Нобелевские лауреаты в области нейрофизиологии

Обзор успехов нейрофизиологов и биохимиков в познании деятельности мозга и механизмов памяти. Исследование работ лауреатов Нобелевской премии 2000 года А. Карлссона, П. Грингарда, Э. Кендела в области нейрофизиологии. Мировое значение работ нейробиологов.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 09.06.2010
Размер файла 23,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Содержание

Введение

Нобелевская премия по физиологии и медицине в области нейрофизиологии за 2000 год. А. Карлссон, П. Грингард, Э. Кендел

Заключение

Список литературы

Введение

Вы заметили, как много стало молодых людей, которые не могут пересказать только что прочитанный текст, не помнят своих планов, не выполняют обещаний? Не всегда виновником этого является легкомыслие и несобранность. Японские и английские врачи независимо друг от друга пришли к выводу, что распространение органайзеров, всяких напоминающих устройств в компьютере и т.п. привело к тому, что человеческая память бездействует и стремительно ухудшается.[4]

Нейробиологи, исследующие механизмы функционирования памяти на молекулярном уровне, часто называют мозг "розовым ящиком" (по аналогии с "черным ящиком" - понятием, используемым в кибернетике при изучении объекта с неизвестной внутренней структурой), признавая тем самым, что работа этого важнейшего органа продолжает в значительной степени оставаться для них загадкой. На борьбу с тайнами мозга брошены огромные интеллектуальные и финансовые ресурсы. Например, Американское общество нейробиологов является сегодня самым крупным по численности научным обществом в мире: его съезды собирают до 15 тыс. ученых мужей. Серьезную моральную поддержку исследователям оказало в конце ушедшего века и правительство Соединенных Штатов, официально провозгласившее 90-е годы "десятилетием мозга". Сегодня уже можно подвести предварительные итоги этого беспрецедентного в истории науки "мозгового штурма".

Публикации об успехах нейрофизиологов и биохимиков в познании деятельности мозга и механизмов памяти в последние годы с завидной периодичностью украшают научно-популярные рубрики мировых СМИ. "Мозговое десятилетие" 90-х завершилось на мажорной ноте - за исследования механизмов медленной синаптической передачи нервных импульсов от нейрона к нейрону Нобелевская премия 2000 года по физиологии и медицине была присуждена американцам Полу Грингарду и Эрику Кенделу и шведу Арвиду Карлссону. Им удалось окончательно подтвердить, что память большинства живых существ работает благодаря действию так называемых нейротрансмиттеров, особых веществ, изменение концентрации которых в местах соединения нейронов друг с другом приводит к образованию несущего информацию импульса. В отличие от наступающих за миллисекунды эффектов классических нейромедиаторов действие исследовавшихся учеными дофамина, норадреналина и серотонина развивается за сотни миллисекунд, секунды и даже часы. Именно этим и обусловлено длительное, модулирующее влияние этих нейротрансмиттеров на функции нервных клеток (данные вещества часто вовлечены не в передачу быстрых сигналов для движения или речи, а в "оркестровку" сложных состояний нервной системы - воспоминаний, эмоций, настроений).

На вопрос, как Нобелевская премия скажется на их жизни, все три лауреата ответили, что они надеются, что эффект будет минимальным. Кендал, например, заявил: «Я постараюсь, чтобы моя жизнь не изменилась. Она мне нравится такой, какая есть».[3]

Нобелевская премия по физиологии и медицине в области нейрофизиологии за 2000 год А. Карлссон, П. Грингард, Э. Кендел

Нобелевская премия по физиологии и медицине за 2000 г. присуждена трем исследователям: шведскому фармакологу Арвиду Карлссону и двум американским нейробиологам -- Полу Грингарду и Эрику Кенделу за открытия, касающиеся «передачи сигналов в нервной системе».Арвид Карлссон (Arvid Carlsson), один из патриархов нейропсихофармакологии, родился в 1923 г. в Упсале (Швеция). В 1951 г. окончил медицинский факультет Лундского университета, в котором начал работать ассистентом профессора на кафедре фармакологии. В 1959 г. получил должность профессора фармакологии в Гётеборгском университете, где и проработал бессменным заведующим кафедрой до своей отставки в 1989 г.

Американский биохимик Пол Грингард (Paul Greengard) родился в 1925 г, в Нью-Йорке. Степень доктора философии получил в 1953 г. в Университете им. Дж. Гопкинса в Балтиморе, после чего проработал шесть лет в разных биохимических лабораториях в Лондоне и в Бетесде. Несколько лет возглавлял биохимические исследования в фармацевтической компании Гейги, а в 1968 г. продолжил карьеру университетского ученого, вначале в Йеле, а с 1983 г. (и до сих пор) руководит лабораторией молекулярной и клеточной нейробиологии в Рокфеллеровском университете в Нью-Йорке.

