Не локальные интерполяционные кубические сплайны
Изучение условий не локальных интерполяционных кубических сплайнов. Использование формулы для эрмитова сплайна. Определение переменных для второго типа граничных условий. Характеристика построения кубического не локального интерполяционного сплайна.
| Рубрика | Математика |
| Вид | презентация |
| Язык | русский |
| Дата добавления | 30.10.2013 |
| Размер файла | 148,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Определение сплайна степени n дефекта. Простейший пример сплайна - единичная функция Хевисайда. Теорема о линейно независимых функциях и ее доказательство. Базисные сплайны с конечными носителями. Тождество Лемма. Представление многочленов сплайнами.
курсовая работа [1,6 M], добавлен 19.12.2010Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация [251,7 K], добавлен 29.10.2013Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.
презентация [88,1 K], добавлен 18.04.2013Решение системы линейных уравнений методом Якоби вручную и на Бейсике. Построение интерполяционного многочлена Ньютона с помощью Excel. Получение аппроксимирующей функции методом наименьших квадратов. Построение кубического сплайна по шести точкам.
курсовая работа [304,9 K], добавлен 07.09.2012Решение кубического уравнения на основе современных методов: разложение левой части на линейные множители; с помощью формулы Кардана; специальных таблиц. Рассмотрение метода решения кубических уравнений, включая неприводимый случай формулы Кардана.
задача [276,1 K], добавлен 20.02.2011Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.
реферат [456,6 K], добавлен 14.01.2011Теория приближений как раздел математики, изучающий вопрос о возможности приближенного представления математических объектов. Построение интерполяционного многочлена. Приближение кусочно-полиномиальными функциями. Алгоритм программы и ее реализация.
курсовая работа [390,2 K], добавлен 18.10.2015Определение значения заданной функции в указанной точке при помощи интерполяционной схемы Эйткина. Проверка правильности данного решения с помощью кубического сплайна. Практическая реализация данного задания на языке Pascal и при помощи таблиц Excel.
курсовая работа [496,3 K], добавлен 29.08.2010Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.
практическая работа [46,1 K], добавлен 06.06.2011Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.
диссертация [2,8 M], добавлен 19.06.2015
