Действие ионизирующего излучения на организм человека

Источники радиоактивного загрязнения. Катастрофа на ЧАЭС и ее последствия для Республики Беларусь. Характерные виды поражений организма при ионизирующем облучении: острая и хроническая лучевая болезнь, рак щитовидной железы. индивидуальная защита.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 10.08.2008
Размер файла 32,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

РЕФЕРАТ

курсовой работы

«ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОРГАНИЗМ ЧЕЛОВЕКА»

ОБЪЕМ РАБОТЫ: общий объем работы составляет 19 печатных страниц, список использованных источников составляет 14 наименований.

Работа состоит из введения, теоретических частей, заключения, списка использованных источников.

КЛЮЧЕВЫЕ СЛОВА: АККУМУЛИРОВАНИЕ, РАДИОНУКЛИДЫ, ИЗЛУЧЕНИЕ, БОЛЕЗНИ, РАК ЩИТОВИДНОЙ ЖЕЛЕЗЫ, ЛЕЙКОЗ

ОБЪЕКТ ИССЛЕДОВАНИЯ: действия ионизирующего излучения на организм человека.

ЦЕЛЬ РАБОТЫ: изучить действие ионизирующего излучения на организм человека.

МЕТОДЫ ИССЛЕДОВАНИЯ. Исходными данными для выполнения исследований явилась специальная научная литература.

РЕЗУЛЬТАТЫ: изучены особенности действия ионизирующего излучения на организм человека.

АКТУАЛЬНОСТЬ выбранной темы курсовой работы обусловлена тем, что в настоящее время для радиоактивно загрязненных лесных территорий Беларуси сказывается и здоровье человека и от чего зависит дальнейшее будущее человечества.

СОДЕРЖАНИЕ

  • ВВЕДЕНИЕ 4
  • ГЛАВА 1 ИСТОЧНИКИ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ И ПОСЛЕДСТВИЯ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС 6
    • 1.2 Источники радиоактивного загрязнения 7
    • 1.3 Катастрофа на ЧАЭС и ее последствия на территории Республики Беларусь 9
  • ГЛАВА 2 Наиболее характерные виды поражений организма при радиационном облучении 13
    • 2.1 Острая лучевая болезнь (ОЛБ) 13
    • 2.2 Хроническая лучевая болезнь (ХЛБ) 14
    • 2.3 Рак щитовидной железы 17
    • 2.4 Средства индивидуальной защиты от ионизирующего излучения 17
  • ЗАКЛЮЧЕНИЕ 18
  • СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 19

ВВЕДЕНИЕ

На рубеже XXI века человечество в полной мере ощутило глобальные экологический кризис, который однозначно указывает на антропогенную токсификацию нашей планеты. К наиболее опасным загрязнителям окружающей среды относят многие неорганические и органические веществ: радионуклиды, тяжелые металлы (такие как ртуть, кадмий, свинец, цинк), радиоактивные металлы, полихлорированные бифенилы, полиароматические углеводороды. Их постоянное воздействие вызывает серьёзные нарушения деятельности основных жизненных функций организма. Вероятно, человек перешел допустимые экологические пределы воздействия на все компоненты биосферы, что в конечном итоге поставило под угрозу существование современной цивилизации.

Можно сказать, что человек подошел к пределу, который нельзя переступить ни при каких обстоятельствах. Один неосторожный шаг и человечество «сорвётся» в пропасть. Одно необдуманное движение, и человечество может исчезнуть с лика земли.

Глобальное загрязнение окружающей среды произошло в основном по двум причинам:

1) Неуклонный рост населения планеты.

2) Резкое возрастание в ходе научно-технической революции потребления различных источников энергии.

Так, если численность населения в 1900 году составляла 1,7 млрд. человек, то к концу ХХ века достигла 6,2 млрд. человек. Кроме того на фоне общего увеличения численности населения интенсивными темпами продолжался процесс урбанизации. Если в 1950 году доля городского населения составляла 29,2%, то в настоящее время она достигла 47 %.

Урбанизация коснулась и России, где доля городского населения составляет около 73:%.

В крупных городах ситуация с загрязнением окружающей среды стала угрожающей (особенно: от выбросов автотранспорта, радиоактивного заражения из-за аварий на АЭС).

С середины XIX века в результате промышленной, а затем научно-технической революции человечество в десятки раз увеличило потребление ископаемого топлива. С появлением новых средств передвижения (паровозов, пароходов, автомобилей, дизельных двигателей) и развитием теплоэнергетики значительно возросли темпы потребления нефти и природного газа. За последние пять десятилетий прошедшего века потребление ископаемых органических видов топлива в мире возросло: угля в 2 раза, нефти в 8 раз, газа в 12 раз. Так, если потребление нефти в мире в 1910 году составило 22 млн. т., то в 1998 году достигло 3,5 млрд. т.

