Аналитическая геометрия
Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
Рубрика | Математика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 10.09.2016 |
Размер файла | 836,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.
реферат [202,6 K], добавлен 26.01.2011Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.
реферат [197,7 K], добавлен 03.08.2010Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.
курсовая работа [302,7 K], добавлен 22.01.2011Метод координат. Основные задачи аналитической геометрии на прямой и на плоскости. Основные линии второго порядка. Алгебраическая и геометрическая интерпретация векторов. Уравнение поверхности и уравнение линии в пространстве. Общее уравнение плоскости.
учебное пособие [687,5 K], добавлен 04.05.2011Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.
лекция [160,8 K], добавлен 17.12.2010Роль идей и методов проективной геометрии в математической науке. Закономерности кривых второго порядка и кривых второго класса, основные теоремы Паскаля и Брианшона, описывающие замечательное свойство шестиугольника вписанного в кривую второго порядка.
курсовая работа [1,9 M], добавлен 04.11.2013Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.
отчет по практике [1,1 M], добавлен 15.11.2014Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.
учебное пособие [312,2 K], добавлен 09.03.2009Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.
курсовая работа [132,1 K], добавлен 14.10.2011Образование конических сечений. Основное свойство и уравнение эллипса, исследование формы по его уравнению. Исследование форм параболы по ее уравнению. Директориальное свойство конических сечений. Эллипс, гипербола и парабола как конические сечения.
курсовая работа [156,7 K], добавлен 08.11.2013Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.
курсовая работа [573,7 K], добавлен 27.08.2012Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.
презентация [65,2 K], добавлен 21.09.2013Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.
контрольная работа [102,5 K], добавлен 04.12.2013Линейные операторы, собственные значения. Общее понятие о квадратичных формах. Упрощение уравнений второго порядка на плоскости. Упрощение уравнений фигур в пространстве. Ортогональное преобразование, приводящее квадратичную форму к каноническому виду.
курсовая работа [162,9 K], добавлен 13.11.2012Способы определения плоскости. Прямые в пространстве, признаки их параллельности, пересечения, скрещивания. Принадлежность прямой плоскости, их параллельность и скрещивание. Перпендикулярность прямой и плоскости. Взаимодействие плоскостей в пространстве.
презентация [1,4 M], добавлен 13.04.2016Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.
контрольная работа [126,9 K], добавлен 20.04.2016Написание уравнения прямой, проходящей через определенную точку и удаленной от начала координат на заданное расстояние. Расчет длины высот параллелограмма. Построение плоскости и прямой, определение точки пересечения прямой и плоскости и угла между ними.
контрольная работа [376,1 K], добавлен 16.06.2012Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.
курсовая работа [654,1 K], добавлен 28.09.2019Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат [165,4 K], добавлен 24.08.2015Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.
презентация [217,3 K], добавлен 16.11.2014