Общая патофизиология
Характеристика предмета в контексте изучения задач и методов патофизиологии, понятий общей нозологии, общей этиологии и патогенеза, учения о наследственности и патофизиологических основ реанимации и защитно-компенсаторных процессов организма.
Рубрика | Медицина |
Вид | лекция |
Язык | русский |
Дата добавления | 22.01.2010 |
Размер файла | 132,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Наследственные болезни человека изучает медицинская генетика - раздел фундаментальной генетики. Генетика (греч. - genetikos - относящийся к рождению, происхождению) - наука, изучающая закономерности наследственности и изменчивости организмов вообще. Медицинская генетика - это раздел генетики человека, изучающий наследственно обусловленные морфологические и функциональные нарушения в онтогенезе человека, закономерности их наследования, фенотипической реализации и распространения, а также разрабатывающей методы диагностики, профилактики и лечения этих нарушений.
Термин "наследственные болезни" иногда отождествляют с термином "врожденные болезни". Под врожденными болезнями понимают такие состояния, которые существуют уже при рождении ребенка. Врожденные болезни могут быть обусловлены наследственными и ненаследственными факторами. К ним относятся врожденные пороки развития ненаследственной природы, которые являются фенокопиями наследственных пороков развития. В то же время не все наследственные болезни являются врожденными - очень многие заболевания проявляются в значительно более позднем возрасте.
Фенокопия - ненаследственное изменение каких-либо признаков организма под влиянием окружающей среды, копирующее фенотипическое проявление мутаций, отсутствующих в генотипе данной особи. Например:
Врожденные инфекции (токсоплазмоз, краснуха, сифилис и др.) могут индуцировать фенокопии патологических мутаций у нескольких сибсов (сибсы - это дети одной родительской пары: братья и сестры) и вызывать тем самым подозрение на наследственное заболевание.
Фенокопии, вызываемые внешними факторами химической и физической природы, могут с определенной частотой встречаться не только у пробанда, но и его сибсов, если факторы продолжают действовать и после рождения больного ребенка.
Термин "семейные болезни" не является синонимом "наследственных". Семейные болезни могут быть наследственными и ненаследственными. Этот термин свидетельствует лишь о том, что заболевания встречаются среди членов одной семьи. Семейное заболевание может быть обусловлено одинаковым вредным фактором, который действует в семье: плохая освещенность, сырая квартира, профессиональная вредность и т.д.
Наследственные болезни - это болезни, этиологическим фактором которых являются мутации (генные, хромосомные или геномные). С одной стороны, большинство мутаций увеличивает полиморфизм человеческих популяций (групп крови, цвет волос, форма носа и т.д.), а с другой - мутации затрагивают жизненно важные функции и тогда развивается болезнь.
Несмотря на то, что нет резких переходов от болезней, обусловленных внешними факторами, к наследственным болезням, с генетической точки зрения все болезни в зависимости от относительной значимости наследственных и средовых факторов в их развитии академик РАМН Н.П.Бочков (1978) делит на 4 группы:
Наследственные болезни. Проявление патогенного действия мутации как этиологического фактора практически не зависит от внешней среды. Она может менять лишь выраженность симптомов болезни. Определяющую роль здесь играет наследственность. К заболеваниям этой группы относятся все хромосомные и генные наследственные болезни с полным проявлением: болезнь Дауна, гемофилия, фенилкетонурия, ахондроплазия и др. Болезнь может проявляться в любом возрасте и совсем не обязательно в детском (например, хорея Гентингтона развивается после 40 лет).
Болезни с наследственным предрасположением. Для этих болезней наследственность является этиологическим фактором, но для пенетрантности мутированных генов необходимо соответствующее состояние организма, обусловленное вредным влиянием среды (подагра, некоторые формы сахарного диабета - их проявление зависит от неумеренного питания). Такие заболевания обычно проявляются с возрастом при действии внешних факторов: переутомление, переедание, охлаждение и т.д.
В этой группе заболеваний этиологическими факторами являются влияния среды, однако частота возникновения и тяжесть течения болезней существенно зависит от наследственного предрасположения. К этой группе можно отнести атеросклероз, гипертоническую болезнь, туберкулез, экзему, язвенную болезнь. Они возникают под действием внешних факторов (иногда даже не одного, а сочетания многих факторов - это мультифакториальные заболевания), но гораздо чаще у лиц с наследственным предрасположением. Подобно болезням 2-ой группы, они относятся к болезням с наследственным предрасположением, и между ними нет резкой границы.
В происхождении болезней этой группы наследственность не играет никакой роли. Этиологическими факторами являются только внешние (средовые) факторы. Сюда относится большинство травм, инфекционных заболеваний, ожоги и т.д. Генетические факторы могут влиять только на течение патологических процессов (выздоровление, восстановительные процессы, компенсация нарушенных функций).
Такая ранжировка болезней на группы в некоторой степени условна, но она помогает оценить соотносительное значение наследственности и среды в развитии болезней человека. Болезни 2-ой и 3-ей группы могут быть объединены в одну - это болезни с наследственным предрасположением.
Наследственные болезни составляют значительную часть в структуре общей патологии человека. Их известно уже более 2000 и этот список постоянно пополняется новыми формами. Они оказывают значительное влияние на заболеваемость и смертность. 40% детской смертности частично или полностью обусловлено наследственной патологией, не менее 40% спонтанных абортов связано с хромосомными нарушениями.
10,5% населения страдает наследственными заболеваниями или болезнями с наследственным предрасположением. 5% новорожденных имеют те или иные наследственные дефекты. Более того, в детских стационарах около 30% коек занято пациентами с наследственными болезнями. Кроме того, генетические факторы играют существенную роль в мертворождаемости, бесплодии, спонтанных абортах.
Большинство наследственных болезней имеет тяжелое хроническое течение. На обслуживание больных, страдающих наследственными заболеваниями, государство расходует огромные средства, а если учесть еще и большой моральный ущерб, причиняемый больными с наследственной патологией семье и обществу, то становится очевидной необходимость организованной борьбы с распространением наследственных болезней, и, в первую очередь, работы по их профилактике.
Большинство генных мутаций, а тем более хромосомные и геномные, вызывают генерализованное повреждение тканей или захватывают несколько органов. Вот почему многие наследственные болезни проявляются в виде синдромов и встречаются в практике врача любой специальности: педиатра, акушера-гинеколога, невропатолога, стоматолога, хирурга, гематолога, эндокринолога и др.
