Исследование математической модели колебательного движения груза по заданным силам
Понятие математических моделей, их классификация и свойства, применение числовых методов в создании. Метод Рунге-Кутта в решении систем дифференциальных уравнений. Система Mathcad. Аппроксимация и ее главные функции. Алгоритмический анализ задачи.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 19.09.2013 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа [489,1 K], добавлен 17.11.2016Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа [391,5 K], добавлен 01.03.2012Основные методы Рунге-Кутта: построение класса расчетных формул. Расчетная формула метода Эйлера. Получение различных методов Рунге-Кутта с погрешностью второго порядка малости при произвольном задавании параметров. Особенности повышения порядка точности.
реферат [78,4 K], добавлен 18.04.2015Изучение методов Рунге-Кутты четвертого порядка с автоматическим выбором длины шага интегрирования для решения дифференциальных уравнений. Оценка погрешности и сходимость методов, оптимальный выбор шага. Листинг программы для ЭВМ, результаты, иллюстрации.
курсовая работа [2,9 M], добавлен 14.09.2010Особенности математических моделей и моделирования технического объекта. Применение численных математических методов в моделировании. Методика их применения в системе MathCAD. Описание решения задачи в Mathcad и Scilab, реализация базовой модели.
курсовая работа [378,5 K], добавлен 13.01.2016Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.
лабораторная работа [380,9 K], добавлен 23.07.2012Определение и анализ многошаговых методов, основы их построения, устойчивость и сходимость. Постановка задачи Коши для обыкновенных дифференциальных уравнений. Метод Адамса, значение квадратурных коэффициентов. Применение методов прогноза и коррекции.
контрольная работа [320,8 K], добавлен 13.03.2013Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.
курсовая работа [341,7 K], добавлен 06.10.2012Формирование системы их пяти уравнений по заданным параметрам, ее решение методом Гаусса с выбором главного элемента. Интерполяционный многочлен Ньютона. Численное интегрирование. Решение нелинейных уравнений. Метод Рунге-Кутта четвертого порядка.
контрольная работа [115,5 K], добавлен 27.05.2013Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.
курсовая работа [1,1 M], добавлен 04.06.2010Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.
курсовая работа [111,1 K], добавлен 13.11.2011Решение дифференциальных уравнений. Численный метод для заданной последовательности аргументов. Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции. Применение шаговых методов решения Коши.
дипломная работа [1,2 M], добавлен 16.12.2008Моделирование как метод познания. Классификаций и характеристика моделей: вещественные, энергетические и информационные. Математическая модель "хищники-жертвы", ее сущность. Порядок проверки и корректировки модели. Решение уравнений методом Рунге-Кутта.
методичка [283,3 K], добавлен 30.04.2014Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [791,0 K], добавлен 12.06.2010Изучение понятия и методов решения обыкновенных дифференциальных уравнений. Искомые функции непрерывного аргумента и замена их функциями дискретного аргумента. Разностное уравнение относительно сеточной функции - аппроксимация на сетке. Метод Эйлера.
презентация [107,6 K], добавлен 18.04.2013Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа [337,3 K], добавлен 19.09.2011Численное решение дифференциальных уравнений с помощью многошагового метода прогноза и коррекции Милна. Суммарная ошибка метода Милна. Применение метода Рунге-Кутта для нахождения первых значений начального отрезка. Абсолютная погрешность значения.
контрольная работа [694,0 K], добавлен 27.02.2013Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.
курсовая работа [4,8 M], добавлен 29.04.2013Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.
курсовая работа [1,2 M], добавлен 30.09.2012Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.
курсовая работа [990,8 K], добавлен 17.07.2014