Координатное и инвариантное определения дивергенции векторного поля. Теорема Остроградского-Гаусса. Физический смысл дивергенции

Суть понятия "дивергенция векторного поля", ее свойства, координатное и инвариантное определение. Скалярные и векторные поля. Применение Теоремы Остроградского-Гаусса для преобразования объёмного интеграла в интеграл по замкнутой поверхности и наоборот.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 23.01.2022
Размер файла 454,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Специальные векторные поля. Теорема Стокса. Потенциальное, соленоидальное поле. Теорема Остроградского-Гаусса. Поток и определение вектора, направленного в отрицательную сторону оси. Дивергенция, свойства и интенсивностью векторной трубки.

    реферат [369,7 K], добавлен 23.02.2011

  • Изучение теории поля с помощью векторного анализа. Векторные поля на плоскости и векторные линии. Вращение, вычисление и свойства дивергенции. Свойство аддитивности циркуляции полей. Ротор и его основные свойства. Рассмотрение формул Грина и Стокса.

    курсовая работа [649,8 K], добавлен 18.12.2011

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа [1,2 M], добавлен 09.12.2008

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Поверхностный интеграл второго рода, вычисление поверхности. Теорема Остроградского-Гаусса. Дивергенция, векторное поле скоростей. Поток вектора через замкнутую поверхность, направления внешней нормали. Поверхность произвольных частей.

    реферат [354,0 K], добавлен 23.02.2011

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Вычисление площади фигуры, ограниченной заданными линиями, с помощью двойного интеграла. Расчет двойного интеграла, перейдя к полярным координатам. Методика определения криволинейного интеграла второго рода вдоль заданной линии и потока векторного поля.

    контрольная работа [392,3 K], добавлен 14.12.2012

  • Дослідження особливостей скалярного та векторного полів. Похідна за напрямом. Градієнт скалярного поля, потенціальне поле. Сутність дивергенції, яка характеризує густину джерел даного векторного поля в розглянутій точці. Ротор або вихор векторного поля.

    реферат [244,3 K], добавлен 06.03.2011

  • Рассмотрение основ векторных полей, физического смысла дивергенции и ротора. Ознакомление с криволинейными и поверхностными интегралами и методами их вычисления. Изучение основных положений теорем Гаусса-Остроградского и Стокса; примеры решения задач.

    реферат [1,5 M], добавлен 24.03.2014

  • Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.

    реферат [237,9 K], добавлен 15.03.2011

  • Применение формулы Грина к решению задач. Понятие ротора векторного поля. Вывод формулы Грина из формулы Стокса и ее доказательство. Определение непрерывно дифференцируемых функций. Применение формулы Грина для вычисления криволинейного интеграла.

    курсовая работа [2,9 M], добавлен 11.07.2012

  • Поверхностный интеграл как интеграл от функции, заданной какой-либо поверхности. Сущность и понятие поверхностного интеграла первого и второго рода, взаимосвязь между ними и вычисление. Формулы Остроградского и Стокса, их доказательство и применение.

    курсовая работа [321,7 K], добавлен 09.10.2011

  • Сущность математической теории скалярных и векторных полей, ее основные понятия и определения. Характерные черты и отличительные признаки скалярных и векторных полей, доказательства их главных теорем.

    лекция [121,6 K], добавлен 11.02.2010

  • Определение двойного интеграла, его геометрический смысл, свойства, область интегрирования. Условия существования двойного интеграла, его сведения к повторному; формула преобразования при замене переменных, геометрические и физические приложения.

    презентация [1,5 M], добавлен 18.03.2014

  • Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.

    дипломная работа [209,2 K], добавлен 08.08.2007

  • Вычисление градиента, дивергенции и ротора однократным дифференцированием функций. Дифференциальные операций и операторы второго порядка. Выполнение условий дифференцируемости и непрерывности. Оператор Лапласа, градиент дивергенции, формулы Грина.

    реферат [527,5 K], добавлен 21.03.2014

  • Найти векторные линии в векторном поле. Вычислить длину дуги линии. Вычислить поток векторного поля через поверхность. Найти все значения корня. Представить в алгебраической форме.

    лабораторная работа [31,7 K], добавлен 17.08.2002

  • Необходимое и достаточное условие существования определенного интеграла. Равенство определенного интеграла от алгебраической суммы (разности) двух функций. Теорема о среднем – следствие и доказательство. Геометрический смысл определенного интеграла.

    презентация [174,5 K], добавлен 18.09.2013

  • Примеры скалярных полей. Производная в точке в направлении орта. Операторы дифференцирования или Гамильтона. Напряженность электрического поля, поле скоростей в движущейся среде. Дивергенция и ротор. Символ Кронекера. Некоторые свойства оператора набла.

    контрольная работа [229,2 K], добавлен 21.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.