Алгебраические критерии устойчивости линейных систем: Стодола, Гурвица. Частотные критерии устойчивости: метод D-разбиения, критерий Михайлова

Ознакомление с выражением характеристического уравнения, главного диагонального минора матрицы Гурвица. Рассмотрение свойства годографа. Определение диапазона изменения (приращения) аргумента. Анализ отредактированных графиков годографов Михайлова.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 22.09.2017
Размер файла 305,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Решение дифференциального уравнения методом Адамса. Нахождение параметров синтезирования регулятора САУ численным методом. Решение дифференциального уравнения неявным численным методом. Анализ системы с использованием критериев Михайлова и Гурвица.

    курсовая работа [398,2 K], добавлен 13.07.2010

  • Нахождение АЧХ, ФЧХ, ЛАЧХ для заданных параметров. Построение ЛФЧХ. Определение параметров передаточной функции разомкнутой системы. Исследование на устойчивость по критериям: Гурвица, Михайлова и Найквиста. Определение точности структурной схемы.

    курсовая работа [957,8 K], добавлен 11.12.2012

  • Исследования устойчивости разомкнутой и замкнутой систем. Понятие разомкнутой системы – системы, в которой отсутствует обратная связь между входом и выходом, то есть управляемая величина (выходная) не контролируется. Логарифмический частотный критерий.

    реферат [189,7 K], добавлен 30.01.2011

  • Особенности применения функций Ляпунова для исследования устойчивости различных дифференциальных уравнений и систем. Алгоритм и листинг программы определения устойчивости матрицы на основе использования метода Раусса-Гурвица в среде моделирования Matlab.

    реферат [403,7 K], добавлен 23.10.2014

  • Задачи вычислительной линейной алгебры. Математическое моделирование разнообразных процессов. Решение систем линейных алгебраических уравнений большой размерности. Метод обратной матрицы и метод Гаусса. Критерии совместности и определенности системы.

    курсовая работа [220,0 K], добавлен 21.10.2011

  • Биография немецкого математика А. Гурвица. Основные положения теоремы Ферма. Обзор систем "чисел", которые можно построить, исходя из действительных чисел, путем добавления рядя "мнимых единиц". Приложение теоремы Гурвица: теоремы Фробениуса и Лагранжа.

    курсовая работа [220,5 K], добавлен 25.05.2010

  • Понятие матрицы, ее ранга, минора, использование при действиях с векторами и изучении систем линейных уравнений. Квадратная и прямоугольная матрица. Элементарные преобразования матрицы. Умножение матрицы на число. Класс диагональных матриц, определители.

    реферат [102,8 K], добавлен 05.08.2009

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Ознакомление с основами метода Гаусса при решении систем линейных уравнений. Определение понятия ранга матрицы. Исследование систем линейных уравнений; особенности однородных систем. Рассмотрение примера решения данной задачи в матрической форме.

    презентация [294,9 K], добавлен 14.11.2014

  • Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.

    реферат [111,8 K], добавлен 09.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.