Основой социально-экономического развития современной цивилизации является, главным образом производство энергии, опирающееся, главным образом на ископаемые виды топлива.

С одной стороны нефть и газ превратились в фундамент благополучия многих стран, а с другой в мощный источник глобального загрязнения нашей планеты. Каждый год в мире сжигается более 9млрд.т. условного топлива, что приводит к выбросу в окружающую среду более 20млн.т. диоксида углерода (СО2) и более 700 млн. т. различных соединений. В настоящее время в автомобилях сжигается около 2 млрд. т. нефтепродуктов.

Все тяжелые металлы можно подразделить на три класса опасности:

I класс - мышьяк, кадмий ртуть, бериллий, селен, свинец, цинк, а так же все радиоактивные металлы;

II класс - кобальт, хром, медь, молибден, никель, сурьма;

III класс -- ванадий, барий, вольфрам, марганец, стронций.

Тяжелые металлы весьма опасны, они обладают способностью накапливаться в живых организмах, увеличивая свои концентрации по пищевым цепям, что, в конечном счете, представляет огромную опасность для здоровья человека.

Высокотоксичные и радиоактивные металлы, попадая в организм человека, вызывают так называемые экологические болезни.

ГЛАВА 1 ИСТОЧНИКИ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ И ПОСЛЕДСТВИЯ АВАРИИ НА ЧЕРНОБЫЛЬСКОЙ АЭС

1.1 Физическая сторона радиоактивности

Главным объектом исследования ученых был сам атом, вернее - его строение. Мы знаем теперь, что атом похож на Солнечную систему в миниатюре: вокруг крошечного ядра движутся по орбитам “планеты” - электроны. Размеры ядра в сто тысяч раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе самого атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом.

Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре и определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода - 8, урана - 92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по абсолютной величине заряду протона, так что в целом атом нейтрален.

В ядре, как правило, присутствуют и частицы другого типа, называемые нейтронами, поскольку они нейтральны. Ядра атомов одного и того же элемента всегда содержат одно и то же число протонов, но число нейтронов в них может быть различным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу приписывают число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона, но 143 нейтрона; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу нуклидов.

Некоторые нуклиды стабильны, то есть в отсутствии внешнего воздействия никогда не претерпевают никаких превращений.

Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов. Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Далее следуют иные превращения, сопровождаемые излучениями, и вся цепочка в конце концов оканчивается стабильным нуклидом свинца. Разумеется, существует много таких цепочек самопроизвольных превращений разных нуклидов по разным схемам превращений и их комбинациям.

При каждом акте распада нуклида высвобождается энергия, которая и передается дальше в виде излучения.

Существуют три вида ионизирующих излучений:

б-излучение:

Представляет собой поток ядер атомов гелия, называемых б-частицами. Начальная скорость альфа-частиц достигает 10000-20000 км/сек. Они обладают большой ионизирующей способностью. Длина пробега альфа-частиц в воздухе составляет всего 10 см., а в твердых телах еще меньше.

Одежда, индивидуальные средства защиты полностью задерживают альфа-частицы. Внешнее их воздействие не опасно для человека. Из-за высокой ионизирующей способности альфа-частицы крайне опасны при попадании внутрь организма.

в-излучение:

Это поток электронов, называемых ?-частицами. Скорость бета-частиц может в некоторых случаях достигать скорости света.

Проникающая способность их меньше, чем гамма-излучения. Одежда и индивидуальные средства защиты значительно ослабляют бета-излучение.

Ионизирующее действие бета-излучения в сотни раз сильнее гамма-излучения.

г-излучение:

Это электромагнитные волны, аналогичные рентгеновским лучам и лучам света, распространяющиеся в воздухе со скоростью 300000км./сек. На сотни метров.

Они способны проникнуть через толщи защитных материалов и через индивидуальные средства защиты.

Гамма излучение представляет основную опасность для людей. При радиоактивном заражении местности гамма-излучение действует в течение суток, недель и месяцев.

1.2 Источники радиоактивного загрязнения

Радиоактивность -- самопроизвольное превращение (распад) атомных ядер некоторых химических элементов, приводящее к изменению их атомного номера и массового числа. [7]

Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон -- представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.

Естественное радиоактивные элементы условно можно разделить на три группы:

изотопы радиоактивных семейств урана, тория и актиноурана;

не связанные с первой группой радиоактивные элементы - калий - 40, кальций - 48, рубидий - 87 и др.;

радиоактивные изотопы, возникающие под действием космического излучения - углерод - 14 и тритии. [1]

Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.

Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии на АЭС, отходы предприятий ядерной энергетики, использование искусственных ионизирующих излучений в медицине, народном хозяйстве).

Радиоактивное загрязнение природных средств в настоящее время обусловлено следующими источниками:

глобально распределёнными долгоживущими радиоактивными изотопами - продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;

выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле - мае 1986 года;

плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;

выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;

привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники). [7]

Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов.

Но в результате аварий на АЭС в окружающую среду могут попасть большое количество радионуклидов. Возможны аварии с локальными загрязнения только технологических помещений. Также случаются аварии, которые сопровождаются выбросом в окружающие среду радиоактивных веществ в количествах, превышающие установленные пределы. Большую опасность при этом имеют выбросы в атмосферу. Аварийный выброс в водную среду, по мнению специалистов, менее вероятное событие и будет характеризоваться более низкими уровнями воздействия.

Также большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

В настоящее время большой вклад в дозу получаемую человеком вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Также проблемы могут возникать при не правильной транспортировке радиоактивных отходов на комбинат по переработке этих отходов, хранении жидких и твёрдых радиоактивных отходов.

Таким образом, из всего выше сказанного можно сделать вывод, что в изменении радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы. [1]

1.3 Катастрофа на ЧАЭС и ее последствия на территории

Республики Беларусь

26 апреля 1986 года на четвертом энергоблоке Чернобыль-ской АЭС произошел взрыв ядерного реактора. Этот день по-делил жизнь населения до и после Чернобыля. Чернобыльская катастрофа самая крупнейшая в свете катастрофа, на нашей пла-нете. В реакторе находилось 190,2 тонны ядерного горючего, в окружающую среду было выброшено около 4 тонн (1018 Бк ра-дионуклидов йода, цезия, стронция, плутония и других, без уче-та газов). Особую, опасность в первые дни представлял Иод-131. В результате аварии загрязнено 23% территории Белорус-сии с 3678 населенными пунктами, в которых проживало более 2,2 млн. человек (пятая часть населения РБ). Загрязнено 4,8% территории Украины и 0,5% территории России.

Свыше 20% сельхозугодий загрязнены долгоживущими радионуклидами, из них 1,7 млн. га -- цезием-137, почти 0,5 млн. га -- стронцием-90; 0,26 млн. га выведены полностью с сельхозоборота. Площадь территорий, где плотность загрязнения превышает 37 кБк/м2 составляет 46,45 тыс. км (площадь Бело-руссии 207,6 тыс. км.).

Первые 2-3 дня радиоактивное облако имело северно-за-падное, северное и северо-восточное направление от ЧАЭС в сторону Белоруссии. По состоянию на 30 апреля направление ветра сменилось на южное и восточное. Легкие частицы подня-лись в верхний слой атмосферы и оседали от несколько месяцев до года, пройдя несколько раз вокруг земного шара. Более тя-желые радионуклиды выпадали вблизи места аварии. В первый период положение определялось короткоживущими радионук-лидами, особенно йодом-131.

Только 2 мая 1986 года было принято решение об эвакуа-ции населения с 30 км. зоны ЧАЭС. Май 1986 года -- эвакуиро-вано 11,4 тыс. жителей Брагинского, Наровлянского и Хойникского районов Гомельской области, с 50 населенных пунктов.

На протяжении 1986 года эвакуировано 24,7 тыс. человек, на 1996 год -- 130 тыс. человек. Всего отселено 415 населенных пунктов (273 -- Гомельская, 140 -- Могилевская и 2 -- Брестс-кой областях). С мая 1986 года земли 5 зоны отчуждения выве-дены с сельскохозяйственного оборота. В 1988 году на терри-тории (площадь 215,5 тыс. га) образован Полесский Государственный радиационно-экологический заповедник. Теперь его площадь составляет 2,16 тыс. км2. [5]

Знатные дозы облучения получили жители Хойникского. Наровлянского и Брагинского районов Гомельской области, а также жите-ли Ваковского района, Могилевской Брестской областей.

Регионы загрязнения. Гомельская, Могилевская. Заграницей отселения наибольшая плотность загрязнения цезием-137: в д. Шепетовичи Чечерского района (6,14 Ки/км2); д. Валев Добрушского района (60 Ки/км2) Гомельской области; д. Чудяны Чернявс-кого района Могилевской области (146 Ки/км2). Загрязнение стронцием, плутонием имеет «пятнистый характер». Стронций-90 от 2 до 3,2 Ки/км2 -- Хойникский, Ветковский, Добрушский, Брагинский районы. Плутоний-238,239,240 -- главным образом в зоне отселения (Наровлянский, Хойникский, Брагинский).