Наследственные болезни классифицируются с клинической и генетической точек зрения. В основу клинической классификации положен системный и органный принцип, так как по этиологии все наследственные болезни едины (в их основе лежит мутация):
Болезни обмена - фенилкетонурия, галактоземия, подагра, гликогенозы,гомоцистинурия, порфирии и т.д.
Болезни соединительной ткани - синдром Марфана, хондродистрофии, ахондроплазии и др.
Болезни крови - гемоглобинопатии, мембранопатии, энзимопатии и др.
Психические заболевания - шизофрения, маниакально-депрессивный психоз и др.
Болезни желудочно-кишечного тракта - целиакия, пептическая язва, наследственные гипербилирубинемии и др.
Болезни почек - наследственный нефрит, цистинурия, цистиноз, поликистоз почек, туберозный склероз и др.
Естественно, что эта классификация условна. Например, нейрофиброматоз (доминантная мутация) встречается в нейрохирургических клиниках (опухоль мозга у больных) и в дерматологических (у больных первоначально появляются желтоватые обширные пятна и узелки на коже). Больные эпилепсией являются пациентами и невропатологов, и психиатров.
С генетической точки зрения наследственные болезни классифицируются как и мутации, поскольку они являются этиологическим фактором болезней.
В зависимости от уровня организации (объема повреждения) наследственных структур различают генные, хромосомные и геномные мутации, а в этой связи наследственные болезни делятся на 2 большие группы:
Генные - заболевания, вызываемые генными мутациями, которые передаются из поколения в поколение.
Хромосомные - заболевания, вызываемые хромосомными и геномными мутациями.
В зависимости от генетического подхода наследственные болезни делятся на много групп:
По количеству вовлеченных локусов наследственные болезни могут быть:
а)моногенными (мутирован один ген) - фенилкетонурия, муковисцидоз, гемофилия, недостаточность Г-6-ФДГ и др.;
б)полигенные - это болезни с наследственным предрасположением (гипертоническая болезнь, атеросклероз, сахарный диабет и др.). Полигенные заболевания выделяются в отдельную группу из-за сложного характера наследования болезни и влияния среды на реализацию предрасположения.
Генные мутации могут возникать в структурных и регуляторных генах. Основная масса наследственных заболеваний обусловлена, очевидно, мутациями в структурных генах. Хорошо изученных примеров наследственных болезней, обусловленных мутациями в регуляторных генах, пока нет - даже при гемоглобинопатиях, болезнях обмена веществ, дефиците Ig А речь идет только о предположении мутации регуляторного гена и поисках строгих доказательств.
По характеру наследования моногенные болезни делятся на:
а)аутосомно-доминантные, в основе которых лежит нарушение синтеза структурных белков или белков, выполняющих специфические функции. Действие мутантного гена проявляется почти в 100%. Вероятность развития болезни в потомстве составляет 50%. Один из родителей больного ребенка (мальчика или девочки) обязательно болен. По этому типу наследуются синдактилия, полидактилия, синдром Марфана, талассемия, геморрагическая телеангиэктазия, нейрофиброматоз, эллиптоцитоз и др.;
б) аутосомно-рецессивные. При этом типе наследования мутантный ген проявляется только в гомозиготном состоянии. Больные мальчики и девочки рождаются с одинаковой частотой. Вероятность рождения больного ребенка составляет 25%. Родители могут быть фенотипически здоровыми, но являются гетерозиготными носителями мутантного гена. По этому типу наследуются фенилкетонурия, алкаптонурия, альбинизм и другие энзимопатии, дефект твердого неба и верхней губы ("волчья пасть" и "заячья губа"), миоклоническая эпилепсия и др.;
в)рецессивное наследование, сцепленное с Х-хромосомой. Действие мутантного гена проявляется только при XY-наборе половых хромосом, т.е. у мальчиков. Вероятность рождения больного мальчика у матери-носительницы мутантного гена - 50%. Девочки практически здоровы, но половина из них является носительницами мутантного гена (кондукторами). Родители здоровы. Больной отец не передает болезнь сыновьям (от деда к внуку через мать-кондуктора). По этому типу наследуются гемофилия, миопатия, мышечная дистрофия Дюшенна, подагра и Др.;
г)доминантное наследование, сцепленное с Х-хромосомой. Действие доминантного мутантного гена проявляется в любом наборе половых хромосом: XX, XY, ХО и т.д. Проявление заболевания не зависит от пола, но более тяжело протекает у мальчиков. Среди детей больного мужчины в случае такого типа наследования все сыновья здоровы, а все дочери больны. Больные женщины передают измененный ген половине сыновей и дочерей. Данный тип наследования прослеживается при фосфат-диабете - наследственном заболевании, при котором нарушена реабсорбция фосфора в почечных канальцах; отмечается остеопороз, остеомаляция, деформация костей, гипофосфатемия.
д)неполного доминирования (полудоминантный тип наследования). Заболевание проявляется в гомозиготном состоянии, а в гетерозиготном - в специфических условиях (например, серповидно-клеточная анемия отчетливо проявится гемолитическим кризом при снижении парциального давления кислорода во вдыхаемом воздухе, пневмонии и т.д.). Образование серповидных эритроцитов также усиливается при повышении осмолярности плазмы, увеличении содержания 2,3-дифосфоглицерата в эритроцитах, снижении рН крови, замедлении кровотока, при дегидратации организма.
Нет, очевидно, смысла подразделять генные болезни в зависимости от характера генной мутации (делеции, дупликации, замещения), хотя все эти типы установлены для человека на основе тонкого анализа мутаций, так как фенотипическое проявление мутации обусловлено не механизмом ее возникновения, а видом аномального пептида - белка, фермента.
Хромосомные болезни подразделяют в зависимости от типа мутаций на:
Синдромы, обусловленные числовыми аномалиями (полиплоидия, анэуплоидия).
Синдромы, обусловленные структурными перестройками (делеции, инверсии, транслокации, дупликации).
Такое подразделение хромосомных болезней помогает врачу в оценке прогноза для больного и в медико-генетическом консультировании. Большинство хромосомных болезней, обусловленных анэуплоидиями, вообще не передается, а структурные перестройки (инверсии, транслокации) передаются с дополнительными перекомбинациями, которых не было у родителей.
