Генетический мониторинг
Понятие генетического груза. Виды изменчивости организмов под воздействием различных факторов. "Мутационная теория" Г. де Фриза. Роль наследственности и среды в патогенезе заболеваний. Трудности диагностики наследственных болезней, основные методы.
Рубрика | Медицина |
Вид | реферат |
Язык | русский |
Дата добавления | 06.12.2009 |
Размер файла | 23,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ФГОУ СПО
«Ижевский монтажный техникум»
РЕФЕРАТ
по теме: «Генетический мониторинг»
Выполнил:
студент гр. ГХ-41 Константинов А.
Проверил:
Першина В.Г.
Ижевск 2009
Содержание
Введение
Генетический груз
Свойства человеческого генома
Наследственные болезни
Диагностика
Заключение
Список использованной литературы
Ведение
ГЕНЕТИЧЕСКИЙ МОНИТОРИНГ - система слежения за уровнем загрязнения мутагенами среды обитания (воздуха, воды, почвы, пищи, лекарственных препаратов) и за состоянием генетического здоровья живых организмов.
Загрязнение природной среды вредными отходами производства, продуктами неполного сгорания, ядохимикатами и другими мутагенами, повышение фона ионизирующей радиации, вызываемое испытаниями атомного оружия, бесконтрольным использованием химических и радиоактивных веществ в энергетике, промышленности, сельском хозяйстве - все это ведет к значительному увеличению генетических нарушений.
Генетический груз
Генетический груз -- накопление летальных и сублетальных отрицательных мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель.
Генетический груз, подразумевающий собой эти генетические нарушения, подрывающие наследственное здоровье населения, растет. Так в СССР с восьмидесятого года рождалось 200 000 детей с серьезными генетическими дефектами и около 30 000 мертвых. Около 25% беременностей не донашивается по генетическим причинам. На данный момент у 10% всего населения существует нарушение психики. Увеличивается также число онкологических заболеваний. И при этом, в большинстве случаев, болезни связаны с загрязнением окружающей среды. По данным ВОЗ 80% болезней вызвано состоянием экологического напряжения. Поэтому проблемы генетики, экологии и адаптации человека становятся особенно острыми.
Наиболее целесообразным на данный момент для решения проблем экологии человека является использование мониторинга окружающей среды и социально-трудовой потенциал людей. Цель мониторинга заключается в выявлении физического, химического, биологического загрязнения окружающей среды. Мониторинг окружающей среды проводится на основе оценки структур здоровья населения в различных территориально-производственных комплексах. При этом нельзя считать полученные статистические данные абсолютно точными, так как они могут констатировать лишь рост заболеваний. Мешает также и отсутствие четких критериев здоровья и эффективных средств его оценки. Несомненно, мониторинг окружающей среды, а также другие методы решения экологических проблем так или иначе затрагивают генетику. А между тем, генетическое загрязнение нашей планеты опаснее всех других. Становится необходимым прогнозирование изменений роста заболеваний. Поэтому особое значение имеет генетический мониторинг, позволяющий проводить контроль за мутационным процессом у человека, выявлять и предотвращать всю возможность генетической опасности, связанную с еще необнаруженными мутагенами.
На данный момент, однако, исследования мутаций трудно осуществимы.
Возникшие трудности исследования мутаций прежде всего связаны с проблемой обнаружения их в организме человека. Так, например, дело обстоит с регистрацией рецессивной аномалии, так как такой мутантный ген проявляется в организме в гомозиготном состоянии, для достижения которого требуется некоторое время. Значительно проще дело обстоит с регистрацией доминантных генных и хромосомных мутаций, особенно, если их появление в фенотипе легко обнаружимо.
Благодаря биоэкологическому мониторингу через типизацию климатогеографических и производственных районов по структурам здоровья, (то есть по соотношениям между группами с различными уровнями здоровья) возможно более эффективное улучшение условий окружающей среды, а также повышение уровня здоровья населения. Хотя остается большое количество проблем. Так, например, показатели рождаемости, заболеваемости и смертности довольно инертно “откликаются” на изменение окружающей среды, и выявляются лишь последствия экологического неблагополучия, что не дает возможности оперативного управления экологической ситуацией.
