Вспомогательный аппарат мышц. Биомеханика мышц

Характеристика фасции, синовиальных сумок, фиброзных и синовиальных влагалищ сухожилий, мышечных блоков и сесамовидных костей, их функции. Принцип действия и аппарат движения человека, биомеханика работы скелетной мышцы, факторы, определяющие ее силу.

Рубрика Медицина
Вид лекция
Язык русский
Дата добавления 14.01.2010
Размер файла 24,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лекция

Вспомогательный аппарат мышц. Биомеханика мышц

Вспомогательный аппарат мышц

К вспомогательному аппарату мышц относят фасции, синовиальные сумки, фиброзные и синовиальные влагалища сухожилий, мышечные блоки и сесамовидные кости.

Фасции - представляют собой оболочки, построенные из рыхлой или плотной волокнистой соединительной ткани, которые покрывают мышцы, образуют влагалища сосудов и нервов и окружают различные органы. Фасции подразделяются на поверхностные и глубокие.

Поверхностная фасция расположена под кожей и связана с ней посредством соединительнотканных тяжей. Строение поверхностной фасции и степень ее выраженности неодинаковы в различных областях тела. Отмечена прямая зависимость между толщиной фасции и количеством образующих ее пластинок и степенью развития подкожных жировых отложений. Хорошо выражена поверхностная фасция передней стенки живота, груди, плеча, бедра. В тех местах, где кожа испытывает более высокое давление извне, поверхностная фасция срастается с подлежащими тканями и ее трудно отделить от собственной фасции. Это происходит на ладони, подошве, в области локтевого и коленного суставов, задней области предплечья.

Глубокая фасция покрывает отдельные части тела и называется по этим областям: фасция шеи, грудная, подмышечная и т.д. Глубокая фасция образует оболочки для отдельных мышц и мышечных групп. Фасции любой области или части тела имеют специфические особенности строения. Отличаются по строению фасции соседних мышечных групп. По границам мышц или мышечных групп фасция срастается с костью. В местах соприкосновения фасций, покрывающих соседние мышцы или группы мышц, происходит срастание этих фасций, и образуются межмышечные перегородки, которые в свою очередь срастаются с костями. Благодаря этому образуются замкнутые костно-фиброзные вместилища для мышц. Существует зависимость между строением фасции и расположением пучков в мышцах; эта зависимость обусловлена формирующим влиянием мышечных сокращений на фасции. При этом определяющим является боковое давление на соединительную ткань, которое вызывает в этой ткани силы внутреннего напряжения. В ответ на это происходит разрастание волокнистых структур, и образуется фасция.

Фасции выполняют важную опорную функцию. Вместе с клетчаткой они образуют так называемый мягкий остов тела. Фасции являются местом начала и прикрепления многих скелетных мышц. В определенных местах под влиянием бокового давления сухожилий фасции утолщаются, образую удерживатели, retinaculum, под которыми проходят сухожилия. Удерживатели сгибателей и разгибателей имеются в области лучезапястного и голеностопного суставов. Под влиянием комбинированного действия сил давления и растяжения происходит уплотнение фасций, и образуются апоневрозы - ладонный и подошвенный. Аналогично апоневрозам устроен подвздошно-большеберцовый тракт, представляющий утолщенную латеральную часть широкой фасции бедра.

Фасции играют большую роль в движениях. Фасциальные футляры направляют движения мышц. Фасции вместе с перимизием упорядочивают все смещения в мышечной системе, вызываемые сокращением мышц. Легкость движений зависит не только от скольжения суставных поверхностей, но и от состояния «внутренних сочленений» мышечной системы, образуемых соединительнотканными структурами.

С анатомией фасций связаны закономерности распространения ряда болезненных процессов. В одних случаях фасции образуют преграду на их пути, в других случаях, наоборот, служат каналами для их распространения. Так, при туберкулезном поражении поясничных позвонков образующийся гной стекает, как по желобу, по фасции, покрывающей большую поясничную мышцу, и скапливается у места прикрепления этой мышцы в верхней части бедра. Здесь появляется припухлость без красноты и болезненности, так называемый натечный абсцесс. Ввиду сказанного понятно, почему в анатомии уделяется такое внимание изучению фасций.

Синовиальные сумки представляют собой небольшие полости, выстланные синовиальной мембраной и содержащие синовиальную жидкость. Они бывают однокамерные и многокамерные. Различают несколько видов синовиальных сумок по их локализации.