В Брестской области загрязнены наиболее: Лунинецкий, Столинский, Пинский, Дрогиченский, Березовский, Барановичский районы. В Минской области: Воложинский, Борисовский, Березинский, Солигорский, Мододеченский, Вилейский, Столбцовский, Крупский, Логойский, Слуцкий районы.

Гродненская область: Дятловский, Ивановичский, Кореличский, Лидский, Новогрудский, Сморгонский районы. Витебс-кая область -- самая «чистая», в Тодочинский районе 4 насе-ленные пункта (Ельник, ст. Будовка, Нов, Будовка, Сани). [6]

Детальное обследование лесов Беларуси показало, что в результате аварии на ЧАЭС более 1700 тыс. га (четвертая часть от всей площади лесов) подверглась радиоактивному загрязнению. Следует отметить, что загрязненной считается территория, если плотность выпадений превышает 1 Ки/км2 по цезию-137, 0,15 Ки/км2 по стронцию-90 и 0,01 Ки/км2 по плутонию-238,239,240. Более 90% загрязненного лесного фонда приходится на зону загрязнения по цезию-137 от 5 до 15 Ки/км2. В доаварийный период уровень радиоактивного загрязнения в лесах Беларуси достигал 0,2-0,3 Ки/км2 и определялся в основном природными радионуклидами и искусственными радионуклидами глобальных выпадений, образовавшихся в результате испытаний ядерного оружия.

Из 88 существующих в республике лесхозов 49 в той или иной степени подверглось радиоактивному загрязнению, что в значительной степени изменило характер их хозяйственной деятельности.

Крупномасштабное загрязнение лесных комплексов Беларуси резко ограничило использование лесных ресурсов, оказало негативное влияние на экономическое и социально-психологическое состояние населения в целом.

В первые дни после аварии до 80% радиоактивных выпадений было задержано надземной частью древесного яруса. Затем происходило быстрое очищение крон и стволов под воздействием метеорологических факторов, и в конце 1986 года до 95% радиоактивных веществ, задержанных лесом, уже находилось в почве, причем основная их часть в лесной подстилке, являющейся аккумулятором радионуклидов. Дальнейшая скорость миграции радионуклидов в глубь почвы зависела от вида растительного покрова, водного режима, агрохимических показателей почв и физико-химических свойств радиоактивных выпадений. Проведенные исследования показали, что в настоящий период основная часть радиоактивных выпадений по-прежнему сосредоточена в верхнем горизонте почв, где они хорошо удерживаются органическими и минеральными компонентами. [4]

Загрязнение лесной растительности зависит от уровня радиоактивных выпадений и свойств почвы. На гидроморфных (избыточно увлажненных) почвах отмечается более высокая степень перехода в системе «почва - растение», чем на автоморфных (нормально увлажненных) почвах. Чем выше плодородие почвы, тем меньшая доля радионуклидов поступает как в древостой, так и в организмы напочвенного покрова (грибы, ягоды, мхи, лишайники, травяная растительность).

Наибольшим содержанием радионуклидов в различных частях древесного полога характеризуются хвоя (листья), молодые побеги, кора, луб; наименьшее загрязнение отмечено в древесине. Аккумуляторами радионуклидов в лесных сообществах являются грибы, мхи, лишайники, папоротники. Лесной растительностью поглощается в основном цезий-137, стронций-90. Трансурановые элементы (плутоний-238,239,240 и америций-241) слабо включаются в миграционные процессы. [3]

Таким образом, лесные экосистемы являются постоянным источником поступления радионуклидов в лесную продукцию, в частности, в пищевую. Накопление радионуклидов в лесных ягодах и грибах в 20-50 раз больше, чем их содержание в продуктах сельскохозяйственного производства при одинаковом уровне радиоактивного загрязнения. Исследования показали, что доза облучения, обусловленная потреблением лесных продуктов питания, в 2-5 раз выше доз, формируемых за счет употребления сельскохозяйственных продуктов. Причем в отличие от сельскохозяйственных угодий, лесные комплексы являются малоуправляемыми с точки зрения снижения радиационной нагрузки путем проведения различных эффективных контрмер с применением современных технологий.

Пребывание в лесу также связано с дополнительным внешним облучением, поскольку леса явились естественным барьером, а, следовательно, -- резервуаром радиоактивных выпадений. Проблемы радиационной безопасности на загрязненных лесных территориях в основном решаются за счет ограничительных мероприятий. При этом очень важна правильная регламентация побочного пользования лесом -- сбора грибов, ягод, а также отдыха.