Признанный пионер исследований синаптических основ обучения Эрик Кендел (Eric Kandel) родился в 1929 г. в Вене, но вскоре эмигрировал с родителями в США, где в 1956 г. окончил медицинский факультет Нью-Йоркского университета. До 1965 г. работал психиатром в Гарвардском медицинском институте в Бостоне, а затем связал свою судьбу с Колумбийским университетом в Нью-Йорке, где и сейчас возглавляет одну из ведущих лабораторий мира, занимающихся изучением механизмов памяти. [3]

Какие работы объединяют всех трех лауреатов? Этим ученым принадлежат крупные открытия, касающиеся одного из типов преобразования сигналов между нервными клетками (нейронами) -- медленной передачи нервного импульса через синапс. Данные открытия стали решающими для понимания того, как функционирует головной мозг в норме, а также каким образом нарушения в преобразовании сигналов могут привести к возникновению неврологических и психических расстройств. На основании полученных данных были разработаны новые лекарственные препараты.

По решению Нобелевского комитета, премия присуждена за пионерные открытия, касающиеся определенного вида передачи сигналов от одной нервной клетки к другой, обозначаемого как «медленная синаптическая передача».[4]

В человеческом мозге более ста миллиардов нервных клеток. И все они связаны между собой. Информация от одной из них к другой передается химическими веществами (медиаторами) в особых контактных точках (синапсах), которых у клетки тысячи. [1]

Уже в 50-е годы стали появляться доказательства того, что центральная нервная система использует в синапсах не один или два, а гораздо больше нейромедиаторов.

Особенно необычными оказались катехоламиновые нейромедиаторы -- дофамин, норадреналин и адреналин, -- которые образуются в нервных клетках из поступающей с пищей аминокислоты тирозина посредством следующей цепи реакций: тирозин --> дигидроксифенилаланин --> дофамин --> норадреналин --> адреналин.

Одна из особенностей катехоламинов состоит в том, что в мозге очень мало нейронов, синтезирующих их. Из приблизительно 50--100 млрд. нервных клеток в мозге человека, вероятно, только около 0,001% нейронов, расположенных локальными группами, используют эти медиаторы. Однако это компенсируется тем, что окончания катехоламиновых нейронов очень широко распространены по нервным структурам, буквально «заливая» выделяемым медиатором клетки мозга. Например, каждый из около 10 тыс. синтезирующих дофамин нейронов в черной субстанции мозга крыс образует примерно 500 тыс. синаптических бутонов в неостриатуме -- структуре переднего мозга, связанной с регуляцией движений. У человека число бутонов одной дофаминовой клетки может достигать 5 млн. Сначала полагали, что в цепи реакций синтеза катехоламинов дофамин лишь предшественник норадреналина и не выполняет медиаторных функций. Однако шведский фармаколог Арвид Карлссон, разработав высокочувствительный метод определения дофамина в нервной ткани, показал, что картина его распределения в мозге не повторяет таковую для других катехоламинов. В частности, чрезвычайно высоким оказалось содержание дофамина в неостриатуме. И, как и для других катехоламинов, концентрация дофамина резко падала под воздействием резерпина -- препарата, истощающего запасы катехоламиновых медиаторов в синаптических пузырьках. При этом одним из побочных действий резерпина было появление у животных симптомов, напоминающих болезнь Паркинсона -- заболевания нервной системы, характеризующегося тяжелыми расстройствами регуляции движений. Сопоставив все эти факты, Карлссон выступил в 1958 г. на Катехоламиновом симпозиуме в Бетесде (США) со смелой гипотезой, согласно которой дофамин -- самостоятельный медиатор в мозге, чьи функции связаны с экстрапирамидной системой регуляции движений. Он также предположил, что болезнь Паркинсона вызвана ненормально низкими концентрациями дофамина в базальных ганглиях. Эта гипотеза получила подтверждение уже в 1961 г., когда в мозге пациентов, умерших от болезни Паркинсона, была измерена концентрация дофамина.

