О показателе степени некоторых числовых равенств

Числовые равенства с целыми, положительными, взаимно простыми основаниями, натуральным показателем степени n>1. Условия их верности. Теорема, описывающая числовые равенства, которые существуют при показателе степени, равном количеству слагаемых равенства.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 18.04.2020
Размер файла 204,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1

    статья [12,9 K], добавлен 07.07.2005

  • Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

    курсовая работа [30,5 K], добавлен 11.01.2004

  • Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.

    творческая работа [23,8 K], добавлен 17.10.2009

  • Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.

    презентация [2,1 M], добавлен 20.09.2014

  • Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.

    научная работа [44,3 K], добавлен 25.02.2009

  • Возникновение и развитие числовых сравнений и сравнений высших степеней с одним неизвестным. Методы решения сравнений высшей степени с одним неизвестным. Двучленные сравнения высшей степени. Использование критерия Эйлера. Квадратичный закон взаимности.

    курсовая работа [441,2 K], добавлен 11.09.2012

  • Решение биквадратных, симметричных и кубических уравнений, содержащих радикалы. Решение уравнений четвертой степени методом понижения степени и разложения на множители. Применение бинома Ньютона. Графический метод решения уравнений повышенной степени.

    презентация [754,7 K], добавлен 29.05.2010

  • Два варианта доказательства теоремы. Приведенные преобразования равенства Ферма над множеством натуральных чисел показывают, что с помощью конечного числа арифметических действий оно всегда приводится к тождеству, что и доказывает теорему.

    статья [74,0 K], добавлен 14.04.2007

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Сущность и содержание теории сравнений. Основные понятия и теоремы сравнения первой степени с одной переменной. Методика сравнения по простому модулю с одним и несколькими неизвестными. Системы уравнений первой степени и основные этапы их решения.

    курсовая работа [1,9 M], добавлен 27.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.