Эвристический метод определения базиса регрессии
Эвристическое правило выбора функционального базиса в задаче построения функции регрессии. Выбор из множества возможных базисов такого, который доставляет минимум остаточной сумме квадратов, рассчитанной по проверочной выборке. Примеры эффективности.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 27.11.2018 |
Размер файла | 18,0 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.
контрольная работа [380,9 K], добавлен 05.04.2015Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Способы построения искусственного базиса задачи. Выражение искусственной целевой функции. Математическая модель задачи в стандартной форме. Получение симплекс-таблиц. Минимизации (сведения к нулю) целевой функции. Формы преобразования в задаче равенства.
задача [86,0 K], добавлен 21.08.2010Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.
задача [133,0 K], добавлен 21.12.2008Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.
презентация [100,3 K], добавлен 16.12.2014Доказательство теоремы о линейно независимой системе векторов в пространстве Rn. Краткое рассмотрение базиса пространства Rn, в котором каждый вектор ортогонален остальным векторам базиса, особенности его представления на плоскости и в пространстве.
презентация [68,5 K], добавлен 21.09.2013Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.
курсовая работа [352,9 K], добавлен 26.01.2010История открытия магических квадратов; элементарные принципы их построения. Линейный метод построения магических квадратов порядка n. Описание методов Москопула, альфила и Баше. Особенности построения магических квадратов четного и нечетного порядков.
курсовая работа [992,4 K], добавлен 24.07.2014Поверхности и ориентация. Теория внутренней поверхности. Выбор ориентации поверхности при помощи выбора базиса касательных векторов. Выбор вектора единичной нормали. Внутренняя геометрия поверхности, определение развертки и теорема Александрова.
реферат [144,0 K], добавлен 07.12.2012Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.
презентация [387,8 K], добавлен 25.05.2015