1. Подкожные сумки располагаются в подкожной ткани между кожей и костью, обычно над костными выступами (над акромионом, локтевым отростком и т.д.).

2. Подфасциальные сумки сходны с подкожными (впереди от надколенника).

3. Подмышечные сумки образуются там, где мышцы проходят над выступами костей (между большой ягодичной мышцей и большим вертелом бедренной кости).

4. Подсухожильные сумки располагаются между сухожилиями мышц и костями или между рядом лежащими сухожилиями.

Значение синовиальных сумок состоит в том, что они уменьшают трение и давление на ткани и таким образом облегчают движения. Отмечено, что степень развития синовиальных сумок пропорциональна развитию мускулатуры. В пожилом возрасте сумки могут обызвествляться, что приводит к болезненности и ограничению движений.

Влагалища сухожилий бывают фиброзными и синовиальными. Фиброзные влагалища сухожилий представляют собой каналы, ограниченные утолщенной фасцией, в которых проходят сухожилия. Фиброзные влагалища хорошо выражены на кисти и стопе.

Синовиальные влагалища сухожилий имеют более сложное строение. Они представляют собой муфты с двойными стенками, надетые на сухожилия. Париетальная (наружная) и сухожильная (внутренняя) части влагалища выстланы синовиальным слоем, между ними находится полость, которая содержит синовию. Сухожильная часть синовиального влагалища сращена с сухожилием. Она соединена с париетальной частью посредством особой складки, называемой мезотендинием (брыжейкой сухожилия). В мезодендинии проходят сосуды и нервы, которые снабжают сухожилие.

Синовиальные влагалища локализуются на кисти и стопе, в местах, где на близком расстоянии проходят сухожилия нескольких мышц. Синовиальные влагалища легко вовлекаются в воспалительные процессы. В этих случаях кровоснабжение сухожилий нарушается и может наступить их омертвение, в результате чего утрачивается подвижность пальцев. Наиболее опасно поражение синовиальных влагалищ I и V пальцев кисти, так как эти влагалища тянутся от ногтевых фаланг до лучезапястного сустава, и воспаление распространяется по ним на всю кисть и далее на предплечье.

Блоки мышц располагаются там, где сухожилия меняет направление. Например, прохождение сухожилия длинной малоберцовой мышцы под блоковым отростком пяточной кости.

Сесамовидные кости, будучи включены в сухожилия мышц, увеличивают угол, под которым сухожилие прикрепляется к кости, и этим увеличивается сила тяги данной мышцы.

Вспомогательный аппарат мышц формируется под влиянием мышечной тяги из мезенхимы, окружающей скелетные мышцы. У новорожденных фасции и межмышечные перегородки тонкие и волокна в них располагаются не вполне упорядоченно. К 3 годам выявляются правильные изгибы коллагеновых волокон, их пучки становятся более компактными и к 7-10 годам приобретают такой же вид, как в фасциях взрослых людей. У детей фасции растут и утолщаются вместе с мышцами.

Биомеханика мышц

Конечной целью изучения суставов и мышц является понимание движений человеческого тела. Учение о движениях - кинезиология - является одним из разделов биомеханики. Последняя представляет собой специальную отрасль биологии, которая занимается статикой, кинематикой и динамикой организма животных и человека. Биомеханика опирается на данные анатомии и физиологии, рассматривая их с точки зрения теоретической и прикладной механики. Наиболее разработанной является биомеханика аппарата движения. Наряду с этим развиваются и другие разделы биомеханики, связанные с изучением работы сердца, кровообращения, дыхания и т.п.

Изучение движений человека имеет большое значение для самых различных областей науки и практики. В медицине данные о механизмах движений используются при лечении больных с нарушениями функций опорно-двигательного аппарата. Кинезиология представляет одну из основ теории и практики физической культуры и спорта. Без учета законов биомеханики невозможно разрабатывать вопросы, связанные с совершенствованием трудовых процессов, научной организацией труда. Родной сестрой биомеханики является бионика, которая занимается решением разнообразных технических проблем на основе знаний, полученных при изучении организмов. Одним из практических приложений бионики в медицине является конструирование протезов, которые наилучшим образом замещают утраченный орган или часть тела. Понятно, что при решении подобного рода задач необходимо знать законы кинезиологии.

