Принципы магнитно-резонансной томографии
Физические основы явления ядерного магнитного резонанса. Исследование МР томографии и устройство МР томографа. Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность. Противопоказания и потенциальные опасности при проведении исследования.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 29.03.2010 |
Размер файла | 16,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
КАФЕДРА НЕВРОЛОГИИ С КУРСАМИ НЕЙРОХИРУРГИИ И МЕДИЦИНСКОЙ ГЕНЕТИКИ
Реферат на тему
ПРИНЦИПЫ
МАГНИТНО-РЕЗОНАНСНОЙ ТОМОГРАФИИ
Уфа 2000
Введение
Явление ЯМР было открыто сравнительно недавно в 1946 году, за открытие которого F. Bloch и E. Purcell получили Нобелевскую премию. Однако метод МРТ вышел за рамки лабораторных исследований совсем недавно - в начале 80-х годов и к настоящему времени развитие компьютерной и измерительной техники и появление новейших технологий создания однородных магнитных полей поставили его в один ряд с методами КТ, а в некоторых случаях и вывели на первое место.
Дело в том, что на КТ контрастность тканей связана с единственным параметром, характеризующим каждую ткань. - ее рентгеновской плотностью, или, как еще говорят «электронной плотностью» вещества, т.е. способностью слоя вещества поглощать рент. излучение. Можно сказать, что КТ отражает как бы поверхностное строение атомов вещества. Чем ярче выглядит ткань на КТ, тем она плотнее.
МРТ строится по переизлучению радиоволн ядрами водорода (протонами), содержащимися в тканях тела, сразу же после получения ими энергии от радиоволнового сигнала, которым облучают пациента. Таким образом, контрастность тканей отражает особенности «внутренних», ядерных структур вещества, и она зависит от ряда таких факторов, как строение вещества, взаимодействие между молекулами, молекулярное движение (диффузия, кровоток), что позволяет не только дифференцировать на изображении патологические и здоровые ткани, ни и дает возможность наблюдать отражение функциональной деятельности отдельных структур. Выбирая форму облучающего радиоволнового сигнала или импульсной последовательности, можно выделить влияние на тканевую контрастность одного какого-нибудь параметра, и одна и та же ткань на одной МРТ может получиться светлой, а на другой - темной.
Исследование МР томографии и устройство МР томографа
Прежде всего, пациента помещают внутрь большого магнита, где имеется довольно сильное постоянное (статическое) магнитное поле, ориентированное в большинстве аппаратов вдоль тела пациента. Под воздействием этого поля ядра атомов водорода в теле пациента, которые представляют собой маленькие магнитики, каждый со своим слабым магнитным полем, ориентируются определенным образом относительно сильного поля магнита. Добавляя слабое переменное магнитное поле к статическому магнитному полю, выбирают область, изображение к. надо получить.
Затем пациента облучают радиоволнами, причем частоту радиоволн подстраивают таким образом, чтобы протоны в теле пациента могли поглотить часть энергии радиоволн и изменить ориентацию своих магнитных полей относительно направления статического магнитного поля. Сразу же после прекращения облучения пациента радиоволнами протоны станут возвращаться в свои первоначальные состояния, излучая полученную энергию, и это переизлучение будет вызывать появление электрического тока в приемных катушках томографа.
Зарегистрированные токи являются МР сигналами, к. преобразуются компьютером и используются для построения (реконструкции) МРТ.
Соответственно этапам исследования основными компонентами любого МР томографа являются:
магнит, создающий постоянное (статическое), так называемое внешнее, магнитное поле, в которое помещают пациента
градиентные катушки, создающие слабое переменное магнитное поле в центральной части основного магнита, называемое градиентным, которое позволяет выбрать область исследования тела пациент
радиочастотные катушки - передающие, используемые для создания возбуждения в теле пациента, и приемные - для регистрации ответа возбужденных участков
компьютер, который управляет работой градиентной и радиочастотной катушек, регистрирует измеренные сигналы, обрабатывает их, записывает в свою память и использует для реконструкции МРТ.
Всякое М поле характеризуется индукцией М поля, которую обозначают В. Единицей измерения является 1 Тл (тесла).