Сбор грибов и ягод допустим в лесных кварталах, имеющих плотность загрязнения почв по цезию-137 не более 2 Ки/км2. Информирование о радиационной ситуации в лесу осуществляется посредством установки предупреждающих знаков на дорогах перед въездом в лес и в местах, наиболее посещаемых людьми. Также в конторах лесхозов, лесничеств, деревообрабатывающих цехов установлены стенды, содержащие информацию о радиоактивном загрязнении территории, лесной продукции, о действующих нормативах, а также сведения о местонахождении лабораторий и постов радиационного контроля. [10]

И сегодня спустя два десятилетия после чернобыль-ской трагедии существуют противоречивые оценки ее пора-жающего действия и причиненного экономического ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. чело-век, участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов умерли, десятки тысяч стали инвалида-ми. Полмиллиона человек до сих пор проживает на загряз-ненных территориях. [1]

ГЛАВА 2 Наиболее характерные виды поражений организма при радиационном облучении

Радиоактивные вещества могут воздействовать на организм человека внешне и внутренне. Внешнее облучение характеризуется воздействием ионизирующего излучения извне и обусловлено различной проникающей способностью частиц. Внутреннее облучение связано с попаданием радиоактивного вещества внутрь человеческого организма с пищей (пероральный путь поступления), с вдыхаемым воздухом (ингаляционный путь) или через открытую рану (непосредственно в кровь).

Воздействие радиоактивного излучения на организм человека зависит от многих факторов и определяется:

1. Скоростью радиоактивного распада радионуклида;

2. Скоростью выведения РВ из организма;

3. Типом радиоактивного излучения;

4. Особенностями накопления РВ в тех или иных внутренних органах человека.

Острые последствия проявляются в первые несколько дней (недель) после облучения. Отдаленные последствия - последствия, которые развиваются не сразу после облучения, а спустя некоторое время. [3]

2.1 Острая лучевая болезнь (ОЛБ)

Острая лучевая болезнь возникает после тотального однократного внешнего равномерного облучения. Между величиной поглощенной дозы в организме и средней продолжительностью жизни существует строгая зависимость.

Было обнаружено, что зависимость времени наступления гибели самых разнообразных объектов от дозы носит ступенчатый характер. Соответствующая кривая для человека, описывающая зависимость средней продолжительности жизни от дозы излучения, состоит из 3-х участков. Начальный участок охватывает диапазон доз от 200 до 800рад, когда средняя продолжительность жизни не превышает 40 суток. На первый план при этих дозах выступает нарушение кроветворения. При дозах до 3000рад (продолжительность жизни около 8 суток) ведущим становится поражение кишечника, а при еще больших дозах (продолжительность жизни 2 суток и менее) смерть наступает от повреждения центральной нервной системы. [5]

Категории:

1. Если доза облучения основной массы тела достигает 500-1000рад и более, то выживание невозможно, несмотря на медицинский уход и терапию (в Чернобыле - 19 погиб./1 жив.).

2. При дозах 200-500рад выживание возможно, но необходимо своевременное и квалифицированное лечение (в Чернобыле - 7погиб./14 жив.).

3. При дозах 100-200рад выживание вполне вероятно без специального решение, т.к. поражение не столь сильное, чтобы вызвать существенное угнетение костного мозга (в Чернобыле - 1 погиб./31 жив.).

4. При дозах менее 100рад выживание несомненно, а клиническая симптоматика не требует медицинского вмешательства (40 чел. в Чернобыле). Дробление дозы снижает эффект облучения. [2]

2.2 Хроническая лучевая болезнь (ХЛБ)

ХЛБ развивается в результате продолжительного облучения организма в малых дозах - мощности дозы 0,1-0,5рад/сутки после накопления суммарных доз около 100рад. Своеобразие ХЛБ состоит в том, что в активно размножающихся тканях благодаря интенсивным процессам клеточного обновления длительное время сохраняется возможность структурного восстановления целостности ткани. В то же время такие радиоустойчивые системы, как нервная, сердечно-сосудистая, эндокринная отвечают на хроническое лучевой воздействие сложнымкомплексом функциональных реакций.

Лейкоз. Одно из наиболее распространенных системных заболеваний крови.

Как своеобразный злокачественный гиперпластически-опухолевый процесс лейкоз характеризуется:

а) гиперплазией - патологическим, безудержным разрастанием кроветворной ткани;

б) метаплазией - развитием патологических, не свойственных данному органу, очагов кроветворения как в самой кроветворной системе (костный мозг, селезенка, лимфатические узлы), так и вне ее (всюду, где имеется мезенхимная ткань);

в) клеточной анаплазией - омоложением и утратой родоначальными кроветворными клетками способности к дифференцированию в зрелые кровяные элементы. В настоящее время принято деление лейкозов на острые и хронические.