Если мутация возникла в зародышевых клетках, то речь идет о так называемых полных формах, а если нерасхождение хромосом и структурные аберрации возникли на ранних стадиях дробления зиготы, то развиваются мозаичные формы.
Существует еще одна группа болезней, связанных с наследственностью - это болезни, возникающие при несовместимости матери и плода по антигенам и развивающиеся на основе иммунологической реакции у матерей. Наиболее типичным и хорошо изученным заболеванием этой группы является гемолитическая болезнь новорожденных. Она возникает в том случае, когда резус-положительный плод развивается в организме резус-отрицательной матери.
6.2 Этиология наследственных заболеваний
Причина наследственных болезней - мутации. Мутация - процесс изменения наследственных структур. Мутантный организм правильнее называть "мутантом". Мутации в зародышевых клетках ведут к развитию мутантного организма. Они характерны для всех клеток и передаются из поколения в поколение.
Соматические мутации захватывают определенный участок тела в зависимости от стадии онтогенеза, на которой возникла мутация. Их можно наблюдать, например, в виде лейкодермических пятен на коже, мозаичных пятен на радужке у человека. Соматические мутации не передаются следующему поколению через половые клетки. Различают спонтанный и индуцированный мутагенез. Такое деление в определенной степени условно.
Спонтанный мутагенез - возникновение мутации при обычных физиологических состояниях организма без дополнительного воздействия какими-либо внешними для организма факторами. Он детерминирован рядом химических веществ, образующихся в процессе обмена веществ, естественным фоном радиации, ошибками репликации и т.п. Спонтанный мутационный процесс зависит от свойств самого гена, системы генотипа, физиологического состояния организма и колебаний факторов внешней среды.
Мутационный процесс у человека протекает непрерывно и интенсивно, постоянно приводя к новым мутациям. Об интенсивности спонтанного мутационного процесса судят по частоте возникновения мутаций, которая обычно рассчитывается на число гамет или зигот (индивидов).
Под частотой мутаций иногда понимают частоту наследственных болезней (мутантов) в популяции. Это грубейшая ошибка! Мутанты являются результатом как вновь возникших мутаций, так и репродукции уже имеющихся в популяции.
Согласно литературным данным, частота генных мутаций у человека равна 1-2 на 100000 гамет и реже. Частота хромосомных и геномных мутаций много выше, чем генных. Например, частота нерасхождения половых хромосом и 21-й пары хромосом у человека равна примерно 1% по каждой паре, а с учетом встречаемости нерасхождения и по другим парам хромосом, то общая частота нерасхождения превысит 20%.
Поскольку в гаметах встречаются не только геномные, но и хромосомные мутации, общий уровень мутационного процесса можно считать очень высоким. По-видимому, именно этим фактом объясняется высокая гибель гамет и зигот на самых ранних сроках развития (до 50-70%).
Частота возникновения спонтанных мутаций может зависеть от физиологического состояния организма, возраста, генотипа и других факторов. Отмечена зависимость возникновения новых мутаций ахондроплазии, синдрома Марфана от возраста отцов. Чем старше мужчина, тем больше вероятность того, что его половые клетки несут мутантные аллели. Анализ многочисленных данных по гемофилии показал, что мутации возникают чаще примерно в 10 раз в мужских гаметах, чем в женских.
Спонтанное возникновение мутаций может быть вызвано либо ошибками репликации, либо воздействием мутагенных факторов химической или физической природы. Уровень спонтанных мутаций можно объяснить естественным фоном облучения, но фон радиации не играет определяющей роли.
Если происхождение мутаций объясняется ошибками, возникающими в процессе репликации генов, то тогда у мужчин должна наблюдаться большая зависимость от возраста, чем у женщин, потому что у мужчин происходит непрерывное обновление сперматогенного эпителия, а ооциты женщин не делятся.
Частота хромосомных и геномных мутаций зависит от возраста. У женщин после 35 лет резко (до 10 раз) повышается вероятность рождения детей с хромосомными болезнями. Возраст же отцов не имеет значения. Причина этого неизвестна.
Спонтанный мутагенез присущ всем видам, в том числе и человеку. Пополнение новых мутаций уравновешено элиминацией, и поэтому популяция сохраняет стабильное состояние. Если же интенсивность мутационного процесса будет повышена, то приспособленность популяции снизится в квадратичной зависимости. Таким образом, для человеческих популяций индуцированный мутагенез является особенно опасным!
Индуцированный мутагенез опосредован повреждающим действием на генетический аппарат клеток физических, химических и биологических факторов, называемых мутагенами.
К физическим мутагенам относится радиация. Основные положения радиационной генетики применимы к человеку:
число мутаций растет пропорционально дозе облучения,
не существует порога дозы; пропорционально дозе увеличивается число мутаций,
мутации возникают в зародышевых и соматических клетках,
хроническое облучение в 3-5 раз менее эффективно, чем острое,
удваивающая доза радиации составляет для человека 100-150 Р.
Химические вещества вызывают мутации на всех 3 уровнях организации наследственных структур (гены, хромосома, геном). Они принадлежат к разным классам химических соединений:
кислоты, спирты, соли, циклические соединения, тяжелые металлы и др. Мутагены содержатся в чрезвычайно широком наборе пищевых продуктов повседневного спроса, в лекарственных препаратах, воздухе, воде и т.д. Кроме того, во многих пищевых продуктах, табаке и различных напитках содержатся вещества, активирующие или ингибирующие мутагенную активность других соединений. Химические мутагены поступают в организм с пищей, водой, воздухом, лекарственными препаратами.
В воздух попадают мышьяк, сероводород, меркаптан, свинец, органические окислители, канцерогены органического происхождения. В воде повышается концентрация мышьяка, хрома, фтора, свинца, пестицидов, гербицидов. Почва также насыщается пестицидами, гербицидами и другими химикатами.
В группе пестицидов, гербицидов, инсектицидов обнаружено более 15 мутагенов: гидразидмалеиновой кислоты, ДДТ, каптан, арамит, цирам и др.