В МРТ в зависимости от величины постоянного магнитного поля различают несколько типов томографов
со сверхслабым полем 0,01 Тл - 0,1 Тл
со слабым полем 0,1 - 0,5 Тл
с средним полем 0,5 - 1.0 Тл
с сильным полем 1.0 - 2,0 Тл
со сверхсильным полем >2,0 Тл
Физические основы явления ЯМР
Явление ЯМР связано с поведением в магнитном поле магнитных моментов атомных ядер. Ядро атом состоит из протонов и нейтронов. Все частицы постоянно вращаются вокруг своей оси и обладают поэтому собственным моментом количества движения - спином s. При этом собственный положительный заряд протона вращается вместе с ним и создает по закону электромагнитной индукции собственное магнитное поле. Таким образом собственное магнитное поле протона похоже на поле постоянного магнита и представляет собой магнитный диполь с северным и южным полюсами. Когда пациента помещают внутрь сильного магнитного поля МР-томографа, все маленькие протонные магниты тела разворачиваются в направлении внешнего поля. Помимо этого, магнитные оси каждого протона начинают вращаться вокруг направления внешнего магнитного поля. Это специфическое вращение называется прецессией, а его частоту - резонансной частотой или частотой Лармора. Частота Л. пропорциональна силе внешнего магнитного поля и составляет для ядер атома водорода 42,58 МГц/Тс.
Большинство магнитных моментов протонов прецессируют в сторону «севера», т.е. в направлении, параллельном внешнему магнитному полю. Их называют «параллельными протонами». Оставшаяся меньшая часть М моментов протонов прецессирует свои М моменты в сторону «юга», т.е. практически антипараллельно внешнему маг. полю, это «антипараллельные протоны». В результате в тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм (М) ориентируется точно параллельно внешнему магнитному полю В0. Величина М определяется избытком параллельных протонов, который пропорционален силе внешнего М поля, но он всегда крайне мал. М также пропорционален числу протонов в единице объема ткани, т.е. плотности протонов. Огромное число (примерно 1022 в мл воды) содержащихся в большинстве тканей протонов обусловливает тот факт, что чистый магнитный момент достаточно велик, для того чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Эти индуцированные «МР-сигналы» используются для реконструкции МР-изображения.
МР-сигнал
Любое магнитное поле может индуцировать в катушке электрический ток, но предпосылкой для этого является изменение силы поля. При пропускании через тело пациента вдоль оси y коротких ЭМ радиочастотных импульсов М поле радиоволн заставляет М моменты всех протонов вращаться по часовой стрелке вокруг этой оси. Для того чтобы это произошло, необходимо, чтобы частота радиоволн была равна ларморовской частоте протонов. Это явление и называют ядерным магнитным резонансом. Под резонансом понимают синхронные колебания, и в данном контексте это означает, что для изменения ориентации магнитных моментов протонов М поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.
После передачи 90-градусного импульса вектор намагниченности ткани (М) индуцирует электрический ток (МР-сигнал) в приемной катушке. Приемная катушка размещается снаружи исследуемой анатомической области, ориентированном в направлении пациента, перпендикулярно В0. Когда М вращается в плоскостях х-у, он индуцирует в катушке Э ток, и этот ток называют МР-сигналом. Эти сигналы используют для реконструкции изображений МР-срезов. При этом ткани с большими магнитными векторами будут индуцировать сильные сигналы и выглядеть на изображении яркими, а ткани с малыми магнитными векторами - слабые сигналы и будут на изображении темными.
Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность
Контраст на МР-изображениях определяется различиями в магнитных свойствах тканей или, точнее различиями в магнитных векторах, вращающихся в плоскости х-у и индуцирующих токи в приемной катушке. Величина магнитного вектора ткани прежде всего определяется плотностью протонов. Анатомические области с малым количеством протонов, например воздух всегда индуцируют очень слабый МР-сигнал, и таким образом, всегда представляются на изображении темными. Вода и другие жидкости, с другой стороны, должны быть яркими на МР-изображениях как имеющие очень высокую плотность протонов.
Однако это не так. В зависимости от используемого для получения изображения метода жидкости могут давать как яркие, так и темные изображения. Причина этого состоит в том, что контрастность изображения определяется не только плотностью протонов. Определенную роль играют несколько других параметров; два наиболее важных из них - Т1 и Т2.
Противопоказания и потенциальные опасности.