Аппарат движения представляет систему взаимосвязанных, подвижных кинематических звеньев, которые образуют кинематические цепи; последние могут быть замкнутыми и открытыми. Роль мышц заключается в перемещении кинематических звеньев относительно друг друга или в их удержании в определенном положении. В зависимости от этого различают динамическую и статическую работу мышц.

Работа мышц подчиняется законам рычага. В аппарате движения имеются три рода рычагов.

1. Рычаг первого рода называют рычагом равновесия. В этом рычаге точка опоры располагается между точкой приложения силы и точкой сопротивления, причем обе силы действуют в одном направлении. Примером является удерживание головы в равновесном состоянии в атланто-затылочном суставе.

2. Рычаг второго рода является «рычагом силы». Точка сопротивления находится между точкой опоры и точкой приложения силы. Примером такого рычага может служить стопа при подъеме на полупальцы.

3. Рычаг третьего рода, или «рычаг скорости», имеет наибольшее распространение при движениях. Точка приложения мышечной тяги располагается вблизи точки опоры и имеет значительно меньшее плечо, чем противодействующая ей сила сопротивления. Примером такого рычага является действие сгибателей предплечья при поднимании или удерживании в кисти какой-либо тяжести. Плечо равнодействующей мышц равно в этом случае 2 см, а плеча удерживаемой кистью тяжести равно 20 см. Поэтому при обычной подъемной силе сгибателей предплечья, равной 160 кг, нетренированный человек может удержать при согнутом предплечье примерно 16 кг.

В основе работы мышц лежит способность мышечных волокон к сокращению. Поперечно-полосатые волокна при сокращении укорачиваются в среднем на 30-40% своей первоначальной длины. При этом одиночное мышечное волокно развивает напряжение равное 0.1-0.2 г. Все скелетные мышцы человека содержат около 300 млн. волокон. Следовательно, суммарная сила всех мышц составила бы 30 000 кг. В действительности мускулатура развивает лишь небольшую часть этой громадной силы, так как обычно сокращаются не все мышцы и в каждой сократившейся мышце бывает активной лишь часть мионов. Соответственно числу сократившихся мионов различают парциальное и тотальное сокращение мышцы. Разницу между тем и другим можно показать на примере большой грудной мышцы. При сгибании в плечевом суставе ненагруженной руки сокращается лишь часть мионов ключичной части мышцы, при боксерском ударе происходит тотальное сокращение большой грудной мышцы. При некоторых заболеваниях, сопровождающихся судорогами (столбняк), мышцы развивают максимальное напряжение, и это может приводить даже к переломам костей.

Сила скелетной мышцы определяется следующими факторами:

1. Физиологический поперечник мышцы, под которым понимают сумму площадей поперечного сечения всех поперечнополосатых мышечных волокон. Следует отметить, что физиологический поперечник не совпадает с анатомическим поперечником. Анатомический поперечник включает площадь поперечного сечения мышечных волокон, сосудов, нервов и соединительной ткани. Он соответствует площади поперечного сечения собственно мышечной части мышцы.

2. Величина площади опоры на костях, хрящах или фасциях.

3. Способ проявления силы (какого рода рычаг действует на кости - рычаг равновесия, рычаг силы или рычаг скорости).

4. Степень нервного возбуждения.

5. Адекватность кровоснабжения и т. д.

Сравним сокращения мышц с параллельным и косым расположением волокон. При сокращении мышца с параллельными волокнами (портняжная мышца) укорачивается на 40% своей длины, но развивает небольшую силу. Косое расположение волокон имеют перистые мышцы. Они содержат больше волокон, чем мышцы с параллельными пучками, и волокна в них короче. При сокращении изменяется угол, под которым волокна подходят к сухожилию, само сухожилие перемещается на меньшее расстояние, но мышца развивает большую силу. Но работа, совершаемая мышцами обоих видов, одинакова, так как проигрыш в силе у мышц с параллельными волокнами компенсируется выигрышем в расстоянии. Сила, приходящаяся на 1 см2 поперечного сечения, составляет у разных мышц от 6 до 16 кг, в среднем около 10 кг/см2. Считается, что подъемная сила мышц предплечья составляет примерно 160 кг, а сила задних мышц бедра - до 480 кг. В действительности человек может поднять и удержать гораздо меньший груз. Таким образом, мышечная система обладает значительным резервом силы. Это - один из факторов, определяющих надежность аппарата движения.

