О методологии везения и теории вероятности
Эволюция представлений о везении как вероятности наступления события, философская категория фортуны. Оценка вероятности благоприятного события и его изменение во времени. Г. Гардано, Пьер де Ферма и Блеиз Паскаль как основоположники теории вероятностей.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 29.03.2019 |
Размер файла | 16,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общее представление о событии. Понятие действительного, случайного и невозможного события. Даниил Бернулли, Христиан Гюйгенс, Пьер-Симон Лаплас, Блез Паскаль, Пьер Ферма и их вклад в развитие теории вероятностей. Формирование вероятностного мышления.
презентация [1,6 M], добавлен 03.05.2011Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.
шпаргалка [777,8 K], добавлен 24.12.2010Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.
реферат [175,1 K], добавлен 22.12.2013Определение вероятности наступления определенного события по законам теории вероятности. Вычисление математического ожидания, дисперсии и среднего квадратичного отклонения. Нахождение выборочного уравнения регрессии по данным корреляционной таблицы.
контрольная работа [212,0 K], добавлен 01.05.2010Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.
практическая работа [55,0 K], добавлен 23.08.2015Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.
презентация [1,5 M], добавлен 19.07.2015Расчет наступления определенного события с использованием положений теории вероятности. Определение функции распределения дискретной случайной величины, среднеквадратичного отклонения. Нахождение эмпирической функции и построение полигона по выборке.
контрольная работа [35,1 K], добавлен 14.11.2010Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014Теория вероятности, понятие вероятности события и её классификация. Понятие комбинаторики и её основные правила. Теоремы умножения вероятностей. Понятие и виды случайных величин. Задачи математической статистики. Расчёт коэффициента корреляции.
шпаргалка [945,2 K], добавлен 18.06.2012