Это деление основано главным образом на гематологических, морфологических признаках. Основной формой острого лейкоза является гемоцитобластоз, хронического - миелолейкоз хронический, лимфолейкоз хронический. [1]

К острым лейкозам относятся те формы, при которых дифференциация кроветворных элементов обрывается в ранней стадии развития, в связи с чем создается картина «лейкемического зияния», т.е. отмечается наличие в крови недифференцированных клеток при отсутствии промежуточных форм развития белых клеток и незначительном содержании зрелых лейкоцитов. В связи с прекращением нормального кроветворения возникает тяжелая, быстро прогрессирующая анемия. Клинические варианты острого лейкоза:

геморрагический, язвенно-некротический, анемический, типичный. При геморрагическом варианте болезнь характеризуется внезапным появлением кровоизлияний в кожу и слизистые оболочки и кровотечениями из носа, десен, желудочно-кишечного тракта, почек, матки. Язвенно-некротический вариант начинается с дифтерической ангины, принимающей в дальнейшем некротический характер с распространением некротического процесса за пределы миндалин на полость рта и глотки. Анемический вариант клинически протекает подостро с картиной быстро развивающейся и стойкой анемии. Типичный вариант характеризуется наличием всех симптомов, свойственных острому лейкозу:

анемии, некрозов, геморрагий, увеличением селезенки, печени и лимфатических узлов. В некоторых случаях острый лейкоз протекает с опухолевидными разрастаниями лимфатических узлов (сарколейкоз). В крови преобладают наименее дифференцированные клетки, количество лейкоцитов варьируется в больших пределах - от резкой лейкопении (малое количество лейкоцитов) до сотен тысяч лейкоцитов в 1мл крови. В течении болезни различают продромальный, или начальный период, продолжающийся 2-3 недели, иногда несколько месяцев; период выраженных явлений длительностью от нескольких

недель до нескольких месяцев; конечный период, характеризующийся резким, иногда скачкообразным усилением всех симптомов с повышением температуры за счет самого лейкемического процесса и сопутствующих некротических явлений, продолжительностью 1-2 недели, редко больше. В некоторых случаях, протекающих с лейкопенией, болезнь отличается подострым затяжным течением длительностью до 1-2 лет. Смерть наступает при явлениях резчайшей анемии и кровоточивости. У 15-20% больных непосредственной причиной смерти является кровоизлияние в мозг. [8]

Лимфолейкоз - хроническое генерализованное заболевание, характеризующееся гиперпластически-опухолевыми разрастаниями лимфатической ткани, преимущественно в кроветворной системе - лимфатических узлах, селезенке, печени, костном мозгу, а также в коже в виде характерных инфильтратов - лимфом. В начале болезни отмечается увеличение преимущественно какой-либо одной группы лимфатических узлов; в дальнейшем увеличение лимфатических узлов приобретает генерализованный характер. Лимфатические узлы мягкие, тестоватые, безболезненные, не спаяны с кожей, не изъявляются. Количество лейкоцитов в периферической крови колеблется от нормальных цифр до сотен тысяч. В начальной стадии болезни содержание гемоглобина и количество эритроцитов приближаются к норме. В более поздних стадиях и при лимфатической метаплазии костного мозга развивается тяжелая «метапластическая» анемия. Колоссальное новообразование и распад лимфоцитов нередко сопровождаются лихорадкой и исхуданием. Наблюдаются осложнения в связи с давлением на другие органы - затруднение глотания при гиперплазии миндалин, непроходимость кишечника при лимфомах брюшной полости. Средняя продолжительность жизни больных хроническим лейкозом составляет от 3 до 5 лет. Исключение составляют те больные, у которых отсутствует лимфоидная метаплазия костного мозга; у них длительность жизни достигает 10-15 лет. Морфологическим субстратом хронического миелолейкоза является гиперплазия костномозговых гранулоцитарных клеточных форм наряду с лейкемической инфильтрацией миелоидными клетками селезенки, печени, лимфатических узлов и всей системы активной мезенхимы. В отличие от острого лейкоза дифференциация зрелых клеток крови - лейкоцитов, эритроцитов, тромбоцитов - в известной мере сохранена. Ранними симптомами болезни являются прогрессирующая общая слабость, утомляемость, чувство тяжести в левом подреберье, боли в костях. Затем наблюдается исхудание, повышение температуры, кровотечения из десен, носа. Нередко начальными симптомами болезни являются невралгии, вызываемые сдавлением нервных стволовлейкемическими инфильтратами. Также наблюдается прогрессирующее увеличение селезенки. В связи с разрастанием лейкемических элементов по ходу нервов и сосудов возникают болевые симптомы, кровоизлияния, тромбозы, инфаркты различных органов. Средняя продолжительность жизни больных составляет 3-5 лет, но известны случаи продолжительного течения болезни - 10-15 лет. Болезнь Ходжкина - системный гиперпластически - опухолевый процесс, выражающийся в разрастании лимфоретикулярных пролифератов в лимфатических узлах, селезенке и других органов. Встречаются участки некроза и рубцовой грануляционной ткани, развивающейся реактивно из ретикулярных клеток стромы лимфатических узлов, селезенки и других органов. В зависимости от локализации различают кожный лимфогранулематоз, принимающий характер грибовидных разрастаний; лимфогранулематоз лимфатических узлов - шейных, подмышечных, паховых, забрюшинных; лимфогранулематоз селезенки, костного мозга, костей, желудка, кишечника, легких. Увеличенные лимфатические узлы имеют плотную консистенцию, спаяны между собой в пакеты, не болезненны и малоподвижны. Селезенка и печень обычно увеличены, плотны. Весьма характерными симптомами являются кожный зуд, сильный пот и неправильная, часто волнообразная, лихорадка, продолжающиеся в течение многих месяцев и даже нескольких лет. Картина крови характеризуется либо лейкопенией, либо увеличением числа лейкоцитов с соответствующим омоложением. Больные живут 10-15 лет и больше. [10]