Но Карлссон сделал следующий шаг: стал давать крысам с истощенными резерпином запасами дофампна L-дигид-роксифенилаланин (L-ДОФА) -- предшественник синтеза дофамина. Это не только восстановило концентрацию дофамина в мозге, но и вернуло животным способность к нормальным движениям. Отсюда следовало логическое предположение, что больных паркинсонизмом можно лечить с помощью L-ДОФА. И действительно, первые испытания, проведенные в конце 60-х годов, показали, что у таких больных, получавших в течение нескольких недель высокие дозы L-ДОФА, наступает значительное улучшение. Сегодня этот прием остается одним из самых эффективных методов терапии при паркинсонизме. [4]

Помимо успешной борьбы с паркинсонизмом, работы Карлссона привели к пониманию действия целого ряда других основных психотропных препаратов. Например, он показал, что нейролептики -- лекарства, используемые при лечении шизофрении -- влияют на синаптическую передачу в мозге, блокируй дофаминовые рецепторы. В 1975 г. он ввел понятие «ауторецептор» для обозначения катехоламиновых рецепторов, расположенных на самих синтезирующих катехоламин нейронах и играющих важную роль в их работе. Кроме того, Карлссон внес большой вклад в создание нового поколения антидепрессивных препаратов, избирательно блокирующих обратный захват клетками из синапса еще одного медиатора -- серотонина.

Итак, к началу 70-х годов выяснили, что дофамин, норадреналин и серотонин -- медиаторы в центральной нервной системе, оказывающие необычное воздействие на клеткимишени. В отличие от быстрых, наступающих за миллисекунды, эффектов классических аминокислотных медиаторов и ацетилхолина действие катехоламинов нередко развивается за сотни миллисекунд или секунды и может длиться даже часами. Такой способ передачи сигналов между нейронами назвали «медленной синаптической передачей».

В 1979 г. Эклс в соавторстве с двумя канадскими биохимиками, супругами Мак-Гир, опубликовал статью, в которой предложил называть эффекты классических быстрых медиаторов ионотропными, имея в виду, что они воздействуют на ионные каналы в синаптической мембране, а медленные эффекты -- метаботропными, предполагая, что они требуют вовлечения метаболических процессов внутри постсинаптического нейрона. Как писали эти авторы в 1978 г., полная история катехоламинов не может быть рассказана, потому что наиболее важные открытия -- расшифровка их эффектов на постсинаптические клетки -- еще не сделаны. [3]

Завесу неизвестности над этим вопросом приоткрыл Пол Грингард. Он показал, что медленная синаптическая передача через метаботропные рецепторы вызывает внутри нервных клеток химическую реакцию, фосфорилирование, т.е. присоединение к белкам фосфатных групп с последующим изменением формы и функции этих белков. Грингард с сотрудниками обнаружили, что связывание дофамина с рецепторами на клеточной мембране повышает в клетке содержание «вторичного посредника» -- циклического аденозинмонофосфата (цАМФ). Это активирует фермент протеинкиназу А, которая способна фосфорилировать многие белки в нервной клетке. Среди фосфорилируемых белков находятся, в частности, мембранные белки различных ионных каналов, которые контролируют возбудимость нервной клетки и обеспечивают генерацию и передачу нервных импульсов нейроном. Поэтому дофамин и другие медиаторы, действующие через метаботропные рецепторы,способны модулировать посредством этого механизма возбудимость нервных клеток и их реакции на медиаторы, действующие через ионотропные рецепторы.

Впоследствии Грингард показал, что в клетках мозга протекают еще более сложные процессы. Медиаторы, подобные дофамину, действующие через метаботропные рецепторы, могут вызывать не только фосфорилирование, но и дефосфорилирование белков. При этом многие из их сложных эффектов внутри клетки опосредуются воздействием на регуляторный белок DARPP-32, который в свою очередь влияет на функции многих других белков в клетке. Эти работы Грингарда позволили также понять эффекты некоторых антипсихотропных препаратов, которые, как оказалось, специфически влияют на фосфорилирование белков в различных нервных клетках. [4]

Таким образом, исследования Грингарда раскрыли окно в новый мир внутриклеточных эффектов медиаторов, осуществляющих медленную синаптическую передачу. Они продемонстрировали, что, помимо классических эффектов, реализующихся через ионотропные рецепторы и непосредственное изменение электрических мембранных потенциалов, многие нейромедиаторы (катехоламины, серотонин и некоторые нейропептиды) оказывают влияние и на биохимические процессы в цитоплазме нейронов. Именно этими метаботропными эффектами и обусловлено необычно медленное действие таких медиаторов и их длительное, модулирующее влияние на функции нервных клеток. Поэтому такие нейромедиаторы часто вовлечены не в передачу быстрых сигналов для восприятия, движения, речи, а в оркестровку сложных состояний нервной системы -- эмоций, настроений, мотиваций. Иллюстрацией этому тезису может служить недавняя статья Грингарда и его сотрудников в «Science», показывающая, что дофамин и DARPP-52 участвуют в регуляции полового поведения у крыс.