Из промышленных соединений более 20 оказывают мутагенное действие: формальдегид, ацетальдегид, уретан, хлоропрен, диметилнитрозоамин, эпоксиды, бензол и др. Сильнейший мутаген - это конденсат сигаретного дыма. Потенциальная мутагенная активность конденсата сигаретного дыма в 20000 раз превышает мутагенность бензпирена, содержащегося в этом конденсате.
Мутагенное действие проявляют пищевые добавки типа цикламатов, ароматических углеводородов, тетразина и др. Сигимура обнаружил мутагенность как конденсата дыма, образующегося при обжаривании рыбы, говядины, так и экстрактов с поверхностной "корочки" жареных кусков сардин, сельди. Конденсат дыма, полученный при приготовлении бифштексов на углях, также мутагенен, но гораздо в меньшей степени, чем конденсат дыма от рыбы.
Экстракты "корочки" с поверхности жареных кусков рыбы и говядины также проявляют мутагенную активность. Она обусловлена продуктами пиролиза триптофана. Мутагенной активностью обладают пиролизаты ряда пищевых продуктов: риса, фасоли, пряностей, кофе, чая, сахара и т.п. 10-минутный пиролиз при 200°С дает продукты с очень низкой, слабой мутагенной активностью, а при обработке при 300 °С -мутагенная активность достигает максимума.
Выделяют комутагены, которые модифицируя мутагены, усиливают их мутагенный эффект. К ним относятся норгарман и гарман. Перечень учтенных химических веществ, представляющих токсикологическую опасность, превышает 250000 соединений. 5-10% из этих веществ, поступающих в окружающую среду, обладает мутагенными свойствами.
Наиболее важные характеристики химического мутагенеза:
зависимость эффекта от концентрации вещества и времени действия (дозазависимый эффект),
вероятность повреждения хромосом при действии химических веществ зависит от стадии клеточного цикла (например, для алкилирующих мутагенов наиболее чувствительной является стадия синтеза ДНК),
отсутствие порога при действии алкилирующих мутагенов на хромосомы человека, хотя для возникновения разрыва необходимо действие двух молекул мутагена или двух повреждающих центров в одной молекуле,
основу взаимодействия химического мутагена с хромосомой составляет ферментативная реакция,
механизм взаимодействия определенного мутагена единый для всех стадий клеточного цикла и включает три этапа: проникновение в клетку, активация или инактивация вещества в клетке до контакта с хромосомой и взаимодействие активированных молекул с хромосомой,
независимость действия химических мутагенов при комбинированном воздействии (отсутствие синергизма и антагонизма),
реакция хромосомного аппарата клетки на мутаген определяется многими факторами, вклад каждого из которых сравнительно мал.
Как химический, так и радиационный мутагенез опасны при вовлечении в него больших популяций.
Антимутагены - это факторы, действующие в антагонизме с мутагенами. Они найдены во многих овощах: белой капусте, зеленом перце, яблоках, баклажанах, имбире, листьях мяты, ананасах. Меньшей антимутагенной активностью обладают редис, виноград, цветная капуста, грибы.
Биологические мутагены менее изучены, чем физические и химические, хотя факты мутагенности вирусов известны давно. Способностью вызывать разрывы хромосом обладают вирусы оспы, кори, ветряной оспы, эпидемического паротита и др. Некоторые вирусы вызывают мутации за счет подавления активности системы репарации.
В связи с мутагенной активностью вирусов проблема вакцинации стала рассматриваться шире, чем раньше. Мутагенной активностью могут обладать различные токсины биологической природы, а также различные метаболиты (например, перекиси, свободные радикалы и др.), которые называют аутомутагенами. Значительно модифицировать частоту возникновения мутаций у человека могут паразитирующие организмы.
6.3 Основные хромосомные болезни человека
Хромосомные болезни - это большая группа клинически различных патологических состояний, этиологическим фактором которых являются хромосомные или геномные мутации. История хромосомных болезней начиналась с клинических исследований задолго до открытия конкретных нарушений. Три хромосомные болезни были описаны клиницистами как синдромы до раскрытия их хромосомной этиологии и названы по фамилии описавших их авторов: синдромы Дауна, Клайнфельтера и Шерешевского-Тернера. В 1959 г. был описан кариотип при болезни Дауна. В течение последних лет были открыты новые синдромы, детализированы особенности фенотипа при каждом из них, определены частоты хромосомных болезней в разных группах. Цитогенетика хромосомных болезней получила еще большее развитие в 80-х годах, когда были открыты новые методы идентификации хромосом человека.
Классификация хромосомных болезней основана на типах мутаций (полиплоидии, анэуплоидии, транслокации, делеции, инверсии, дупликации) и вовлеченных хромосомах.
Хромосомная болезнь может возникать в результате мутаций в гаметах родителей или в результате мутаций в клетках эмбриона на ранних стадиях его развития. Мутации в гаметах приводят к развитию полных форм, а мутации, возникшие на ранних стадиях развития эмбриона (особенно на стадии дробления зиготы), приводят к образованию мозаичного организма (т.е. часть клеток имеет нормальный кариотип, а другая часть - аномальный).
У человека обнаружены все формы хромосомных и геномных мутаций. Полные формы тетраплоидиии и триплоидии обнаружены только при спонтанных абортах, что свидетельствует об их летальном эффекте на ранних стадиях развития. Летальный эффект других форм хромосомных и геномных мутаций зависит от типа вовлеченной хромосомы и характера нарушений.
У человека существует очень много видов хромосомных аномалий - только гаметического происхождения около 750, из них свыше 700 - структурные перестройки. Выделяют следующие группы и виды хорошо распознаваемых хромосомных синдромов:
Синдромы моносомий (ХО - синдром Шерешевского-Тернера).
Синдромы трисомий: 8+, 9+, 13+ (синдром Патау), 18+ (синдром Эдвардса), 21+ (синдром Дауна). Кроме того, по X-хромосоме отмечается трисомия.
Синдромы, обусловленные делениями.
Синдромы частичных трисомий.
Патогенез хромосомных болезней. Характер и тяжесть проявления хромосомных болезней варьирует в зависимости от вида аномалий и хромосомы. Общим для всех форм хромосомных болезней является множественность поражения:
черепно-лицевые дисморфии,
врожденные пороки развития внутренних и наружных органов,
замедленный рост и развитие,
задержка психического развития,
нарушения функций нервной и эндокринной системы.