2.3 Рак щитовидной железы

Это наиболее часто встречающаяся злокачественная опухоль щитовидной железы. Развивается из узлового зоба и протекает без нарушения функции щитовидной железы. Ранние стадии ракового перерождения узла трудно поддаются диагностике, так как протекают бессимптомно. При дальнейшем росте опухоли узел становится плотным, малоподвижным вследствие прорастания в окружающие ткани. Пальпация опухоли вызывает болезненность. При сдавливании растущей опухолью органов шеи или прорастании в них развиваются расстройства дыхания, потеря голоса, отеки лица и шеи. Метастазирование рака щитовидной железы происходит в шейные лимфатические узлы, легкие, кости, печень, другие органы. При наличии опухоли, подозрительной на

злокачественную, необходимо удаление всей соответствующей доли и перешейка щитовидной железы. При метастазах и неоперабельном раке щитовидной железы применяют лучевую терапию. [14]

2.4 Средства индивидуальной защиты от ионизирующего

излучения

Защита от ионизирующего излучения основывается на четырех принципах:

количество, время, расстояние, экранирование.

Защита количеством обеспечивается минимальным использованием радиоактивных веществ и других источников ионизирующего излучения. Этот принцип имеет ограниченное применение из-за жестких требований большинства технологических процессов.

Защита временем обуславливается теми же закономерностями. Максимально сократив продолжительность работы с источником ионизирующего излучения, можно значительно уменьшить получаемую дозу.

Защита расстоянием основывается на том, что доза ионизирующего излучения обратно пропорциональна квадрату расстояния до источника излучения.

Большое значение, особенно при использовании закрытых источников излучения, имеет экранирование, в том числе с применением средств индивидуальной защиты (просвинцованные фартуки, перчатки, щитки и др. [13]

ЗАКЛЮЧЕНИЕ

Установлено статистически значимое увеличение средних значений активности излучения по СИЧ у групп работников СХК страдающих рядом синдромов, по сравнению с лицами, у которых данные синдромы отсутствуют.

Увеличение количества синдромов сопровождается статистически значимым увеличением средних значений активности излучения по СИЧ.

Для ряда синдромов наблюдается значимая взаимосвязь не только с активностью излучения по СИЧ, но и с отношением показаний СИЧ к стажу работы.

Наблюдаются статистически значимые корреляции между характеристиками иммунитета и активностью излучения по СИЧ.

Нарушение здоровья тесно связано с ростом числа общесоматических заболеваний. Пусть здоровье - это состояние организма, которое можно охарактеризовать соответствующими уровнями физических и умственных способностей, а также возможностями приспособления к меняющимся условиям работы и жизни. В этом случае в понятие «нарушение здоровья» входит снижение функциональных способностей организма. Для оценки нарушения здоровья, а вместе с этим и для прогноза роста заболеваний, применяют критерии изменения гематологических, биохимических и морфологических параметров организма, которые имеют количественные лабораторные оценки, и эти изменения могут быть результатом неблагоприятного воздействия факторов на различные физиологические системы.