Одну из важнейших функций мозга, в которой задействованы механизмы медленной синаптической передачи и фосфорилирования белков, многие годы исследовал третий нобелевский лауреат, американский нейробиолог Эрик Кендел. Это процессы формирования памяти.

Кендел начал изучать механизмы обучения на млекопитающих, но затем понял, что их мозг слишком сложен для расшифровки фундаментальных клеточных основ памяти. Поэтому в начале 60-х годов он поехал во Францию к выдающемуся нейробиологу чешского происхождения Ладиславу Тауку, чтобы научиться у него работать с морским зайцем (Aplysia). У этого моллюска относительно простая нервная система, состоящая примерно из 20 тыс. нервных клеток. Многие из них настолько велики, что видны невооруженным глазом и могут быть идентифицированы по положению в нервных ганглиях. При этом морской заяц имеет простые защитные реакции, которые можно использовать для исследования фундаментальных механизмов обучения. [3]

Кендел обнаружил, что определенные стимулы усиливают защитный рефлекс втягивания жабры у аплизии. Эта измененная реакция сохраняется на протяжении часов или даже дней и поэтому служит удобной моделью для изучения механизмов памяти и обучения. Исследования лаборатории Кендела показали, что в основе такой длительной реакции лежит повышение эффективности синаптической передачи между сенсорными нейронами моллюска и двигательными нервными клетками, которые активируют мышцы для защитной реакции.

Сначала Кендел и его сотрудники исследовали модификации защитного рефлекса, сохраняющиеся на протяжении минут или часов -- аналог так называемой кратковременной памяти. Они установили, что в основе этой формы пластичности лежит усиленный вход ионов кальция в клетку, который повышает выделение нейромедиатора сенсорным нейроном при каждом нервном импульсе и, следовательно, усиливает оборонительную реакцию. Эти изменения происходят за счет фосфорилирования белков определенных ионных каналов по механизму, описанному Грингардом.

Более сильные и продолжительные стимулы формируют у моллюска разновидности долговременной памяти, которая может длиться дни и даже недели. Эти стимулы увеличивают содержание в клетке цАМФ и активируют протеинкиназу А. Далее такие сигналы через фосфорилирование определенных белков, так называемых транскрипционных факторов, достигают ядра нервной клетки, где меняют активность ряда генов. В результате синтез некоторых из белков заметно увеличивается, а других уменьшается. Многие из этих генов кодируют белки, участвующие в построении и функции синапсов. Благодаря каскаду молекулярных реакций изменяются функции и форма синапсов нейрона, что ведет к долговременным изменениям синаптической эффективности, лежащей в основе длительных модификаций защитного рефлекса у аплизии. [4]

Таким образом, в отличие от кратковременной памяти, требующей фосфорилирования уже присутствующих в клетке белков, долговременная память основывается на экспрессии генов и синтезе новых белков. Значит, если заблокировать синтез белков в нервной системе, исчезает долговременная память, а кратковременная остается неповрежденной. Замечательная особенность этой цепи клеточных процессов состоит в том, что фундаментальные ее звенья и компоненты чрезвычайно схожи при обучении у моллюсков и у млекопитающих, оставаясь, по-видимому, неизменными на протяжении многих миллионов лет эволюции нервной системы. Это позволило Кенделу, начиная с 90-х годов, перенести значительную часть обнаруженных им на морском моллюске закономерностей на модели сложного обучения у мышей. Используя технологию гомологических рекомбинаций, позволяющую удалять у этих животных отдельные гены, Кендел и его сотрудники показали, что основные компоненты молекулярного каскада формирования памяти, описанные ими для аплизии, необходимы и при консолидации памяти у млекопитающих.

Подобная универсальность роли медленной синаптической передачи в формировании памяти, безусловно, открывает новые возможности биохимической коррекции нарушенной памяти у человека. Действительно, несколько лет назад Кендел основал биотехнологическую компанию, направленную на поиск принципиально новых средств регуляции памяти. Эти исследования особенно важны потому, что болезнь Альцгеймера и другие виды возрастных патологий (особенно характерных для развитых стран) начинаются именно с нарушений памяти. [4]

Заключение

Итак, Нобелевская премия 2000 г. за исследование механизмов "медленной синаптической передачи", достойно завершила историю изучения клеточных основ деятельности мозга в XX в. [3]

