеживании передачи какого-либо признака при половом размножении) позволяет установить число генов, ответственных за изучаемый признак. и их локализацию. Если признак представляет собой факт эмпирический, сложный (поскольку он соответствует внешним выражениям сложного взаимодействия элементарных явлений) и к тому же изменяющийся в зависимости от условий Среды и многочисленных микрофакторов, ускользающих от контроля экспериментатора, то ген, напротив,- факт точный, конкретный и стабильный. Совершенно очевидно, что стремление разложить данное явление на его генетические компоненты всегда способствует становлению метода ясного логичного анализа.
Кроме того, использование данных генетики - единственный метод, позволяющий биологу вести строго научное экспериментальное исследование и с уверенностью сопоставлять полученные результаты. Таким образом, генетика дает нам одновременно теоретически рациональный подход, вносящий ясность в понимание исследуемых явлений, и точный экспериментальный метод. Они, безусловно, сохранят свое значение до тех пор, пока не будут удовлетворительно объяснены все свойства живых организмов.
Список используемой литературы
1. С.Х. Карпенков “Концепципи современного естествознания”,М.,1997 г.
2. В.А. Орехова, Т.А. Лашковская, М.П. Шейбак “Медицинская геенетика”,Минск, 1997 г
3. А.А. Каменский, Н.А. Соколова, С.А. Титов “Биология”, Москва,1997 г.
4. Маниатис Т., Методы генетической инженерии, М., 1984;
Подобные документы
Система здорового образа жизни, факторы, положительно влияющие на здоровье. Влияние наследственности и состояния окружающей среды на организм человека. Значение правильного распорядка дня, труда и режима питания. Влияние вредных привычек на здоровье.
курсовая работа [448,5 K], добавлен 19.12.2011Здоровье - потребность человека, определяющая способность его к труду и обеспечивающая гармоническое развитие личности. Резервы организма, рациональное питание. Влияние окружающей среды, наследственности и биоритмов. Оптимальный двигательный режим.
реферат [26,8 K], добавлен 21.12.2010Понятие наследственных заболеваний: изменение числа или структуры хромосом. Классификация хромосомных нарушений, обусловленных изменениями половых и неполовых хромосом. Основные типы наследственности. Болезни обмена вещества и нарушения иммунитета.
презентация [1,8 M], добавлен 21.11.2010Предмет и методы изучения медицинской генетики, ее проблематика на современном этапе. Понятие и строение хромосом. Правила хромосом. Стадии жизненного цикла клетки. Митоз и мейоз, их сущность, этапы, значение в жизни организма, возможные патологии.
реферат [16,9 K], добавлен 22.02.2009Бластомогенное действие ионизирующих излучений. Применение изотопов в изучении предопухолевых изменений в органах. Роль наследственности в развитии и локализации опухоли в определенных органах. Значение питания для возникновения и роста опухоли человека.
реферат [15,0 K], добавлен 24.05.2010Влияние загрязненного воздуха, питьевой воды, шума и радиации на показатели заболеваемости. Основные понятия и этапы оценки риска воздействия химических факторов окружающей среды на здоровье населения. Управление риском и распространение информации о нем.
реферат [33,0 K], добавлен 20.01.2014Предмет и задачи генетики человека. Методы изучения наследственности и изменчивости человека. Наследственные болезни человека, их лечение и профилактика, основные пути предотвращения. Генные мутации и нарушения обмена веществ. Виды хромосомных болезней.
реферат [11,6 K], добавлен 28.11.2010Наследование признаков родителей. Влияние наследственности на психическое здоровье детей. Психологические особенности человека. Расстройства психического развития. Физическое развитие: морфологические и функциональные показатели, развитие мускулатуры.
курсовая работа [25,7 K], добавлен 24.05.2010- Роль наследственности и конституции в патологии. Патофизиология нервной системы. Патофизиология боли
Мутация, ее виды, причины и последствия. Молекулярно-генетические и хромосомные наследственные болезни. Пути поступления патогенных агентов в нервную систему. Нейрогенные механизмы расстройств чувствительности. Механизмы формирования и развития боли.
презентация [734,9 K], добавлен 05.02.2014 Наследственные болезни и их виды. Моногенные и полигенные заболевания. Синдромы: Марфана, фенилкетонурия, Дауна, Патау, Клайнфельтера, Шерешевского-Тернера, кошачьего крика. Принципы лечения и профилактики заболеваний, наследственной предрасположенности.
реферат [57,8 K], добавлен 19.09.2010