курсовая работа Приведение матрицы к каноническому виду через ортогональные преобразования
Коэффициенты квадратичной формы, неоднородная система линейных уравнений методом Гаусса. Собственные значения и собственные векторы линейных операторов. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду, вид этой формы.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 15.03.2011 |
Размер файла | 586,7 K |
Подобные документы
Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.
курсовая работа [162,9 K], добавлен 13.11.2012Поиск базисного решения для системы уравнений, составление уравнения линии, приведение его к каноническому виду и построение кривой. Собственные значения и векторы линейного преобразования. Вычисление объема тела и вероятности наступления события.
контрольная работа [221,1 K], добавлен 12.11.2012Исследование видов квадратичных форм и способов приведения квадратичных форм к каноническому виду. Сфера применения и особенности данного вида уравнений: определения и доказательство основных теорем, алгоритм решения ряда задач по данной тематике.
контрольная работа [286,0 K], добавлен 29.03.2012Система линейных уравнений. Общее и частные решения системы линейных уравнений. Нахождение векторного произведения. Приведение уравнения кривой второго порядка к каноническому виду. Исследование функции на непрерывность. Тригонометрическая форма числа.
контрольная работа [128,9 K], добавлен 26.02.2012Арифметическая теория квадратичных форм, их практическое применение в приведении уравнения кривой и поверхности второго порядка к каноническому виду. Самосопряженный оператор, его характеристика, использование и функции. Собственные числа и вектора.
курсовая работа [277,9 K], добавлен 28.11.2012Матричные уравнения, их решение и проверка. Собственные числа и собственные векторы матрицы А. Решение системы методом Жорданa-Гаусса. Нахождение пределов и производных функции, ее градиент. Исследование функции методами дифференциального исчисления.
контрольная работа [287,0 K], добавлен 10.02.2011Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.
учебное пособие [658,4 K], добавлен 26.01.2009Решение системы уравнений по формулам Крамера, методом обратной матрицы и методом Гаусса. Преобразование и поиск общего определителя. Преобразование системы уравнений в матрицу и приведение к ступенчатому виду. Алгебраическое дополнение элемента.
контрольная работа [84,5 K], добавлен 15.01.2014Ненулевые элементы поля. Таблица логарифма Якоби. Матрица системы линейных уравнений. Перепроверка по методу Евклида. Формула быстрого возведения. Определение матрицы методом Гаусса. Собственные значений матрицы. Координаты собственного вектора.
контрольная работа [192,1 K], добавлен 20.12.2012