Быстрота сокращений мышц зависит от преобладания в их составе красных или белых волокон. У ряда животных довольно отчетливо различаются «красные» и «белые» мышцы. Первые состоят преимущественно из более темных и медленно сокращающихся волокон, в состав вторых входят в основном светлые, быстро сокращающиеся волокна. В соответствии с этим П.Ф.Лесгафт делил мышцы на два типа - сильные и ловкие. Дальнейшие исследования показали, что в большей части мышц светлые волокна перемешаны с темными. Например, передняя большеберцовая мышца содержит около 70% светлых и 30% темных волокон. Отмечается тенденция темных волокон концентрироваться в глубоко лежащих частях мышц, способных к длительному сокращению, связанному с поддержанием позы.

Такие функциональные особенности мышц, как амплитуда и направление производимых движений, тесно связаны с их формой и строением. Длинные и тонкие мышцы, имеющие небольшую площадь прикрепления к костям, как например длинный сгибатель пальцев, дают большую амплитуду движений. Короткие и толстые мышцы, напротив, осуществляют движения, имеющие небольшой размах (квадратная мышца поясницы). Мышцы с параллельным ходом волокон производят тягу в одном направлении. Перистые мышцы осуществляют более разнообразные движения. Веерообразные и широкие мышцы, сокращаясь отдельными частями, могут осуществлять тягу в нескольких направлениях.

Все крупные мышцы состоят из относительно самостоятельных в функциональном отношении частей. Так, трапециевидная, большая грудная, дельтовидная, передняя зубчатая мышцы обычно сокращаются отдельными пучками, которые производят различное действие. Лишь сравнительно мелкие мышцы, перекидывающиеся через один сустав, представляют собой анатомически и функционально единое целое.

Живая мышца характеризуется состоянием некоторого непроизвольного напряжения. Это напряжение называется тонусом мышцы. Тонус мышц регулируется ЦНС и от него зависит поза человека, его осанка.

Кинематическим действием мышц называют эффект, производимый ее неограниченным сокращением. Мак-Конейл с соавторами выделяют два общих закона кинематики мышц - закон сближения и закон раскручивания.

Закон сближения выражает тот известный факт, что при сокращении мышцы происходит взаимное сближение обоих ее концов - начала и прикрепления. В большинстве случаев один конец мышцы остается неподвижным, а другой перемещается в пространстве вместе с той костью, к которой он прикрепляется. Один и тот же конец мышцы в зависимости от характера движения является то фиксированным, то подвижным. Так, плечевая мышца обычно работает как сгибатель предплечья, ее фиксированная точка находится на плечевой кости, а подвижная точка - на локтевой кости. Но если предплечье и кисть стабилизированы, как это бывает при подтягивании на перекладине, то плечевая, мышца производит сгибание плеча. Фиксированная и подвижная точки теперь меняются местами. Таким образом, подвижная точка может соответствовать то прикреплению, то началу мышцы, в зависимости от взаимной подвижности звеньев кинематической цепи.

Закон раскручивания заключается в том, что мышца при своем сокращении стремится привести в одну плоскость линию своего начала и линию прикрепления. Этот закон относится только к тем мышцам, которые в начале своего сокращения являются скрученными. Сюда относятся, в частности, мышцы с перекрещивающимися пучками. Эффект раскручивания можно показать на ключичной части большой грудной мышцы. Линия начала этой мышцы на ключице проходит горизонтально, а линия прикрепления на плечевой кости имеет вертикальное направление. Сгибанием плеча обе линии приводятся в одну плоскость. Отсюда следует, что большая грудная мышца является сгибателем плеча.

Рассмотрим некоторые положения, касающиеся отношений между мышцами и суставами. Мышцы могут перекидываться через один, два и более суставов. В зависимости от этого различают мышцы одно-, дву- и многосуставные. Мышцы не только производят движения в тех суставах, мимо которых они проходят, но и тормозят их. Например, если производить сгибание бедра при разогнутом колене, то задние мышцы бедра, натягиваясь, тормозят его сгибание.

Расположение мышц вокруг суставов связано с характером движений в суставах. Вращение вокруг одной оси требует, по крайней мере, пары противоположно направленных сил. Можно показать, что при наличии N степеней свободы достаточно иметь N+1 мышц. Обычно число мышц, проводящих в движение сустав, бывает больше. Этим достигается более экономное использование мышц и возможно лучшее управление кинематическими звеньями. Мышцы располагаются или перпендикулярно к осям движения, или под некоторым углом к ним, но этот угол не может быть слишком малым, иначе будет происходить большая потеря силы.

