автореферат Спектральна теорія блочних якобієвих матриць та її застосування до задачі інтегрування диференціально-різницевих ланцюжків
Застосування способу оберненої спектральної задачі. Побудова методу дослідження неізоспектральних ланцюжків, породжених рівнянням Лакса, пов'язаним із самоспряженими та унітарними операторами. Класифікація ланцюгових систем, що допускають інтегрування.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | автореферат |
Язык | украинский |
Дата добавления | 29.08.2015 |
Размер файла | 56,4 K |
Подобные документы
Теорія обернених матриць та їх знаходження за формулою. Оберненні матриці на основі яких складається написання програми обчислення оберненої матриці до заданої. Побудова матриць та їх характеристика. Приклади проведення розрахунків при обчисленні матриць.
курсовая работа [96,8 K], добавлен 06.12.2008Огляд основних відомостей про визначений інтеграл та його застосування в такій сфері суспільного життя, як економіка. Основні методи інтегрування невизначеного інтегралу. Інтегрування деяких виразів, які містять квадратичний тричлен у знаменнику.
реферат [605,0 K], добавлен 06.11.2012Побудова сіткової функції при чисельному інтегруванні по заданій підінтегральній функції. Визначення формул прямокутників та трапецій; оцінка їх похибок. Використання методики інтегрування за методом трапецій для обчислення визначеного інтеграла.
презентация [617,4 K], добавлен 06.02.2014Таблиця основних інтегралів та знаходження невизначених інтегралів від елементарних функцій. Розкладання підінтегральної функції в лінійну комбінацію більш простих функцій. Метод підстановки або заміни змінної інтегрування. Метод інтегрування частинами.
реферат [150,2 K], добавлен 29.06.2011Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.
отчет по практике [143,9 K], добавлен 02.03.2010Точне знаходження первісної й інтеграла для довільних функцій. Чисельне визначення однократного інтеграла. Покрокові пояснення алгоритму методу Чебишева, реалізованого засобами програмування СКМ Mathcad. Знаходження інтегралу за допомогою панелі Calculus.
курсовая работа [390,8 K], добавлен 19.05.2016Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.
практическая работа [42,3 K], добавлен 09.11.2009Задача продавлення шкідливих збурень. Збурювальні задачі, що видвинуті для розгляду радіотехнікою, в деякому розуміння протилежні задачам класичної теорії збурень. Дійснi нелінійнi диференціальнi рівняння. Завдання радіотехніки, задачі генерації збурень.
дипломная работа [890,8 K], добавлен 17.06.2008Поняття диференціальних рівнянь. Задача Коші і крайова задача. Класифікація методів для задачі Коші. Похибка методу Ейлера. Модифікований метод Ейлера-Коші. Пошук рішення задачі однокроковим методом Ейлера. Порівняння чисельного рішення з точним рішенням.
презентация [294,4 K], добавлен 06.02.2014Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.
курсовая работа [1016,1 K], добавлен 09.07.2015