Свойства человеческого генома
Изменчивость организмов является одним из главных факторов эволюции. Она служит основным источником для отбора форм, наиболее приспособленных к условиям существования.
Изменчивость является сложным процессом. Обычно биологи делят ее на наследственную и ненаследственную. К наследственной изменчивости относят такие изменения признаков и свойств организмов, которые при половом размножении не исчезают, сохраняются в ряду поколений. К ненаследственной изменчивости - модификациям, или флюктуациям, относят изменения свойств и признаков организма, которые возникают в процессе его индивидуального развития под влиянием факторов внешней среды, сложившейся специфическим образом для каждого индивидуума, и при половом размножении не сохраняются.
Наследственная изменчивость представляет собой изменение генотипа, ненаследственная - изменение фенотипа организма.
Термин “мутация” впервые был предложен Гуго де Фризом в его классическом труде “Мутационная теория” (1901-1903). Мутацией он называл явление скачкообразного, прерывного изменения наследственного признака. Основные положения теории Г. де Фриза до сих пор не утратили своего значения, и поэтому их следует здесь привести:
1. Мутация возникает внезапно, без всяких переходов;
2. Новые формы вполне константны, т.е. устойчивы;
3. Мутации в отличие от ненаследственных изменений (флюктуаций) не образуют непрерывных рядов, не группируются вокруг среднего типа (моды). Мутации являются качественными изменениями;
4. Мутации идут в разных направлениях, они могут быть как полезными, так и вредными;
5. Выявление мутаций зависит от количества особей, проанализированных для обнаружения мутаций.
6. Одни и те же мутации могут возникать повторно.
Однако Г. де Фриз допустил принципиальную ошибку, противопоставив теорию мутаций теории естественного отбора. Он неправильно считал, что мутации могут сразу давать новые виды, приспособленные к внешней среде, без участия естественного отбора. На самом деле мутации являются лишь источником наследственных изменений, служащих материалом для естественного или искусственного отбора.
Термин "ген" был впервые применен для обозначения наследственно-обусловленного признака Иогансеном в 1911 г. Связь между геном и белком, структура которого определяется структурой гена впервые была сформулирована в виде гипотезы "1 ген - 1 фермент" Бидлом и Татумом. Прямые доказательства того, что мутации гена человека вызывают изменение в первичной структуре белков получены в 1949 г. Полингом при исследовании наследственных гемоглобинопатий. Исследую первичную структуру гемоглобина, выделенного из эритроцитов больных с серповидно клеточной анемией Полинг показал, что подвижность аномального гемоглобина в электрическом поле (электрофорез) изменена по сравнению с нормальной. Далее им было установлено, что этот эффект связан с заменой аминокислоты валина на глютаминовую кислоту. С этого открытия началась новая эра открытий в человеческой биохимической генетики наследственных болезней обмена. Они вызываются мутациями генов , которые продуцируют белки с аномальной структурой, что приводит к изменению их функций.