Для анализа действия сил необходимо учитывать направление тяги мышц. Производить сложение сил, направленных в одну сторону, и вычитание сил, имеющих противоположное направление. Вращательные движения во всех суставах можно рассматривать как результат действия пары сил.

Одни мышцы начинаются вдали от сустава и прикрепляются поблизости от него. У других мышц начало находится вблизи сустава, а прикрепление удалено от сустава. Имеются существенные различия в действии мышц первого и второго рода. Чтобы установить их, необходимо произвести разложение мышечной тяги на три составляющие: 1) действующую перпендикулярно продольной оси кости, 2) действующую в направлении оси кости, 3) вращающую кость вокруг ее длинной оси.

Мышцы, тяга которых направлена перпендикулярно оси кости, начинаются далеко от сустава и прикрепляются вблизи него. Эти мышцы могут производить быстрые движения. Те мышцы, которые действуют преимущественно вдоль оси кости, начинаются вблизи сустава и прикрепляются на большем удалении от него. Они способствуют стабилизации сустава, прижимая кости одна к другой и предотвращая их разъединение при резких движениях. Если взять в качестве примера локтевой сустав, то мышцами первого рода являются двуглавая и плечевая, а мышцей второго рода - плечелучевая. В случаях, когда фиксированная и подвижная точки меняются местами, соответственно изменяется и действие мышц.

Имеются мышцы, сила тяги которых направлена так, что вызывает вращение кости. Такие мышцы при движениях обертываются вокруг кости. К ним относятся пронаторы и супинатор предплечья.

Большинство движений в суставах происходит с участием не одной, а нескольких мышц. С точки зрения группового действия мышцы подразделяются на первичные двигатели, синергисты и антагонисты. Первичными двигателями являются мышцы, производящие некоторое действие. Синергисты - это мышцы, которые участвуют в движении вместе с первичными двигателями и предотвращают их нежелательное действие. Примером синергии является сгибание пальцев при вытянутой руке. Сгибатели пальцев перекидываются через несколько суставов и при своем сокращении стремятся произвести сгибание во всех этих суставах. Сгибание кисти в лучезапястном суставе предотвращается благодаря сокращению разгибателей запястья, которые в данном случае играют роль синергистов по отношению к сгибателям пальцев.

Антагонисты действуют в направлении, противоположном первичным двигателям, и могут полностью им противодействовать. Антагонистами являются сгибатели и разгибатели, действующие на один и тот же сустав.

Первичные двигатели и их антагонисты при совместном сокращении производят фиксацию того или иного звена скелета. Например, взаимодействие мышц, расположенных выше и ниже подъязычной кости, способствуют фиксации этой кости, а вместе с ней и гортани, что имеет большое значение при голосообразовании. В качестве антагонистов могут выступать не только сократившиеся, но и расслабленные мышцы, которые в силу своей эластичности противодействуют растяжению. Такое действие расслабленной мышцы называют реактивным.

При многих движениях сокращение первичных двигателей сопровождается сокращением антагонистов, которые затем постепенно расслабляются, обеспечивая плавность движения. Электромиографические исследования показали, что сокращение антагонистов в начале движения длится лишь несколько миллисекунд, а затем антагонисты расслабляются и снова сокращаются за несколько миллисекунд до прекращения движения. В последней фазе движения они действуют как тормоз, предохраняя сустав от повреждения.

При анализе движений необходимо учитывать действие силы тяжести, которая всегда присутствует как «невидимая мышца». Каждая кость движется или фиксируется в суставе благодаря совместному действию силы тяжести и одной или нескольких мышц. Сила тяжести может выступать в качестве первичного двигателя или антагониста. Функция многих мышц заключается в противодействии силе тяжести. Антигравитационным действием обладают в первую очередь те мышцы, сила тяги которых направлена перпендикулярно оси кости.

Стабилизирующее действие силы тяжести может быть показано на примере опущенной руки. При этом все мышцы оказываются неактивными. Головка плечевой кости прижимается к суставной впадине только силой тяжести и реактивным действием надостной мышцы. Лишь при нагруженной руке в надостной мышце возникает напряжение. Аналогично этому у спокойно стоящего человека регистрируется только слабая активность подвздошно-поясничной мышцы.

