О спектре группы
Примеры классической постановки задачи в направлении изучения групп с заданным спектром и некоторыми дополнительными ограничениями. Результат о распознаваемости группы по множеству простых делителей порядков элементов в классе слойно конечных групп.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 31.01.2019 |
Размер файла | 23,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
курсовая работа [546,1 K], добавлен 26.09.2009Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа [241,0 K], добавлен 06.03.2014Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.
курсовая работа [163,6 K], добавлен 07.03.2010Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа [393,4 K], добавлен 21.09.2013Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа [475,0 K], добавлен 22.09.2009Характеристика и изучение замкнутости класса всех конечных сверхразрешимых групп относительно подгрупп, фактор-групп и прямых произведений. Исследование свойств подгрупп конечной сверхразрешимой группы. Обзор свойств сверхразхрешимых групп в виде лемм.
курсовая работа [260,7 K], добавлен 06.06.2012Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.
курсовая работа [1,1 M], добавлен 22.09.2009Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа [288,7 K], добавлен 20.12.2009Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа [177,3 K], добавлен 19.04.2011Характеристика и определение общих свойств слабо нормальных подгрупп и их конечных групп. Доказательство новых критериев принадлежности группы насыщенной формации. Критерии разрешимости и метанильпотентности групп в терминах слабо нормальных подгрупп.
курсовая работа [176,0 K], добавлен 02.03.2010Примеры алгебраических групп матриц, классические матричные группы: общая, специальная, симплектическая и ортогональная. Компоненты алгебраической группы. Ранг матрицы, возвращение к уравнениям, совместимость. Линейные отображения, действия с матрицами.
курсовая работа [303,7 K], добавлен 22.09.2009Определение и основные свойства конечных групп с условием плотности для F-субнормальных подгрупп. Общие свойства, использующиеся для изучения строения конечных групп с плотной системой F-субнормальных подгрупп. Особенности развития теории формаций.
курсовая работа [155,1 K], добавлен 02.03.2010Этапы возникновения, развития и основы теории исследования величины нильпотентной длины конечных разрешимых групп с известными добавлениями к максимальным подгруппам. Признаки разрешимости конечной группы, подгруппа Фиттинга, ее свойства и теоремы.
дипломная работа [548,6 K], добавлен 18.09.2009Свойства примитивных конечных разрешимых произведений N-разложимых групп. Условия факторизуемости проекторов конечных разрешимых произведений N-разложимых групп для случая. Порядок определения приложений полученных результатов для классических формаций.
дипломная работа [239,8 K], добавлен 14.12.2009Характеристика и основополагающие свойства силовых подгрупп конечных групп, определение и доказательство соответствующих лемм. Понятие и свойства супердобавлений. Строение группы с максимальной и силовской подгруппой, обладающей супердобавлением.
курсовая работа [489,5 K], добавлен 05.01.2010Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.
курсовая работа [427,2 K], добавлен 18.09.2009Цепь как совокупность вложенных друг в друга подгрупп. Описание и применение теоремы Гольфанда. F-абнормальная максимальная подгруппа из G либо p-нильпотентна как бипримарная группа Миллера-Морено. Понятие группы Фробениуса с циклической подгруппой.
курсовая работа [270,6 K], добавлен 07.03.2010Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.
курсовая работа [523,5 K], добавлен 26.09.2009Возникновение и развитие теории групп. Проблема интегрирования дифференциальных уравнений. Алгебраические конструкции в теории автоматов. Появление понятия перестановок. Группы и классификация голограмм. Применение теории групп в квантовой механике.
реферат [457,3 K], добавлен 08.02.2013Группа как непустое множество с бинарной алгебраической операцией, ее свойства и требования. Представления унитарными матрицами и полная приводимость представлений конечных групп. Доказательство основных теорем. Соотношения ортогональности для характеров.
курсовая работа [380,6 K], добавлен 22.09.2009