Кластерный анализ
Кластерный анализ как совокупность методов, позволяющих классифицировать многомерные наблюдения, условия и возможности его применения, преимущества. Этапы и трудности его реализации, интерпретация полученных результатов. Расчет евклидового расстояния.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 17.07.2018 |
Размер файла | 18,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.
реферат [187,0 K], добавлен 28.10.2010Подходы к оценке кредитного риска: недостатки методик Базеля II. Модели оценки: качество и прозрачность методик, структура данных. Скоринговые методики, кластерный и дискриминантный анализ, нейронные сети и дерево классификаций, data mining и регрессии.
курсовая работа [3,3 M], добавлен 21.08.2008Рассмотрение понятия и сущности математического моделирования. Сбор данных результатов единого государственного экзамена учеников МБОУ "Лицей №13" по трем предметам за 11 лет. Прогнозирование результатов экзамена на 2012, 2013, 2014 учебные годы.
курсовая работа [392,4 K], добавлен 19.10.2014Формирование линеаризованного узлового уравнения разработка и транспонированной матрицы, сопротивлений ветвей и узловых проводимостей. Методика и этапы решения системы линеаризованных узловых уравнений методом Зейделя, анализ полученных результатов.
задача [144,6 K], добавлен 10.08.2013Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.
лабораторная работа [86,8 K], добавлен 13.10.2014Понятие и отличительные особенности численных методов решения, условия и возможности их применения. Оптимизация функции одной переменной, используемые методы и закономерности их комбинации, сравнение эффективности. Сущность и разновидности интерполяции.
реферат [273,3 K], добавлен 29.06.2015Описание подходов к построению динамической модели технологического процесса, этапы и направления данного процесса, ее конкретное представление. Аппроксимация заданных уравнений и оценка полученных результатов, решение и математическое значение.
контрольная работа [92,9 K], добавлен 11.03.2015Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.
курсовая работа [1,8 M], добавлен 23.12.2012Математическое ожидание случайной величины как ее характеристическая функция, определение ее свойств и признаков, расчет производных. Теоремы Хелли, особенности и направления их практического применения, условия и возможности расчета заданных функций.
курсовая работа [856,7 K], добавлен 30.01.2014