Построение решений систем линейных уравнений

Главные и свободные неизвестные, входящие в выбранный минор. Использование правила Крамера. Частное решение системы. Пример решения системы линейных уравнений. Применение метода Гаусса (последовательного исключения переменных). Сравнение рангов матриц.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 26.01.2014
Размер файла 210,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Общий вид системы линейных уравнений и ее основные понятия. Правило Крамера и особенности его применения в системе уравнений. Метод Гаусса решения общей системы линейных уравнений. Использование критерия совместности общей системы линейных уравнений.

    контрольная работа [35,1 K], добавлен 24.06.2009

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

  • Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.

    курсовая работа [154,5 K], добавлен 13.11.2012

  • Примеры операций над матрицами. Ранг матрицы. Обратная матрица. Системы линейных уравнений. Метод Гаусса для решения систем линейных уравнений, две его составляющие: прямой и обратный ходы. Решение системы по формулам Крамера. Построение параболы.

    контрольная работа [33,2 K], добавлен 05.02.2009

  • Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.

    контрольная работа [193,5 K], добавлен 28.03.2014

  • Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.

    курсовая работа [661,7 K], добавлен 21.10.2013

  • Метод последовательного исключения неизвестных (метод Гаусса) при решении задач аппроксимации функции в прикладной математике. Метод Гаусса с выбором главного элемента и оценка погрешности при решении системы линейных уравнений, итерационные методы.

    контрольная работа [94,4 K], добавлен 04.09.2010

  • Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.

    контрольная работа [200,4 K], добавлен 17.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.