Большинство организмов хранят генетическую информацию в ДНК - линейном полимере, состоящем из 4ех различных мономерных единиц - дезоксирибонуклеотидами, которые сцеплены друг с другом в цепь фосфодиэфирными связями. Как было доказано Уотсоном и Криком, Типичная молекула ДНК состоит из 2ух плинуклеотидных цепей, каждая из которых содержит от нескольких тысяч до нескольких миллионов молекул. Каждый нуклеотид в одной цепи специфически связан водородной связью с нуклеотидом другой цепи. Только 2 типа спаривания нуклеотидов найдены в ДНК: дезоксиаденозинмонофосфат с тимидинмонофосфатом (А-Т пара) и дезоксигуанидинмонофосфат с дезоксицитидинмонофосфатом (Г-Ц пара). Таким образом последовательность нуклеотидов одной цепи точно определяет последовательность в другой, и обе цепи являются комплиментарными одна другой. Последовательность четырех нуклеотидов вдоль полинуклеотидной цепи варьирует среди ДНК неродственных организмов и является молекулярной базой их генетического расхождения. Поскольку большинство наследственных характеристик стабильно передается от родителей к потомству, последовательность нуклеотидов в ДНК должна точно копироваться при репродукции организма. Это имеет место в обеих цепях. Последовательность нуклеотидов и отсюда генетическая информация консервируется в ходе процесса репликации. Так как каждый нуклеотид в дочерних цепях спарен специфически с комплиментарным нуклеотидом в родительских или матричных цепях до того, как произойдет процесс полимеризации. ДНК высших организмов регулярно упаковано в структуру, называемую хромосомами, состоящих из нуклеопротеиновых элементов (нуклеосом). Хромосомы отделены от всех других клеточных компонентов ядерной мембраной. Каждый из нуклеосомных элементов состоит из четырех, иногда пяти белковых субъединиц, называемых гистонами, которые образуют стержневую структуру, вокруг которого "наматывается" примерно 140 пар нуклеотидов геномной ДНК. Структура гистонов характеризуется высокой консервативностью в царстве эукариотов. Двуспиральная модель ДНК определяет способ, путем которого гены могут быть реплицированы для передачи потомства. Процесс репликации является сложным, но концептуально простым. Две нити ДНК разделяются, и каждая копируется серией ферментов, которые вставляют комплиментарные основания напротив каждого основания на исходной (родительской) цепи ДНК. Таким образом две идентичные двойные спирали образуются из одной - в этом состоит процесс репликации. ДНК "делает" РНК, этот процесс называется транскрипцией, а РНК "делает" белок, этот процесс называется трансляцией. Последовательность основания в специфическом гене ультимативно диктует последовательность аминокислот в специфическом белке это коллинеарность между молекулой ДНК и белком достигается посредством генетического кода. Четыре типа оснований ДНК собранные в группы из трех образует триплет, каждый из которых образует кодовое слово, или кодон, который определяет включение одной аминокислоты в структуру кодируемого белка, таким способом определяется включение каждой из 20 аминокислот, которые встречаются в белках. 64 различных триплета существуют для 20 аминокислот, что определяет свойства генетического кода. Таким образом большинство аминокислот определяется более чем одним кодоном, но каждый кодон полностью специфичен.
Наследственные болезни
Наследственность и среда оказываются этиологическими факторами или играют роль в патогенезе любого заболевания человека, но доля их участия при каждой болезни своя, причем чем больше доля одного фактора, тем меньше другого. Все формы патологии с этой точки зрения можно разделить на четыре группы, между которыми нет резких границ.
Первую группу составляют собственно наследственные болезни, у которых этиологическую роль играет патологический ген, роль среды заключается в модификации лишь проявлений заболевания. В эту группу входят моногенно обусловленные болезни (такие как, например, фенилкетонурия, гемофилия), а также хромосомные болезни.
Вторая группа - это тоже наследственные болезни, обусловленные патологической мутацией, однако для их проявления необходимо специфическое воздействие среды. В некоторых случаях такое "проявляющее" действие среды очень наглядно, и с исчезновением действия средового фактора клинические проявления становятся менее выраженными. Таковы проявления недостаточности гемоглобина HbS у его гетерозиготных носителей при пониженном парциальном давлении кислорода. В других случаях (например, при подагре) для проявления патологического гена необходимо длительное неблагоприятное воздействие среды (особенности питания) .
Третью группу составляет подавляющее число распространенных болезней, особенно болезней зрелого и преклонного возраста (гипертоническая болезнь, язвенная болезнь желудка, большинство злокачественных образований и др.). Основным этиологическим фактором в их возникновении служит неблагоприятное воздействие среды, однако, реализация действия фактора зависит от индивидуальной генетически детерминируемой предрасположенности организма, в связи с чем эти болезни называют мультифакториальными, или болезнями с наследственным предрасположением. Необходимо отметить, что разные болезни с наследственным предрасположением неодинаковы по относительной роли наследственности и среды. Среди них можно было бы выделить болезни со слабой, умеренной и высокой степенью наследственного предрасположения.
