Дифференциальные уравнения с параметрами как математические модели
Возникновение математических моделей в виде автономных систем обыкновенных дифференциальных уравнений, зависящих от параметров в задачах естествознания. Зависимость скорости изменений некоторых величин, называемых фазовыми, или динамическими переменными.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 25.12.2017 |
Размер файла | 172,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные модели естествознания, подходы к исследованию явлений природы, её фундаментальных законов на основе математического анализа. Динамические системы, автономные дифференциальные уравнения, интегро-дифференциальные уравнения, законы термодинамики.
курс лекций [1,1 M], добавлен 02.03.2010Понятие и типы математических моделей, критерии их классификации. Примеры использования дифференциальных уравнений при моделировании реальных процессов: рекламная компания, истечение жидкости, водяные часы, невесомость, прогиб балок, кривая погони.
курсовая работа [410,0 K], добавлен 27.04.2014Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа [337,3 K], добавлен 19.09.2011Дифференциальные уравнения как модели эволюционных процессов. Автономные системы дифференциальных уравнений и их фазовые пространства. Асимптотическая устойчивость линейных однородных автономных систем. Изображения фазовых кривых при помощи ПО Maple.
дипломная работа [477,4 K], добавлен 17.06.2015Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Дифференциальное уравнение с начальными данными. Свойства предельных множеств автономных систем. Приближенное решение дифференциальных уравнений. Вопрос о сходимости ряда. Предельные множества траекторий автономных систем, состоящие из целых траекторий.
реферат [1,1 M], добавлен 12.12.2012Неизвестная функция, ее производные и независимые переменные - элементы дифференциального уравнения. Семейство численных алгоритмов решения обыкновенных дифференциальных уравнений, их систем. Методы наименьших квадратов, золотого сечения, прямоугольников.
контрольная работа [138,9 K], добавлен 08.01.2016