При хромосомных болезнях наблюдается от 30 до 80 различных отклонений от нормы, касающихся физического и психического развития. Ключевое звено в развитии хромосомной болезни ни при одной форме не выяснено, хотя причина известна. Ряд авторов полагает, что таким звеном является "несбалансированность" генотипа. По патогенезу хромосомных болезней можно сделать 2 общих вывода:
Клиническое сопоставление полных и мозаичных форм показывает, что мозаичные формы протекают легче, что объясняется присутствием нормальных клеток, частично компенсирующих генный дисбаланс аберрантных форм.
Аутосомные болезни протекают тяжелее, чем аномалии по половым хромосомам. Это связано с различной генотипической активностью хромосом: Y-хромосома несет мало генов, а одна из Х-хромосом у женщин находится в неактивном состоянии.
Клинические проявления одних и тех же форм хромосомных болезней сильно варьирует: от летального эффекта до незначительных отклонений. До сих пор остается неясным, какие факторы (генотипические или внешней среды) являются здесь ведущими. Например, без объяснения остаются факты, что 2/3 случаев трисомии 21 заканчивается гибелью во внутриутробном периоде, а 1/3 - это дети с болезнью Дауна. Еще более выражен подобный эффект при моносомииХО.
Фенотипическое проявление хромосомных аберраций, т.е. клиническая картина синдрома, зависит от многих факторов:
генотипа организма,
индивидуального вовлечения в аберрацию хромосомы или ее участка(набора генов),
типа аберрации,
размера недостающего (при делеции) или избыточного (при частичной трисомии) материала,
степени мозаичности организма по аберрантным клеткам,
зависимости от условий среды,
зависимости от стадии онтогенеза и возраста больных.
Следует обратить внимание на то, что патогенез хромосомных болезней изучен еще недостаточно, не разработана общая схема развития сложных патологических процессов, приводящих к развитию таких комплексных синдромов, какими являются хромосомные болезни. В последние годы значительно ускорилось открытие новых хромосомных синдромов, особенно частичных трисомии и моносомий, что будет способствовать выяснению общих основ патогенеза хромосомных болезней.
6.4 Патогенез генных (молекулярных) болезней. Варианты энзимопатий
Этиологическим фактором генных (молекулярных) болезней являются генные мутации. Ген осуществляет свою функцию через синтез полипептидов, поэтому всякая мутация ведет к изменению либо структуры белка, либо его количества. Молекулярная концепция генных болезней строится главным образом на представлениях о мутациях в структурных генах и лишь предположительно в регуляторных генах.
Большинство описанных наследственных болезней обусловлено мутациями в структурных генах. Это доказано для гемоглобинопатий, энзимопатий (недостаточность гексокиназы, Г-6-ФДГ, пируваткиназы) на основании изучения кинетики ферментов и их электрофорети ческой подвижности.
По поводу мутаций генов-регуляторов нет таких строгих доказательств. У млекопитающих механизм генетической регуляции синтеза белка отличается, очевидно, от такового у микроорганизмов, описанных в 1961 году Jcob et Monod. С точки зрения изучения генных болезней о наличии регуляторных генов и мутаций в них можно говорить лишь предположительно. На сегодня существует только несколько биохимически хорошо изученных генных болезней, которые в настоящее время трудно объяснить как последствия структурных генных мутаций (талассемии, порфирии, болезнь Виллебранда, оротоацидурия).
Существует несколько уровней регуляции синтеза белка: 1) претранскрипционный, 2) транскрипционный, 3) трансляционный. На всех этих этапах, осуществляемых соответствующими ферментами, могут возникать наследственные аномалии.
Генные мутации могут привести к отсутствию какого-либо фермента (альбинизм, алкаптонурия, фенилкетонурия, синдром Леш-Нихена), транспортного (цистинурия, семейный гипофосфатемический рахит) или рецепторного (семейная гиперхолестеринемия,тестикулярная феминизация) белка.
Мутации, вызывающие наследственные болезни, могут затрагивать любые белки: структурные, транспортные, ферменты. Если принять, что у человека примерно 100000 генов, то это значит, что может быть такое же количество наследственных болезней генной природы, потому что каждый ген может мутироваться и обусловливать другое строение белка. Более того, каждый ген может мутироваться до нескольких десятков и сотен раз (ведь он состоит не менее, чем из 500 нуклеотидов). Каждое звено в цепи биохимических реакций осуществляется каким-либо ферментом и, следовательно, контролируется определенным геном в соответствии с правилом "один ген - один фермент". Исходя из этого правила. Beadle et Tatum (1941 -1945) попытались обосновать концепцию патогенеза наследственных болезней. Авторы показали, что мутация одного гена приводит к изменению лишь одной первичной биохимической реакции. Так сформировалось представление о том, что каждый ген контролирует биосинтез, специфичность и функцию только одного определенного фермента. Детали этой концепции позднее были уточнены. В частности, установлено, что продуктами генов могут быть не только ферменты, но и другие белки (гемоглобин, транспортные белки крови, антитела, гормоны белковой природы и т.д.). Установлено, что химическим эквивалентом генетического локуса (или функциональной единицей ДНК) является цистрон, который содержит генетическую информацию об одном из полипептидов, входящих в состав ДНК. Поэтому более правильно говорить о том, что "один цистрон - один полипептид", а развитие наследственных признаков происходит по следующей схеме: ген - фермент - метаболиты - клетки - ткани -органы - организм.
В 1961 году Jacob et Monod была предложена модель регуляции биосинтеза белка, использовав основные положения которой можно объяснить в какой-то степени появление либо качественно, либо количественно измененного белка, что наблюдается клиницистами в различных вариантах наследственных болезней. Согласно их теории, в клетке имеется несколько видов генов (по их функциональной значимости):
Структурные гены (с них и-РНК считывает информацию), определяющие последовательность аминокислот в полипептидной цепи.
Контролирующие гены:
а)ген регулятор, отвечающий за синтез белка-репрессора, который контролирует активность оперона,
б)ген-оператор, который в зависимости от ситуации "разрешает" и РНК или "не разрешает" считывать информацию со структурного гена.
Белок-репрессор может связываться с определенным участком ДНК и тем самым препятствовать связыванию РНК-синтезирующих ферментов. Репрессор выключает определенный ген или группу смежных генов, поэтому транскрипция закодированной в них информации становится невозможной, а клетка при этом не может синтезировать и соответствующие белки.
