Решение игр в смешанных стратегиях

Алгоритм получения оптимального решения игры, не имеющей седловой точки, при помощи метода чередования чистых стратегий. Геометрическая интерпретация игры 2х2. Порядок и особенности определения оптимальных стратегий игроков геометрическим методом.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 12.07.2015
Размер файла 638,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Определение матричных игр в чистых стратегиях. Смешанные стратегии и их свойства. Решения игр матричным методом. Метод последовательного приближения цены игры. Отыскание седлового элемента. Антагонистические игры как первый класс математических моделей.

    контрольная работа [855,7 K], добавлен 01.06.2014

  • Принятие решений как особый вид человеческой деятельности. Рациональное представление матрицы игры. Примеры матричных игр в чистой и смешанной стратегиях. Исследование операций: взаимосвязь задач линейного программирования с теоретико-игровой моделью.

    курсовая работа [326,4 K], добавлен 05.05.2010

  • Принцип минимакса как основа целесообразного поведения игроков в антагонистической игре. Порядок разыгрывания в некооперативной игре в нормальной форме. Принцип оптимальности стратегий для нее. Представление игры в развернутой и в нормальной форме.

    реферат [241,5 K], добавлен 20.10.2012

  • Составление платежной матрицы, поиск нижней и верхней чисты цены игры, максиминной и минимаксной стратегии игроков. Упрощение платежной матрицы. Решение матричной игры с помощью сведения к задаче линейного программирования и надстройки "Поиск решения".

    контрольная работа [1010,3 K], добавлен 10.11.2014

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа [878,3 K], добавлен 26.12.2012

  • Основные определения теории биматричных игр. Пример биматричной игры "Студент-Преподаватель". Смешанные стратегии в биматричных играх. Поиск "равновесной ситуации". 2x2 биматричные игры и формулы для случая, когда у каждого игрока имеется две стратегии.

    реферат [84,2 K], добавлен 13.02.2011

  • Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.

    реферат [183,7 K], добавлен 11.04.2014

  • Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.

    дипломная работа [351,2 K], добавлен 01.06.2015

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.

    курсовая работа [318,4 K], добавлен 17.08.2013

  • Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.

    курсовая работа [153,2 K], добавлен 25.11.2011

  • Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.

    курсовая работа [393,2 K], добавлен 18.06.2011

  • Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.

    курсовая работа [124,0 K], добавлен 11.12.2002

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

  • Игры, повторяемые многократно, их отличительные свойства и этапы. Смешанные стратегии, условия и возможности их использования на практике. Аналитический метод решения игры типа 2 x 2. Основные теоремы для прямоугольных игр. Алгебраические решения.

    презентация [893,5 K], добавлен 23.10.2013

  • Линейное программирование как наиболее разработанный и широко применяемый раздел математического программирования. Понятие и содержание симплекс-метода, особенности и сферы его применения, порядок и анализ решения линейных уравнений данным методом.

    курсовая работа [197,1 K], добавлен 09.04.2013

  • Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.

    контрольная работа [98,6 K], добавлен 19.04.2015

  • История развития теории игр как математического метода изучения оптимальных стратегий в играх. Представление игр: экстенсивная и нормальная форма. Классификация и типы математических игр, их характеристика. Общее понятие и основные цели метаигры.

    реферат [49,5 K], добавлен 29.12.2010

  • Решение уравнения гармонического осциллятора при помощи разложения в ряд Тейлора. Применение метода индуцированной алгебры. Решение уравнения гармонического осциллятора при помощи метода индуцированной алгебры. Сравнение работоспособности методов решений.

    курсовая работа [92,0 K], добавлен 24.05.2012

  • Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа [209,4 K], добавлен 15.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.