Четвертая группа болезней - это сравнительно немногие формы патологии, в возникновении которых исключительную роль играет фактор среды. Обычно это экстремальный средовой фактор, по отношению к действию которого организм не имеет средств защиты (травмы, особо опасные инфекции). Генетические факторы в этом случае играют роль в течении болезни, влияют на ее исход.
Диагностика
Трудности диагностики обусловлены прежде всего тем, что нозологические формы наследственных болезней очень многообразны (около 2000) и каждая из них характеризуется большим разнообразием клинической картины. Так, в группе нервных болезней известно более 200 наследственных форм, а в дерматологии их более 250. Некоторые формы встречаются крайне редко, и врач в своей практике может не встретиться с ними. Поэтому он должен знать основные принципы, которые помогут ему заподозрить нечасто встречающиеся наследственные заболевания, а после дополнительных консультаций и обследований поставить точный диагноз.
Диагностика наследственных болезней основывается на данных клинического, параклинического и специального генетического обследования.
При общем клиническом обследовании любого больного постановка диагноза должна завершиться одним из трех заключений:
1. четко поставлен диагноз ненаследственного заболевания;
2. четко поставлен диагноз наследственного заболевания;
3. имеется подозрение, что основная или сопутствующая болезнь является наследственной.
Первые два заключения составляют подавляющую часть при обследовании больных. Третье заключение, как правило, требует применения специальных дополнительных методов обследования, которые определяются врачом-генетиком.
Полного клинического обследования, включая параклиническое, обычно достаточно для диагностики такого наследственного заболевания, как ахондроплаэия.
В тех случаях, когда диагноз больному не поставлен и необходимо уточнить его, особенно при подозрении на наследственную патологию, используют следующие специальные методы:
1. Подробное клинико-генеалогическое обследование проводится во всех случаях, когда при первичном клиническом осмотре возникает подозрение на наследственное заболевание. Здесь следует подчеркнуть, что речь идет о подробном обследовании членов семьи. Это обследование заканчивается генетическим анализом его результатов.
2. Цитогенетическое исследование может проводиться у родителей, иногда у других родственников и плода. Хромосомный набор изучается при подозрении на хромосомную болезнь для уточнения диагноза. Большую роль цитогенетического анализа составляет пренатальная диагностика.
3. Биохимические методы широко применяются в тех случаях, когда имеется подозрение на наследственные болезни обмена веществ, на те формы наследственных болезней, при которых точно установлены дефект первичного генного продукта или патогенетическое звено развития заболевания.
4. Иммуногенетические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные заболевания, при подозрении на антигенную несовместимость матери и плода, при установлении истинного родительства в случаях медико-генетического консультирования или для определения наследственного предрасположения к болезням.
5. Цитологические методы применяются для диагностики пока еще небольшой группы наследственных болезней, хотя возможности их достаточно велики. Клетки от больных можно исследовать непосредственно или после культивирования цитохимическими, радиоавтографическими и другими методами.
6. Метод сцепления генов применяется в тех случаях, когда в родословной имеется случай заболевания и надо решить вопрос, унаследовал ли пациент мутантный ген. Это необходимо знать в случаях стертой картины заболевания или позднего его проявления.
Длительное время диагноз наследственной болезни оставался как приговор обреченности больному и его семье. Несмотря на успешную расшифровку формальной генетики многих наследственных заболеваний, лечение их оставалось лишь симптоматическим. Впервые С. Н. Давиденков еще в 30-х годах указал на ошибочность точки зрения о неизлечимости наследственных болезней. Он исходит из признания роли факторов внешней среды в проявлении наследственной патологии. Однако отсутствие сведений о патогенетических механизмах развития заболеваний в тот период ограничивало возможности разработки методов, и все попытки, несмотря на правильные теоретические установки, оставались длительное время эмпирическими. В настоящее время благодаря успехам генетики в целом (всех ее разделов) и существенному прогрессу теоретической и клинической медицины можно утверждать, что уже многие наследственные болезни успешно лечатся. Общие подходы к лечению наследственных болезней остаются теми же, что и подходы к лечению болезней другого происхождения.