Исходя из этой теории, полагают, что мутация структурного гена приводит к формированию качественно нового белка, а мутация контролирующего гена - к количественным изменениям. Например, в основе серповидно-клеточной анемии лежит мутация гена, который отвечает за синтез бета-цепи глобина, при этом глютаминовая кислота заменяется на валин, что приводит к образованию качественно нового гемоглобина - HbS и появлению дрепаноцитов (эритроцитов в виде серпа). Наглядными примерами количественных изменений синтезируемого белка являются: большая группа талассемий, агаммаглобулинемия, гемофилия и др.
Отсутствие или низкая активность ферментов ведет к возникновению наследственных болезней обмена веществ -энзимопатий. Схематически общий патогенез энзимопатий можно представить следующим образом. В организме вещество А, последовательно претерпевая изменения, превращается в вещество D. На каждом этапе такого ферментативного превращения осуществляется контроль соответствующими генами: A?1-?>B ?1-?>C ?1-?>D.
Варианты возможных энзимопатий, если мутирован ?-ген.
Вещество D не образуется, что обусловливает соответствующую патологию. По такому типу нарушения синтеза фермента наследуется, например, альбинизм: мутация гена (а) приводит к дефициту фермента (а) тирозиназы, нарушая превращение тирозина в пигмент меланин - в итоге развивается альбинизм.
Вещество D не образуется, а накапливается вещество С в избытке, что приводит к патологическим изменениям в организме. Такой вариант энзимопатий наблюдается при алкаптонурии. Она возникает вследствие нарушения синтеза фермента оксидазы гомогентизиновой кислоты, превращающей гомогентизиновую кислоту в малеилацетоуксусную. Это приводит к накоплению в организме гомогентизиновой кислоты.
Вещество D также не образуется, а появляются иные продукты (х, у, z), что сопровождается патологией. Пример энзимопатий такого рода - фенилкетонурия. Недостаток фенилаланингидроксилазы блокирует превращение фени-лаланина в тирозин. Образующиеся продукты метаболизма фенилаланина (фенилпируват, фениллактат, фенилацетат и др.) оказывают токсическое влияние на организм, в первую очередь на нейроны коры головного мозга (развивается олигофрения).
При снижении активности уридилтрансферазы (как, например, при галактоземии) происходит накопление в клетках галактозо-1-фосфата, который подавляет ферментативные реакции углеводного обмена с участием фосфорилированных промежуточных продуктов. Это приводит к поражению печени, мозга и другим общим проявлениям. Катаракты, характерные для этого заболевания, образуются за счет высокой концентрации галактозо-1-фосфата в жидкостях организма и образования галактитола.
Существует большая группа молекулярных наследственных заболеваний с неизвестным до сих пор первичным генным продуктом (например, муковисцидоз в виде его кишечной и легочной форм. Во всех случаях заболевания характерен густой секрет экзокринных желез, который закупоривает их протоки, в результате чего образуются кисты). Также неясна картина в отношении молекулярных дефектов при многих наследственных заболеваниях костей, нервно-мышечных дистрофиях, пигментном ретините, нейрофиброматозе. Клинические характеристики патогенеза для многих заболеваний довольно хорошо описаны, но они отражают не первично пораженное звено, а только заключительные стадии формирования заболевания.
Частота генных болезней определяется интенсивностью мутационного процесса и давлением отбора, который определяет плодовитость мутантов и гетерозигот. Общая частота генных болезней в популяции в целом равна примерно 1-2%. Частота отдельных форм колеблется от 1:2000-3000 (муковисцидоз) до 1:100000 (гепатолентикулярная дегенерация, атаксия - телеангиэктазия и др.) и реже. Частота генной болезни считается высокой, если встречается 1 больной на 10000 новорожденных и менее, средней - 1:10000-40000, и далее низкие частоты.
6.5 Основные методы исследования наследственных заболеваний человека, принципы терапии и профилактики
В отношении человека, как объекта генетических исследований существует две точки зрения:
Одни полагают, что человек является крайне неблагоприятным объектом генетических исследований.
Другие, наоборот, находят в человеке много преимуществ.
Почему же человек - неблагоприятный объект для генетических исследований?
а)Невозможность экспериментальных браков, т.е. искусственного создания брака (скрещивания). Нельзя по заранее составленной схеме получить и проанализировать потомство от родителей с известным генотипом. Еще Н.К.Кольцов в 1923 году писал "... мы не можем заставить Н.Нежданову выйти замуж за Ф.Шаляпина, чтобы посмотреть, каковы у них будут дети". При генетическом анализе человека как бы выпадает основа гибридологического метода - экспериментальное скрещивание. Этот "недостаток" можно преодолеть двумя путями: 1) среди множества человеческих семей исследователь может найти такие, которые соответствуют его схемам исследования; 2) успешно разрабатываемый метод гибридизации соматических клеток позволяет уже в некоторых случаях проводить генетический анализ, используя культуру клеток человека.
б)Ограниченное количество потомков (1-2-3 ребенка) в семье. Даже в государствах с большим приростом населения количество детей в семье не более 3-4, а 10-15 детей - крайне редко. В любом случае размер семьи настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи. Однако, зная признак, по которому анализируется потомство, можно подобрать не одну, а необходимое количество семей.
в)Длительность смены поколений. Для смены одного поколения человека нужно в среднем 30 лет, а это значит, что генетик не может наблюдать более 1-2 поколений. Этот недостаток в известной мере устраняется большими популяциями человека, регистрацией признаков в течение длительного времени (на протяжении нескольких поколений).
г)Достаточно большой по количеству набор хромосом (групп сцепления). Он состоит из 23 пар, что затрудняет их генетическое и цитологическое картирование и снижает тем самым возможность генетического анализа.
д)Модификация наследственной изменчивости под влиянием образа жизни, социальных факторов.
е)Организационные недостатки (но они исправимы): плохая сохранность документации, неудовлетворительная регистрация браков, рождаемости, смертности, диагностики наследственных болезней и статистики.
Преимущества человека, как генетического объекта:
а)Хорошая изученность фенотипа человека - анатомическая, физиологическая, иммунологическая, биохимическая, клиническая. Специалисты различного профиля продолжают независимо от интересов генетиков изучать человека, что несомненно помогает генетику легко распознавать многие формы наследственных отклонений.
