Теория и методика обучения естественно-математическим дисциплинам
Противостояние логицизма и интуиционизма, формализма и теоретико-множественных оснований математики. Применяемые в математике аксиомы выбора, закон исключенного третьего, аксиомы сводимости, понятия теории множеств. Значение прикладной математики.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 11.02.2021 |
Размер файла | 17,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат [368,2 K], добавлен 13.06.2011Теория множеств - одна из областей математики. Понятие, обозначение, основные элементы конечных и бесконечных множеств - совокупности или набора определенных и различимых между собой объектов, мыслимых как единое целое. Пустое и универсальное множество.
реферат [126,6 K], добавлен 14.12.2011Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат [32,6 K], добавлен 06.09.2006Теоретические основы и предмет преподавания математики. Понятие и сущность индукции, дедукции и аналогии. Алгоритмы решения математических задач. Методика введения отрицательных, дробных и действительных чисел. Характеристика алгебраических выражений.
курс лекций [728,4 K], добавлен 30.04.2010Понятия множеств и их элементов, подмножеств и принадлежности. Способы задания множеств, парадокс Рассела. Количество элементов или мощность. Сравнение множеств, их объединение, пересечение, разность и дополнение. Аксиоматическая теория множеств.
курсовая работа [1,5 M], добавлен 07.02.2011Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций [4,0 M], добавлен 18.12.2009Основные методы формализованного описания и анализа случайных явлений, обработки и анализа результатов физических и численных экспериментов теории вероятности. Основные понятия и аксиомы теории вероятности. Базовые понятия математической статистики.
курс лекций [1,1 M], добавлен 08.04.2011История появления аксиоматического метода. Аксиомы и основные понятия как основания планиметрии, их разновидности. Биография и история сочинений Евклида. Лобачевский как великий русский математик, создатель геометрии, общая характеристика трудов.
доклад [29,1 K], добавлен 28.03.2010Введение понятия переменной величины. Развитие интегральных и дифференциальных методов. Математическое обоснование движения планет. Закон всемирного тяготения Ньютона. Научная школа Лейбница. Теория приливов и отливов. Создание математического анализа.
презентация [252,6 K], добавлен 20.09.2015Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат [25,9 K], добавлен 30.04.2011