Изоморфизм графов
Изучение принципов установления изоморфизма или изоморфного вложения между заданными структурами при решении комбинаторно-логических задач и оптимизационных на графах. Пример решения задач распознавания изоморфизма. Определение вершины в алгоритме.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 23.01.2017 |
Размер файла | 17,4 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.
презентация [430,0 K], добавлен 19.11.2013Теория графов как математический аппарат для решения задач. Характеристика теории графов. Критерий существования обхода всех ребер графа без повторений, полученный Л. Эйлером при решении задачи о Кенигсбергских мостах. Алгоритм на графах Дейкстры.
контрольная работа [466,3 K], добавлен 11.03.2011История возникновения, основные понятия графа и их пояснение на примере. Графический или геометрический способ задания графов, понятие смежности и инцидентности. Элементы графа: висячая и изолированная вершины. Применение графов в повседневной жизни.
курсовая работа [636,2 K], добавлен 20.12.2015Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.
практическая работа [1,5 M], добавлен 15.12.2013Способы решения логических задач типа "Кто есть кто?" методами графов, табличным способом, сопоставлением трех множеств; тактических, истинностных задач, на нахождение пересечения множеств или их объединения. Буквенные ребусы и примеры со звездочками.
курсовая работа [622,2 K], добавлен 15.06.2010Общая характеристика графов с нестандартными достижимостями, их применение. Особенности задания, представления и разработки алгоритмов решения задач на таких графах. Описание нового класса динамических графов, программной реализации полученных алгоритмов.
реферат [220,4 K], добавлен 22.11.2010Граф как множество вершин (узлов), соединённых рёбрами, способы и сфера их применения. Специфика теории графов как раздела дискретной математики. Основные способы преобразования графов, их особенности и использование для решения математических задач.
курсовая работа [1,8 M], добавлен 18.01.2013Примеры решения задач по заданию графов. Определение основных характеристик графа: диаметра, радиуса, эксцентриситета каждой вершины. Вычисление вершинного и реберного хроматического числа. Упорядоченность матричным способом и построение функции.
контрольная работа [224,6 K], добавлен 05.07.2014Применение граф-схем - кратчайший путь доказательства теорем. Нахождение искомых величин путем рассуждений. Алгоритм решения логических задач методами таблицы и блок-схемы. История появления теории траекторий (математического бильярда), ее преимущества.
реферат [448,4 K], добавлен 21.01.2011Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа [951,4 K], добавлен 22.01.2014