б) Возможность использовать все методы, применяемые в медицине (биохимические, морфологические, иммунологические, электрофизиологические, клинические и др.), т.е. любые методы, которые дают возможность регистрировать признак и выражать его количественно.
Для решения сугубо генетических задач применительно к человеку в настоящее время используют следующие методы:
Генеалогический (генеалогия - греч. genealogia; от genea рождение, происхождение, поколение + logos слово, изложение - установление родственных связей между индивидумами в пределах одного поколения или в ряду поколений, или родословная) - метод родословных, т.е. прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике его часто называют клинико-генеалогическим, так как речь идет об изучении патологических признаков в семье с помощью клинических приемов обследования. Он относится к наиболее универсальным методам в генетике человека. Этот метод используется для установления наследственного характера признака, определения типа наследования и пенетрантности гена, при анализе сцепления генов и картирования хромосом, при изучении интенсивности мутационного процесса, при расшифровке механизмов взаимодействия генов, при медико-генетическом консультировании. Суть этого метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Он включает два этапа: составление родословных и генеалогический анализ.
Составление родословной начинается с пробанда (лицо, первое попавшее в поле зрения исследователя). Чаще всего это больной или носитель изучаемого признака. Дети одной родительской пары называются сибсами (братья-сестры). Семьей в узком смысле называют родительскую пару и их детей. Обычно родословная собирается по одному или нескольким признакам. Она может быть полной (составление по восходящему, нисходящему и боковым направлениям) и ограниченной. Для наглядности готовят графическое изображение родословной. Грубой ошибкой является искусственное укорочение звеньев родословной в связи с трудностями обследованных родственников II и III степени. Генеалогический анализ позволяет установить генетические закономерности: наследственный характер признака и тип наследования.
Недостатки и ошибки при использовании генеалогического метода могут быть обусловлены неправильной диагностикой болезни (признака) и возможностью неправильного определения отцовства за счет внебрачных связей (от 1-3 до 10%).
Близнецовый метод - исследование генетических закономерностей на близнецах. Он был предложен Gallon в 1875 г. При использовании этого метода производится сопоставление монозиготных близнецов сдизиготными, партнеров монозиготных пар между собой, данных анализа близнецовой выборки с общей популяцией.
Монозиготными близнецами (однояйцевые, идентичные) называются индивиды, выросшие из одной зиготы, разделившейся на ранних стадиях дробления на 2 части; они обладают поэтому идентичными генотипами. Дизиготные близнецы (двуяйцевые, неидентичные) возникают за счет оплодотворения двух яйцеклеток, развивающихся в течение одной беременности. Они имеют в среднем 50% идентичных генов, но отличаются от обычных сибсов значительно большей общностью факторов среды.
Общая частота родов двойнями равна приблизительно 1%, из которых 1/4-1/3 приходится на рождение монозиготных близнецов. Близнецовый метод применяется для:
оценки соотносительной роли наследственности и среды в развитии признака;
установления наследственного характера признака и определения пенетрантности гена;
оценки действия некоторых внешних факторов: лекарственных препаратов, методов воспитания, обучения.
Этот метод включает 3 этапа: 1) сопоставление близнецовой выборки, 2) установление зиготности, 3) сопоставление пар и групп близнецов по рассматриваемым признакам.
Диагностика основывается на анализе наиболее изученных моногенных полиморфных признаков (эритро- и лейкоцитарные антигены, группы белков сыворотки крови и т.д.). Дизиготные близнецы в отличие от монозиготных отличаются по этим признакам. Если какой-либо качественный признак встречается у обоих близнецов данной пары - это конкордантная пара, а если только у одного из них - это дискордантная пара близнецов.
Популяционно-статистический метод основан на использовании наследственных признаков в больших группах населения из одной или нескольких популяций, в одном или нескольких поколениях. Изучаются выборки из конкретных популяций с применением статистической обработки полученного материала. Этот метод используется для изучения:
а)частоты генов в популяции, включая частоту наследственных болезней,
б)мутационного процесса,
в) роли наследственности и среды в возникновении болезней, особенно болезней с наследственным предрасположением,
г) роли наследственности и среды в формировании фенотипического полиморфизма по нормальным признакам,
д) значения генетических факторов в антропогенезе, в частности в расообразовании.
Возможные ошибки этого метода могут быть связаны с недоучетом миграции населения и с тем, что выбранные группы отличаются по большему числу признаков, чем сравниваются.
Цитогенетический метод основан на микроскопическом изучении хромосом. Его начали широко использовать в генетике человека только с 20-х годов XX века для:
диагностики хромосомных болезней,
составления карт хромосом,
изучения мутационного процесса,
решения некоторых эволюционных проблем в генетике человека,
изучения нормального хромосомного полиморфизма в человеческой популяции.
Именно с этим методом связано открытие всех форм хромосомных болезней. С его помощью изучается частота хромосомных и геномных мутаций в зародышевых клетках и частота хромосомных аберраций в соматических клетках. Культуры соматических клеток человека являются хорошими объектами для проверки мутагенности факторов среды (физических, химических, биологических). Цитогенетическими методами изучаются механизмы мутагенеза.
Основные сведения о морфологии хромосом человека получены при их изучении в метафазе митоза и профазе-метафазе мейоза. Для прямого хромосомного анализа можно использовать клетки костного мозга и гонад (семенников), полученные путем биопсии, что ограничивает цитогенетические исследования без культивирования. Поэтому основные цитогенетические работы выполнены на культурах клеток человека, особенно на лимфоцитах периферической крови.
Культивирование лейкоцитов периферической крови в течение 2-3 суток в присутствии ФГА позволяет получить большое число метафаз. Кроме лейкоцитов, можно культивировать клетки эпидермиса, амниотической жидкости. "Сортировка" хромосом (во время метафазы) прямо под микроскопом или чаще всего на микрофотографиях позволяет построить кариотип - т.е. упорядоченно расположить хромосомы по их отличительным признакам. В основе идентификации хромосом лежит два признака: общая длина хромосомы и расположение центромера; но он не позволяет индивидуально идентифицировать все хромосомы. Поэтому используются более точные методы: радиоавтографический, окраску хромосом флуорохромами, красителем Гимзы, гибридизации нуклеиновых кислот на цитологических препаратах.
