автореферат  Дискретш умови стійкості за ляпуновим та імпульсні системи

Встановлення умов стійкості за Ляпуновим автономної системи диференціальних рівнянь. Вивчення поведінки розв'язків градієнтної систем рівнянь з імпульсною дією. Дослідження розривних векторних полів на гладких многовидах. Нерухомі точки дифео-морфізмів.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

###  ###  ###  ###   #   
# #    #    #  # #  ##   
###    #  ###  ###   #   
# #    #    #  # #   #   
###    #  ###  ###   #   
                         

Введите число, изображенное выше:

Рубрика Математика
Вид автореферат
Язык украинский
Дата добавления 13.08.2015
Размер файла 217,0 K

Подобные документы

  • Вивчення теорії інтегральних нерівностей типу Біхарі для неперервних і розривних функцій та її застосування. Розгляд леми Гронуолла–Беллмана–Бiхарi для нелiнiйних iнтегро-сумарних нерiвностей. Критерій стійкості автономної системи диференціальних рівнянь.

    курсовая работа [121,7 K], добавлен 21.04.2015

  • Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.

    контрольная работа [170,2 K], добавлен 16.05.2010

  • Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.

    лабораторная работа [412,4 K], добавлен 21.10.2014

  • Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.

    курсовая работа [86,0 K], добавлен 15.09.2008

  • Системи лінійних алгебраїчних рівнянь, головні означення. Коротка характеристика головних особливостей матричного способу, методу Жордано-Гаусса. Формули Крамера, теорема Кронекера-Капеллі. Практичний приклад розв’язання однорідної системи рівнянь.

    курсовая работа [690,9 K], добавлен 25.04.2013

  • Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.

    реферат [543,7 K], добавлен 23.04.2015

  • Лінійні діофантові рівняння. Невизначені рівняння вищих порядків. Невизначене рівняння Ферма. Приклади розв’язання лінійних діофантових рівнянь та системи лінійних діофантових рівнянь. Алгоритми знаходження всіх цілочисельних розв’язків рівнянь.

    курсовая работа [1,7 M], добавлен 29.12.2010

  • Застосування систем рівнянь хемотаксису в математичній біології. Виведення системи визначальних рівнянь, розв'язання отриманої системи визначальних рівнянь (симетрій Лі). Побудова анзаців максимальних алгебр інваріантності математичної моделі хемотаксису.

    дипломная работа [1,9 M], добавлен 09.09.2012

  • Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.

    отчет по практике [143,9 K], добавлен 02.03.2010

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа [723,3 K], добавлен 07.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.