На конечный биологический эффект влияют различные факторы, которые в основном делятся на физические, химические и биологические. Среди физических факторов на первом месте стоит вид излучения, характеризуемый относительной биологической эффективностью. Различия биологического действия обусловлены линейным переносом энергии данного вида ионизирующего излучения, связанным с плотностью ионизации и определяющим способность излучения проникать в слои поглощающего его вещества. ОБЭ представляет величину отношения дозы стандартного излучения (изотоп 60Со или рентгеновское излучение 220 кВ) к дозе исследуемого излучения, дающей равный биологический эффект. Так как для сравнения можно выбрать множество биологических эффектов, для испытуемого излучения существует несколько величин ОБЭ. Если показателем пострадиационного действия берется катарактогенный эффект, величина ОБЭ для нейтронов деления лежит в диапазоне 5--10 в зависимости от вида облученных животных, тогда как по важному критерию -- развитию острой лучевой болезни -- ОБЭ нейтронов деления равняется примерно 1. [8]

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Вредные химические вещества. Радиоактивные вещества. Справочник. Под общ. ред. Л.А.Ильина, В.А.Филова. Ленинград, Химия. 1990.

2. Медтко-санитарная подготовка учащихся» Под ред. П.А.Курцева Москва, «Просвещение». 1988.

3. Основы защиты населения и территорий в чрезвычайных ситуациях. Под ред. акад. В.В. Тарасова. Издательство Московского университета. 1998.


Подобные документы

  • Биологическое действие на организм ионизирующих излучений радиоактивного агента и нейтронного поражения. Острая и хроническая лучевая болезнь: периодичность течения, клинические синдромы. Костномозговая форма ОЛБ; диагностика, патогенез, профилактика.

    презентация [1,1 M], добавлен 21.02.2016

  • Прямое и косвенное действие ионизирующего излучения. Воздействие ионизирующего излучения на отдельные органы и организм в целом, мутации. Действие больших доз ионизирующих излучений на биологические объекты. Виды облучения организма: внешнее и внутреннее.

    реферат [27,4 K], добавлен 06.02.2010

  • Классификация и химическая природа гормонов щитовидной железы. Участие гормонов щитовидной железы в обменных процессах организма. Влияние тиреоидных гормонов на метаболические процессы организма. Проявление дефицита и избытка гормонов щитовидной железы.

    реферат [163,5 K], добавлен 03.11.2017

  • Гистологическая структура и функция щитовидной железы в норме. Особенности строения клеток. Общая характеристика форм и вариантов рака. Механизмы воздействия ионизирующего излучения. Папиллярный, фолликулярный, медуллярный и недифференцированный рак.

    дипломная работа [1,3 M], добавлен 09.11.2012

  • Мероприятия по оказанию неотложной помощи при поражении электрическим током. Основные характеристики острой лучевой болезни, классификация по степени тяжести и клиническая картина в зависимости от дозы облучения, последствия для органов и систем человека.

    реферат [18,4 K], добавлен 20.08.2009

  • Рак щитовидной железы как опухоль, развивающаяся из клеток эпителия щитовидной железы. Частота факторов, способствующих развитию заболеваний щитовидной железы. Классификация рака щитовидной железы по стадиям. Сущность лимфогенного пути метастазирования.

    реферат [32,3 K], добавлен 08.03.2011

  • Периоды острой лучевой болезни - симптомокомплекса, развивающегося в результате общего однократного или относительно равномерного внешнего рентгеновского и нейтронного облучения. Развитие тяжелого геморрагического синдрома. Отдаленные последствия болезни.

    презентация [315,6 K], добавлен 04.07.2015

  • Анатомия щитовидной железы. Влияние стойкого избытка тиреоидных гормонов на организм. Классификация тиреотоксикоза по патогенезу, по особенностям поглощения. Стадии тиреотоксикоза. Рост базального метаболизма при изменении функции щитовидной железы.

    презентация [1,7 M], добавлен 29.11.2015

  • Основные гормоны щитовидной железы. Влияние тироксина и трийодтиронина на детский организм. Методы исследования паращитовидных желез, признаки их клинической недостаточности. Особенности дифференцировки надпочечников у детей. Клиническая болезнь Кушинга.

    контрольная работа [29,3 K], добавлен 21.10.2013

  • Доброкачественные и злокачественные опухоли щитовидной железы. Морфологические варианты аденомы щитовидной железы, их характеристика, клинические симптомы, особенности диагностики и лечения. Классификация злокачественных новообразований щитовидной железы.

    презентация [3,1 M], добавлен 02.04.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.