Методы генетики соматических клеток. Поскольку соматические клетки содержат весь объем генетической информации, на них можно изучать генетические закономерности целостного организма. Соматические клетки человека характеризуются 5 основными свойствами, позволяющими их использовать в генетических исследованиях:
быстрое размножение их на питательных средах, что позволяет получать необходимое их количество для анализа,
они подвергаются клонированию - можно получать генетически идентичное потомство,
разные клетки могут сливаться, образуя гибридные клоны,
легко подвергаются селекции на специальных питательных средах,
хорошо и долго сохраняются при глубоком замораживании.
Культуру соматических клеток человека получают для генетических исследований из материала биопсий или аутопсий (кожа, опухоли, периферическая кровь, костный мозг, ткань эмбрионов, клетки из околоплодной жидкости). В настоящее время чаще используются фибробласты и лимфоидные клетки. В генетике человека используют 4 метода из генетики соматических клеток: простое культивирование, клонирование, гибридизация и селекция.
В настоящее время обосновано 4 подхода в борьбе с наследственными болезнями:
Массовое "просеивание" новорожденных на наследственные дефекты обмена веществ.
Пренатальная диагностика.
Медико-генетическое консультирование.
Контроль за мутагенной опасностью факторов окружающей среды.
Массовое "просеивание" новорожденных на наследственные болезни обмена веществ наряду с другими методами является основой профилактики наследственных болезней в популяциях. "Просеивание" (аналог - "скрининг") означает предположительное выявление недиагностированной ранее болезни с помощью тестов, обследований или других процедур, дающих быстрый ответ.
Проще говоря, просеивание - это обследование контингентов с целью подразделения их на группы с высокой и низкой вероятностью заболевания. "Просеивают" заболевания, для которых установлена связь между мутантным геном и поврежденной биохимической функцией. Изменения в биохимических параметрах по срокам своего проявления предшествуют возникновению клинических симптомов.
Современные программы массового просеивания предусматривают выявление фенилкетонурии, гипотиреоза, врожденной гипоплазии надпочечников, галактоземию, муковисцидоз, гомоцистинурию, лейциноз, гистидинемию, аминоацидопатии, недостаточность альфа-1-антитрипсина. В практике массового просеивания на наследственные болезни обмена веществ используется кровь (пуповинная, капиллярная, венозная) и сыворотка крови.
Просеивание в зависимости от искомого дефекта проводят среди различного контингента с учетом возраста, национальной и расовой принадлежности. Просеивание на наследственные аминоацидопатии и гипотиреоз необходимо проводить в первые дни жизни, чтобы терапия оказалась эффективной; просеивание на носительство гемоглобинопатии и болезни Тея-Сакса - у вступающих в брак. Просеивание на гемоглобинопатию целесообразно в популяциях или расовых группах, подвергшихся действию малярийного фактора отбора, а просеивание на носительство болезни Тея-Сакса (в Израиле) - у евреев-ашкенази, у которых мутантный ген встречается в 10 раз чаще, чем в других популяциях.
Например, в программах массового просеивания на фенилуксусную кислоту и другие аминоацидопатии используют три метода: микробиологический по Гатри (на его долю приходится 90%), хроматографический и флюорометрический.
Пренатальная диагностика осуществляется с помощью разных методов исследования в I и II триместрах беременности. В ней нуждается 10-15% семей, обращающихся в медико-генетическую консультацию. Показания к проведению пренатальной диагностики:
пожилой возраст родителей,
гетерозиготное носительство хромосомной аномалии,
Подобные документы
Особенности развития патологической физиологии как науки. Связь общей патологии с медицинской практикой, роль экспериментальных методов исследования в выявлении причин болезней. Нобелевские премии в области медицины, физиологии и смежных с ними наук.
дипломная работа [92,4 K], добавлен 23.11.2010Понятие о воспалении как местном проявлении общей защитно-приспособительной реакции организма. Этиопатогенез, профилактика и лечение свищей. Степени ожогов и отморожений, их клиническая и патоморфологическая характеристика. Воспаления синовиальных бурс.
контрольная работа [39,6 K], добавлен 21.04.2009Исследование особенностей патогенеза - раздела медицины, трактующего вопросы развития, как отдельных патологических процессов, так и болезней в целом. Характеристика патогенеза крупозной пневмонии. Значение данных патогенеза для терапии и профилактики.
реферат [21,9 K], добавлен 25.05.2010Реаниматология как самостоятельная отрасль практической медицины. Восстановление жизненно важных функций организма (прежде всего дыхания и кровообращения) в процессе реанимации больного. Усовершенствованием методов экстракорпорального кровообращения.
статья [13,8 K], добавлен 01.02.2011Определение ключевых понятий общей патологии и сущность теории причинности. Изучение патогенеза, типы и виды мутаций. Классификация наследственных болезней. Формула Хольцингера как качественная оценка вклада наследственного и средового факторов.
реферат [23,4 K], добавлен 11.05.2009Исследование основных видов внутримышечной общей анестезии, наилучшим средством которой является кетамин. Отличительные черты перорального и ректального метода общей анестезии. Методы проведения электромедикаментозной и электроакупунктурной аналгезии.
реферат [31,5 K], добавлен 27.04.2010Характеристика методов немедикаментозной анестезии, применяемых на современном этапе, оценка их преимуществ и недостатков. Порядок проведения внутривенной общей анестезии, ее общие закономерности с ингаляционной. Общая анестезия с барбитуратами.
реферат [19,6 K], добавлен 23.04.2010Понятие "адекватности анестезии". Сохранение реактивности основных регуляторных систем и предупреждение только чрезмерных патологических рефлексов как основная цель анестезии. Пути достижения адекватной анестезии. Компоненты современной общей анестезии.
реферат [23,2 K], добавлен 12.02.2010Ранние теории общей анестезии и современное понимание ее механизмов. Основные теории наркоза. Реализация специфического действия анестетиков через синапсы. Механизм угнетения возбудимости нейронов и торможения синаптической передачи возбуждения.
реферат [78,7 K], добавлен 12.02.2010Требования к специалистам по общей врачебной практике. Важность первичной медицинской помощи. Реорганизация технологии оказания первичной медико-санитарной помощи населению. Внедрение профилактики и персональной ответственности врача за здоровье пациента.
презентация [116,5 K], добавлен 15.02.2015