Стоит отметить, что А. Карлссон, П. Грингард, Э. Кендел. работали независимо друг от друга и в разных учреждениях. Причины их объединения в одну группу для столь высокой награды отчетливо выражены в решении Нобелевского комитета. Там сказано: "Открытия, сделанные лауреатами, являются решающими для понимания нормальных функций мозга и того, как нарушения в передаче нервного импульса от одной нервной клетки к другой приводят к развитию нервных и психических заболеваний". Доктор Стивен Хайман - директор Национального Института психического здоровья США в своих комментариях по поводу решения Нобелевского комитета подчеркнул, что новые Нобелевские лауреаты создали платформу, на которой находимся все мы при своих попытках понять сущность процессов, происходящих не только при функционировании нормальной памяти, но и при возникновении многих нервных и психических заболеваний, а также при разработке средств и способов их лечения. [4]

С тех пор, как стали понятными основные аспекты функционирования клеточных и молекулярных механизмов памяти, появилась возможность разработки новых типов лекарственных препаратов, предназначенных для улучшения функции памяти у пациентов с различными типами деменции.

Современная нейронаука слишком мало знает о механизмах высших функций мозга, и на долю XXI века остается еще много фундаментальных открытий, касающихся этого самого сложного из всех известных нам во Вселенной объектов.[2]

Список литературы

Найдыш В.М. «Концепции современного естествознания»;М:Гардарики, 2001.

Грушевицкая Т.Г, Садохин А.П. «Концепции современного естествознания. Учеб. пособие-М.:Высш. шк., 1998.

http://www.galactic.org.ua/Prostranstv1/n-nov-9-2.htm

http://vnd-ras.narod.ru/news/101200.htm


Подобные документы

  • Новый терапевтический подход к предупреждению инфекционных заболеваний. Исследование иммунологических феноменов. Клеточный период в развитии иммунологической мысли. Идентификация циркулирующих лимфоцитов. Лауреаты Нобелевской премии по медицине.

    реферат [23,5 K], добавлен 08.10.2012

  • История и цель учреждения Нобелевской премии, механизм ее присуждения. Жизненный путь и научная деятельность Эмиля Беринга - немецкого врача и создателя противодифтерийной сыворотки, ставшего первым лауреатом Нобелевской премии по физиологии и медицине.

    реферат [131,2 K], добавлен 04.04.2013

  • Понятие и принципы строения анализаторных систем человека, изучение с точки зрения нейрофизиологии. Причины возникновения и разновидности расстройств анализаторных систем, их клинические признаки и пути ликвидации. Строение, роль зрительного анализатора.

    контрольная работа [33,1 K], добавлен 18.09.2009

  • Особенности развития патологической физиологии как науки. Связь общей патологии с медицинской практикой, роль экспериментальных методов исследования в выявлении причин болезней. Нобелевские премии в области медицины, физиологии и смежных с ними наук.

    дипломная работа [92,4 K], добавлен 23.11.2010

  • Краткая биография жизни Павлова И.П. - великого российского естествоиспытателя, физиолога, создателя науки о высшей нервной деятельности и представлений о процессах регуляции пищеварения; лауреата Нобелевской премии. Увековечивание памяти об ученом.

    презентация [784,5 K], добавлен 27.11.2014

  • Биографии лауреатов Нобелевской премии по физиологии и медицине 2007 г. Разработка метода генного таргетирования. Основные характеристики эмбриональных стволовых клеток. Использование нокаутированных мышей для изучения наследственных заболеваний человека.

    курсовая работа [985,0 K], добавлен 02.08.2020

  • Роль зрительных ощущений в жизни человека. Исследование нейропсихологических особенностей зрительных агнозий у больных с объемными образованиями теменно-затылочной области мозга. Рекомендации по психокоррекции нарушений зрительных гностических функций.

    дипломная работа [3,4 M], добавлен 18.06.2013

  • Присуждение инженеру Г. Хаунсфилду и математику Алану МакКормаку Нобелевской премии в области медицины за разработку метода рентгеновской компьютерной томографии. Виды технологий сканирования. Основные показания к проведению КТ-исследований в неврологии.

    презентация [857,4 K], добавлен 24.12.2014

  • Особенность нормального мозгового кровообращения как необходимые условия для оптимальной когнитивной деятельности. Роль холинергических механизмов мозга в организации познавательной деятельности. Нейрональные модели и значение холинергических механизмов.

    реферат [22,8 K], добавлен 06.11.2012

  • Изучение функций мозга и ритмических процессов. Метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы. Алгоритм анализа электроэнцефалограмм в частотной области. Обработка и вычисление параметров.

    курсовая работа [943,9 K], добавлен 08.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.