До настоящего времени не доказаны вредные эффекты используемых в МРТ постоянных или переменных магнитных полей. Однако, любой ферромагнитный объект подвергается воздействию сильных магнитных сил, и расположение любого ферромагнитного объекта в месте, где его перемещение может быть опасным для пациента, является абсолютным противопоказанием к применению МРТ. Наиболее важными и опасными объектами являются внутричерепные ферромагнитные клипсы на сосудах и внутриглазные ферромагнитные инородные тела. Наиболее важными и опасными объектами являются внутричерепные ферромагнитные клипсы на сосудах и внутриглазные ферромагнитные инородные тела. Набольшая потенциальная опасность, связанная с этими объектами - тяжелое кровотечение. Наличие кардиостимуляторов является абсолютным противопаказ. для МРТ. На функционирование этих приборов может повлиять магнитное поле, и, более того в их электродах могут индуцироваться электрические токи с возможным нагревом эндокарда.
Передаваемые радиочастотные волны всегда вызывают нагрев тканей. Для предотвращения опасного нагрева максимально допустимая энергия, излучаемая на пациента, регулируется международными рекомендациями. Первые три месяца беременности некоторыми авторами расцениваются как абсолютное противопоказание для МРТ из-за риска нагрева плода. В течение первых трех мес. плод окружен относительно большим объемом амниотической жидкости и обладает крайне ограниченными возможностями для отвода избыточного тепла.
Подобные документы
История открытия и сущность ядерно-магнитного резонанса. Спин-спиновое взаимодействие. Понятие магнитно-резонансной томографии (МРТ). Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность. Противопоказания и потенциальные опасности МРТ.
реферат [386,2 K], добавлен 11.06.2014Сущность и значение метода магнитно-резонансной томографии, история его формирования и развития, оценка эффективности на современном этапе. Физическое обоснование данной методики, порядок и принципы построения изображений. Определение и выделение среза.
реферат [31,1 K], добавлен 24.06.2014Метод исследования пациента в условиях магнитного поля, который отражает распределение атомов водорода (протонов) в тканях. Преимущества и недостатки магнитно-резонансной томографии. Абсолютные противопоказания для проведения, контрастные вещества.
презентация [2,1 M], добавлен 07.04.2015Анатомические особенности шейных позвонков. Строение и кровоснабжение спинного мозга. Возможности методов визуализации в оценке структур позвоночника, их ограничение. Клиническое значение компьютерной томографии и магнитно-резонансной томографии.
дипломная работа [2,8 M], добавлен 25.08.2013Методы современной диагностики. Явление ядерного магнитного резонанса (ЯМР). Сущность явления ЯМР. Спин-спиновое взаимодействие. Анализаторы веществ на основе ЯМР. Техническая реализация ЯМР-томографа. Основные блоки магниторезонансной томографии.
реферат [918,5 K], добавлен 12.05.2015Диагностические возможности рентгеновских методов исследования суставов и костей: рентгенографии, линейной и компьютерной томографии, артрографии, фистулографии. Принцип и назначение магнитно-резонансной томографии, сонографии, радионуклеидного метода.
презентация [580,7 K], добавлен 19.10.2014Принципы осуществления позитронно-эмиссионной томографии. Самый распространённый радиофармпрепарат, используемый при ПЭТ. Характеристика аппаратуры для ее проведения. Показания к использованию. Отличие от компьютерной и магнитно-резонансной томографии.
презентация [457,5 K], добавлен 21.10.2013Определение контраста, интенсивность сигнала пиксела. Главные параметры, определяющие контраст в ЯМР-томографии. Спиновое эхо, кривые спада сигналов тканей мозга. Применение многоэховых последовательностей. Времена релаксации в зависимости от возраста.
реферат [1,3 M], добавлен 26.12.2013История открытия физических основ магнитно-резонансной томографии. Метод послойного исследования органов и тканей человека. Регистрация и компьютерная обработка результатов. МРТ-диагностика головного мозга, сосудов, позвоночника. Частная патология в МРТ.
реферат [110,2 K], добавлен 03.07.2015Получение изображения внутренних структур тела человека при помощи магнитно-резонансного томографа. Воздействие магнитного поля и радиочастотного импульса на протоны ядер водорода. Значения индукции магнитного поля. Технические характеристики томографов.
реферат [1,5 M], добавлен 18.05.2014