Эллипс и его каноническое уравнение

Определение понятия эллипс, его уравнение и свойства эллипса. Эллипс как центральная невырожденная кривая второго порядка и его каноническое уравнение. Формулы для определения длины дуги эллипса, а также формулы для периметра, и построение эллипса.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 10.02.2014
Размер файла 505,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Нормальное и каноническое уравнение окружности и эллипса. Понятие эксцентриситета как отношения фокусного расстояния к длине большой оси эллипса. Уравнение и координаты точки, принадлежащей эллипсу. Влияние отношение малой и большой полуосей на фигуру.

    презентация [184,4 K], добавлен 21.09.2013

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Образование конических сечений. Основное свойство и уравнение эллипса, исследование формы по его уравнению. Исследование форм параболы по ее уравнению. Директориальное свойство конических сечений. Эллипс, гипербола и парабола как конические сечения.

    курсовая работа [156,7 K], добавлен 08.11.2013

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа [797,4 K], добавлен 18.11.2013

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат [202,6 K], добавлен 26.01.2011

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Задача на вычисление скалярного произведения векторов. Нахождение модуля векторного произведения. Проверка коллинеарности и ортогональности. Составление канонического уравнения эллипса, гиперболы, параболы. Нахождение косинуса угла между его нормалями.

    контрольная работа [102,5 K], добавлен 04.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.