Таковы положения, на основе которых можно производить анализ многообразных движений человеческого тела. Двигательная функция мышцы далеко невсегда определяется ее положением и прикреплением. Мышцы необходимо рассматривать в связи с теми двигательными актами, в осуществлении которых они участвуют, вступая при этом в сложные, изменчивые взаимоотношения. Если работа отдельных звеньев двигательного аппарата подчиняется законам механики, то сами движения тела человека обусловлены биологическими или социальными факторами. Координация движений осуществляется путем нервной регуляции на различных уровнях центральной нервной системы - спинномозговыми, стволовыми, подкорковыми и корковыми центрами.

В процессе индивидуального развития вырабатываются определенные схемы движений, имеющих то или иное биологическое значение, как-то: передвижение, ориентировка, захватывание пищи и т.д. Двигательный аппарат человека отличается тем, что он может быть использован и для осуществления произвольных движений, не укладывающихся в эти схемы. Бесконечное разнообразие трудовых процессов, речевых и эмоциональных движений зависит от практически неограниченной свободы в использовании органов движения, которая обеспечивается сложными механизмами нервного управления мышц.


Подобные документы

  • Непрерывные соединения костей, их характеристика. Суставные поверхности костей. Биомеханика суставов. Анатомо-физиологическая классификация суставов. Типы мышечной ткани. Строение, формы и вспомогательный аппарат мышц, их функциональная характеристика.

    презентация [822,2 K], добавлен 27.08.2013

  • Причины, клинические признаки, лечение и профилактик разрыва мышц. Травматический, гнойный и ревматический миозиты. Миопатоз - заболевание мышц невоспалительного характера. Причины и патогенез атрофии мышц. Тендовагинит - воспаление сухожильных влагалищ.

    реферат [33,8 K], добавлен 21.12.2011

  • Характеристика скелетной мышцы животного, которая представляет собой сложное образование, способное выполнять роль активного органа аппарата движения. Химический состав мышц. Условия, улучшающие работу мышц и вспомогательные приспособления для их работы.

    реферат [755,5 K], добавлен 22.06.2011

  • Масса скелетной мускулатуры у взрослого человека. Активная часть опорно-двигательного аппарата. Поперечно-полосатые мышечные волокна. Строение скелетных мышц, основные группы и гладкие мышцы и их работа. Возрастные особенности мышечной системы.

    контрольная работа [392,1 K], добавлен 19.02.2009

  • Особенности строения, расположение мышц туловища, головы и шеи. Структура мышц и фасции нижних и верхних конечностей, их функции, иннервация и кровоснабжение. Крепление мышц и связок на костях, сухожилия. Развитие и возрастные особенности мышц.

    учебное пособие [29,8 M], добавлен 09.01.2012

  • Движение как основа жизнедеятельности человека, его роль во взаимодействии с окружающей средой. Биомеханика - наука о законах механического движения в живых системах. Биомеханика физических упражнений для физического воспитания, системы активных движений.

    контрольная работа [933,0 K], добавлен 22.03.2009

  • Описание мышц спины, имеющих отношение к верхним конечностям. Краткая характеристика действия трапециевидной, широчайшей и большой ромбовидной мышцы. Причины поражения иннервации мышц. Особенности тестирования и релаксации мышцы, поднимающей лопатку.

    реферат [2,9 M], добавлен 10.04.2014

  • Скелетные мышцы, их строение и функции. Применение динамометра. Факторы, воздействующие на силу мышц. Объект, программа и методика исследований. Описательная статистика антропометрических параметров и динамометрических показателей учащейся молодежи.

    курсовая работа [696,9 K], добавлен 13.04.2014

  • Изолированные и сочетанные повреждения костей, сухожилий, мышц кисти. Переломы основания, диафиза кисти, пястных костей, фаланг пальцев. Диагностика и лечение переломов. Приспособления и активные движения для восстановления функции поврежденных пальцев.

    реферат [1018,1 K], добавлен 10.11.2009

  • Исследование экстензоров спины, квадратной мышцы поясницы, косых и прямой мышцы живота, пояснично-подвздошной мышцы, большой, средней и малой ягодичных мышц, короткой и длинной приводящих мышц бедра, икроножной, камбаловидной и ромбовидной мышцы.

    учебное пособие [19,5 K], добавлен 16.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.