Заключение
Хотя в настоящее время вопрос о природе гена выяснен не окончательно, тем не менее прочно установлен ряд общих закономерностей мутирования гена. Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов. Мутационная изменчивость как процесс качественных скачкообразных изменений является всеобщей для всех органических форм.
Еще не разработан ряд необходимых экономических механизмов для стимулирования мероприятий по охране окружающей среды. Хотя генетический мониторинг - дело сложное, он просто необходим для решения экологических проблем человека, а также уменьшения роста заболеваний, в том числе наследственных.
Список использованной литературы
1. http://ru.wikipedia.org/wiki/генетический монтиоринг
2. http://www.ecosystema.ru/07referats/monitor/monitor.htm
3. http://ru.wikipedia.org/wiki/Экологический_мониторинг
4. http://iridium.wetka.ru/ekologicheskij-monitoring/
5. http://www.slovarnik.ru/html_tsot/g/geneti4eskiy-monitoring.html
Подобные документы
Сущность генетического обследования, медико-генетического консультирования и пренатальной диагностики. Программы выявления гомозигот. Содержание первичной и вторичной профилактики наследственной патологии. Причины возникновения мутаций в клетках.
презентация [477,1 K], добавлен 27.11.2012Диагностика генетических заболеваний. Диагностика хромосомных болезней. Лечение наследственных болезней. Проведение евгенических мероприятий. Перспективы лечения наследственных болезней в будущем. Медико-генетическое консультирование и профилактика.
курсовая работа [27,0 K], добавлен 07.12.2015Медико-генетическое консультирование и пренатальная диагностика в России. Социально-профилактическое направление в деле охраны и укрепления здоровья народа. Профилактика и лечение наследственных заболеваний. Определение риска наследственных заболеваний.
презентация [613,7 K], добавлен 12.02.2015Понятие наследственных заболеваний и мутаций. Генные наследственные болезни: клинический полиморфизм. Изучение и возможное предотвращение последствий генетических дефектов человека как предмет медицинской генетики. Определение хромосомных болезней.
контрольная работа [34,5 K], добавлен 29.09.2011Молекулярные и диагностика основы наследственных болезней. Симптоматическое, патогенетическое и этиологическое лечение хромосомных болезней. Коррекция генетического дефекта при моногенных заболеваниях. Подавление избыточной функции генов и их продуктов.
презентация [914,0 K], добавлен 10.10.2013Представление о болезни, ее этиологии, патогенезе и клиническом течении, формы патологии почек. Роль наследственности в развитии болезни, методы инструментальной и лабораторной диагностики. Методы постановки диагноза, этапы дифференциальной диагностики.
реферат [14,3 K], добавлен 11.04.2010Этиология и диагностика наследственных заболеваний. Генные мутации и изменение последовательности нуклеотидов в ДНК, нарушение структуры хромосом. Профилактика и медико-генетическое консультирование. Симптоматическое лечение наследственных болезней.
реферат [19,9 K], добавлен 19.12.2010Пренатальная диагностика наследственных болезней. Основные проблемы молекулярной ПГД. Характеристика ПЦР единственной клетки. Преимущественная амплификация одного аллеля. Стратегии ПЦР, применяемые в ПГД. Анализ сцепления (косвенная ДНК-диагностика).
курсовая работа [33,3 K], добавлен 24.10.2010Воздействие на организм работающих различных неблагоприятных физических факторов. Профессиональные заболевания, обусловленные воздействием физических факторов современной производственной среды. Основные этиологические факторы вибрационной болезни.
презентация [1,3 M], добавлен 13.10.2014История становления и развития гигиены. Роль врачей античной Греции в развитии гигиенических знаний. Основные задачи, законы и содержание науки. Методы санитарного обследования среды, изучения реакций живого организма, обработки результатов исследований.
презентация [1,3 M], добавлен 18.03.2015